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Abstract: The effects of (fresh/aged) brine and (pool/jar) containers on the flavor characteristics of
pickled chili peppers were investigated based on a multivariate analysis integrated with kinetics
modeling. The results showed that the effect of brine on organic acid, sugar, and aroma was
more dominant than that of containers, while free amino acids production was more affected by
containers than brines. Chili pepper fermented using aged brine exhibited higher acidity (3.71–3.92)
and sugar (7.92–8.51 mg/g) than that using fresh brine (respective 3.79–3.96; 6.50–9.25 mg/g).
Besides, chili peppers fermented using pool containers showed higher free amino acids content
(424.74–478.82 mg/100 g) than using a jar (128.77–242.90 mg/100 g), particularly with aged brine. As
for aroma, the number of volatiles in aged brine was higher (88–96) than that in fresh brine (76–80).
The contents of the esters, alcohols, and ketones were significantly higher in the aged brine samples
than those in fresh brine (p < 0.05), while terpenes in chili pepper fermented using the pool were
higher than those using the jar. In general, jar fermentation with aged brine contributed more flavor
to pickled chili peppers than other procedures.

Keywords: fermented chili pepper; flavor; brines; containers; multivariate data analysis

1. Introduction

Natural fermentation is an ancient technique widely used for food processing. It can
extend shelf life, improve flavor profile, and increase nutritional and functional values [1,2].
Among these, the flavor characteristic is one of the main indicators directly affecting
consumers ’preferences for fermented vegetable products. The flavor properties of final
fermented vegetable products have been proven to be closely related to raw materials,
processing methods, and environmental conditions [3]. The production of fermented
vegetates depends on the spontaneous fermentation of lactic acid bacteria (LAB) and yeast
in the raw materials and brine [4,5]. In addition to the raw material, the fermentation brine
is the main controlled variable to stable quality properties for Chinese traditional pricked
vegetable processing. For industrial production, two types of procedures for fermented
brines are commonly applied: (1) using all fresh brine and (2) using fresh brine mixed
with reused brine at a certain ratio [4,6]. Recycling and using aged brine as a starter
for fermentation can not only be friendly to the environment, but can also be valuable
for unique flavor formation [7]. However, to date, little information has been reported
regarding the role of fresh and aged brine on the flavor production of pickled vegetables
during fermentation.

Pickle jars are traditionally used as the main fermenting vessels to provide the fer-
mented vegetable with a unique flavor, particularly porcelain jars [8]. Anaerobic or/and
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microaerobic spontaneous fermentation occurs when using pickle jars because they need to
be sealed by adding water to the moat, not only to prevent air from entering but also to
allow the carbon dioxide produced by fermentation to escape [3]. Considering the limited
capacity of the pickle jar, large-scale fermentation pools have been widely applied in the
industrial production of fermented vegetables. The fermented vegetables and brine are
placed in the pool, flattened, covered with two layers of dense plastic nets, and tightly
pressed using wide wooden boards. The brine is periodically circulated by the pump for
aerobic natural fermentation [7,9]. Even though our previous study found that vegeta-
bles fermented using small-scale household pickle jars seem to contain additional various
aroma compounds than those fermented using large-scale industrial pickle pools [3], it
remains unclear whether the different fermentation containers in industrial production,
e.g., large-scale fermentation jars and pools, play any direct role in the flavor formation of
fermented vegetables.

Pickled chili pepper is one of the most typical fermented vegetables in southwest
China [6]. Our research team has carried out some studies on the quality characteristics
of Chinese traditional fermented chili peppers [1,3–5,10,11]. It was found that fermenta-
tion contributed to chili peppers’ taste-related attributes, such as increased organic acids
contents and free amino acids (FAAs) contents [4]. In addition, esters (4-methylpentyl
2-methylbutanoate, 4-methylpentyl 3-methylbutanoate, methyl salicylate, 3-methylbutyl
2-methylbutanoate, pentyl 3-methylbutanoate) and terpenes (β-myrcene, linalool, (E)-
linalool oxide, neryl oxide, and α-terpineol) were the main aroma compounds detected
in fermented chili peppers [11]. During fermentation, some aromatic volatile compounds
clearly increased in pickled chili peppers, mainly those including terpenes, alcohols, and
aldehydes [4]. In addition, it was found that aged brine fermentation promoted the growth
of LAB and yeast. This led to the rapid consumption of reducing sugar, inhibited unde-
sirable enterobacteria, and reduced the production of nitrite and biogenic amines during
the fermentation of Paocai [12]. The plastic jar brine samples contained higher levels of
lactic acid and threonine, while more abundant volatile compounds were evident in the
porcelain jar [13].

Based on these previous studies, it can be deduced that fermentation brines and
containers are the main variables that the industry has paid high attention to and wants to
control in order to produce high quality products with stable flavor properties. Therefore,
it is necessary to systematically study the effects of fermentation brines and containers
on the quality of fermentation products, in order to obtain the high-quality fermentation
methods in a large-scale industrial production. However, such research is obviously lacking
at present. To illustrate this issue, the present study aimed to evaluate the role of different
brines (fresh/aged brine) and large-scale containers (pool/jar) on the flavor formation of
fermented chili peppers during natural fermentation. Taste-related attributes (organic acid,
FAA, and sugar) and aroma-related attributes (headspace volatile compounds) of chili
pepper were investigated during the fermentation. The results of this study could guide
the industry to select proper fermentation procedures (brines and containers) for different
types of fermented chili peppers production.

2. Materials and Methods
2.1. Chemicals and Reagents

Standards (oxalic, tartaric, quininic, malic, lactic, acetic, citric, succinic, fumaric acids,
fructose, glucose, and 3-octanol) were purchased from Aladdin (Shanghai, China). High-
performance liquid chromatography (HPLC)-grade acetonitrile and methanol were ob-
tained from Sigma-Aldrich (Darmstadt, Hessen, Germany). The standard amino acid
solution (type H) was acquired from Wako (Wako-shi, Japan). N-Alkanes (C5–C10, C10–C25)
were provided by Anpel (Shanghai, China).
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2.2. Sample Preparation and Collection

Fermented chili pepper samples were produced by Yunnan Hongbin Green Food
Group Co., Ltd. (Jianshui, Yunnan, China) under large-scale fermentation procedures
including pickle pool with fresh brine (PFB), pickle pool with aged brine (PAB), pickle
jar with fresh brine (JFB), and pickle jar with aged brine (JAB). Fresh green Xiaomila
(Capsicum frutescens L.) were fermented in pools or jars with fresh brine (containing 8.16%
sodium chloride, 0.22% calcium chloride, 0.63% glacial acetic acid, and water) or aged
brine (fresh brine: reused brine, 1:4) at an ambient temperature (20–25 ◦C) for a month.
In the preliminary experiment, the changes in pH and OD600 nm of the fermented chili
peppers followed by different fermentation procedures were monitored (data not shown).
Based on the results of the preliminary experiment, the sampling time moments were
selected as 0, 1, 4, 7, 14, and 30 days during fermentation. For each sampling moment and
fermentation procedure, samples (~100 g) were taken at three sampling points from the top
to the bottom of the pool/jar, and four sampling points from the side to the center of the
pool/jar. The collected samples for each time points (~700 g) were mixed into sterile bags.
Sterile bags were used for sampling to reduce the external effects on microorganisms. After
sampling, they were quickly frozen using liquid nitrogen and immediately transported to
the laboratory for physicochemical parameters and flavor analysis.

2.3. pH Value

The pH value was determined according to the previous study [3]. Briefly, 10 g of
fermented chili peppers were homogenized and vortexed with 90 mL deionized water.
After filtering, the pH value of the filtrate was measured using a pH meter (Lei-ci, Shanghai,
China). The measurements were carried out in triplicate.

2.4. Organic Acids

The extraction and measurement of organic acids in the fermented chili peppers sam-
ples were conducted as per our previous study [4]. Briefly, the organic acid concentration
was analyzed using a HPLC (Agilent 1200, Agilent Technologies, Santa Clara, CA, USA)
equipped with a Prevail Organic Acid column (250 mm × 4.6 mm, 5 µm, Avantor, Radnor,
PA, USA) and a UV detector set at 210 nm. The mobile phase (25 mmol/L potassium dihy-
drogen phosphate buffer, pH 2.5) was used at a flow rate of 0.8 mL/min. The injection volume
was 30 µL. Organic acid standards were used as an external standard for the identification and
quantification of organic acids including oxalic, tartaric, quininic, malic, lactic, acetic, citric,
succinic, and fumaric acids. Each sample was extracted and analyzed in triplicate.

2.5. Sugars

The extraction of sugar in the fermented chili peppers samples was the same as for
the organic acids. The extract was analyzed by an HPLC system (Agilent 1260, Agilent
Technologies, Santa Clara, CA, USA) and an ELSD detector (1260 Series, Agilent Technolo-
gies, Santa Clara, CA, USA) equipped with a column (4.6 mm × 250 mm, 5 µm, Asahipak
NH2P-50 4E, Shodex, Japan). The analysis condition was set at 1 mL/min with an injection
volume of 5 µL, and isocratic elution with water and acetonitrile (25:75, v/v). Glucose,
fructose, and sucrose were identified and quantified with their respective standards. Each
sample was extracted and analyzed in triplicate.

2.6. Free Amino Acids

FAAs were extracted and analyzed as per our previous study [11]. The homogenate of
fermented chili peppers (0.5 g) was vortexed with trichloroacetic acid (10 g/L) and placed
at room temperature for 1 h. Then, the mixture was centrifuged at 4000× g for 20 min and
filter supernatant with 0.45 µm syringe filters. The amino acid analyzer (L-8900, Hitachi,
Tokyo, Japan) was equipped with an ion-exchange resin 2622 column (4.6 mm × 60 mm,
3 µm) and a UV detector was used at 440 (proline) and 570 (other FAAs) nm. Amino acid
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mixture (type H) was used as the standard to calculate the FAA content. Each sample was
extracted and analyzed in triplicate.

2.7. Volatile Compounds

The volatile compounds of the samples were determined by using gas chromatography-
mass spectrometry (GC-MS) (QP2010, Shimadzu, Kyoto, Japan) coupled with headspace-
solid phase microextraction (HS-SPME), as described in our previous study with some
modifications [5]. Briefly, 3 g homogenous sample and 3 mL saturated NaCl solution were
mixed in a headspace vial with 100 µL 3-octanol as the internal standard. After incubating
at 40 ◦C for 15 min under agitation at 500 rpm, the SPME fiber coated with 50/30 µm
(Zhenzheng, Qingdao, China) was used to extract the volatile compounds under the same
condition for 40 min. Then, the volatile compounds were thermally (250 ◦C) desorbed from
the fiber into the injector port of the GC for 5 min.

A GC-MS system fitted with a DB-5 MS column (30 m × 0.25 mm × 0.25 µm, Agilent
Technologies, Santa Clara, CA, USA) was used to separate and detect the volatiles. The
initial temperature of the GC column oven was kept at 45 ◦C for 5 min, then increased
to 250 ◦C at a rate of 5 ◦C/min, maintained for 2 min, and then cooled to the initial
temperature. The carrier gas was helium at a flow rate of 0.74 mL/min. The scanning range
of the mass spectrometer was m/z 35–500, the electron ionization mode was 70 eV, and the
ion source temperature and interface temperature were 230 ◦C and 280 ◦C, respectively.
Each sample was subjected to three parallel experiments.

Tentative identification of volatile compounds was performed based on the compari-
son of the database from the NIST 2014 library and the experimentally determined retention
index (RI), which was calculated using n-alkanes (C5–C10, C10–C25, Anpel, Shanghai, China)
under the same operating conditions. Internal standard (3-octanol) calibration was also
conducted for semi-quantification.

2.8. Data Analysis
2.8.1. Statistical Analysis

Data were presented as mean value ± standard deviation. Results were analyzed
using one-way analysis of variance (ANOVA) and the Origin 2021 software (Origin Lab
Corporation, Northhampton, MA, USA). Tukey’s test using IBM SPSS (version 26.0, IBM
Corp., Armonk, NY, USA) was performed at a significance level of 0.05.

2.8.2. Multivariate Data Analysis (MVDA)

The clustered heatmap was illustrated for organic acids and FAAs data by TBtools
(version 1.098, CJ-Chen, China). The influence of brines and containers on flavor com-
pounds was analyzed using a partial least squares discriminant analysis (PSL-DA) model
on Solo (Version 9.1, Eigenvector Research, Manson, WA, USA). The flavor compounds
were considered as X variables, and brines and containers were considered as categorical Y
variables. Variable identification (VID) coefficients were calculated to select discriminant
aroma compounds, and those with absolute VID values above 0.800 were selected [5].

2.8.3. Kinetic Modeling

Fractional conversion kinetic modeling was carried out by using Equation (1) in Origin
(Version 2021, Origin Lab Corporation, Northhampton, MA, USA) to fit the pH changes of
4 fermented chili peppers with the fermentation time.

C = C∞ + (C0 − C∞)exp(kt) (1)

where C is the pH at fermentation time (days), C0 is the initial value on day 0 of fermentation,
C∞ is the value of the stable fraction, k is the reaction rate constant, and t is the number of
days of fermentation.
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3. Results and Discussion
3.1. Taste Properties
3.1.1. pH Value

The pH value is the main parameter for determining the fermentation stages of pickled
vegetables [14]. As shown in Figure 1A, the changes of pH value in four fermented chili
peppers were statistically significant during fermentation (p < 0.05). The pH of fermented
chili peppers significantly decreased within 7 days (p < 0.05) and then maintained a stable
value during fermentation. After 30 days, the pH values of fermented chili peppers
varied from 3.71 and 3.96 (PFB: 3.96 ± 0.02, PAB: 3.92 ± 0.02, JFB: 3.79 ± 0.00, JAB:
3.71 ± 0.01) and fell within the ranges of 3.2–4.2, indicating that the peppers in this study
were considered to be fully fermented and ready to eat [3]. During fermentation, LAB
metabolizes carbohydrates, resulting in a rapid drop in pH [15].
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Figure 1. Changes in the pH value (A) and organic acids content (B) of pickled chili pepper based on
different fermentation procedures, including PFB, PAB, JFB, and JAB (n = 3). (A) pH value plot: the
full lines represent the fitted values by kinetic modelling and the symbols represent the experimental
data. Estimated parameters of the kinetic model were shown in the box. Different lowercase letters
(a–f) indicated significant differences as a function of fermentation time (p < 0.05). (B) Hierarchical
clustering and heatmap visualization of organic acids: the color intensity was based on a normalized
scale from a maximum of 1 (red) to a minimum of 0 (blue), which indicated the abundance of the
organic acids among high (B1), medium (B2), and low (B3).

Under the same fermentation container, the pH value of chili peppers fermented with
aged brine was lower than that fermented with fresh brine (Figure 1A). The initial loading
of microorganisms might contribute to a vigorous metabolism, producing more organic
acid and resulting in a lower pH [12]. The evolution of pH as a function of fermentation
time was well modeled using a first-order fractional conversion model (R2 > 0.90), and the
change rates of JFB (k = 0.62) and JAB (k = 0.69) were higher than that of PFB (k = 0.39) and
PAB (k = 0.41) (Figure 1A). This may be due to the fact that the jar was a closed environment
compared to an open fermentation pool, where the metabolism of hetero-fermentative
microorganisms produced carbon dioxide (CO2) [4,16]. An increase in CO2 leads to an
acidification cultivation broth, which leads to an increase in the pH of the fermented chili
peppers [17].

3.1.2. Organic Acids Profile

The contents of organic acids play important roles in the sour taste of pickled veg-
etables. In this study, a total of 8 organic acids (except for fumaric acid) were detected
in fermented chili peppers. The changes in organic acid content during fermentation of
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four kinds of peppers are shown in Figure 1B, which can be divided into three categories.
Category B1 included most of the aged brine group fermented during 4–30 days, category
B2 included the fresh brine group fermented during 4–30 days, and category B3 included
all chili pepper samples fermented during 0–1 days. It indicated that the effects of fermen-
tation brines were dominant in that of containers on the organic acid profile. In addition,
there were large gaps in the organic acid profile between pickled chili peppers fermented
before and after 4 days (Figure 1B). To zoom in on the data, the organic acids content of
fermented chili peppers in aged brine was significantly higher than that in fresh brine
(p < 0.05) (Figure 1B). Aged brine was enriched in LAB, which could produce more organic
acids compared to fresh brines [18]. Besides, the content of organic acids increased with
the fermentation time, reached the highest at 14 days, and then decreased (Figure 1B). This
might be explained by the fact that organic acids can serve as carbon sources for microbial
growth [5]. In addition, the LAB could efficiently metabolize organic acids to other flavor
compounds, such as esters, ketones, alcohols, and aldehydes [19]. Compared with PFB, JFB,
and JAB, PAB had the lowest acetic acid content after 30 days of fermentation (Figure 1B),
which may be due to the formation of esters combined with alcohols, thus contributing to
the sourness and aroma of fermented chili peppers [19]. Among all samples, JAB samples
had the highest total organic acids content, corresponding to the pH results (Figure 1A).

3.1.3. Sugars Profile

Figure 2 showed the change of sugar content in different fermented chili pepper sam-
ples during 30 days of fermentation. Glucose and fructose were detected in fermented chili
peppers, whereas sucrose was not detected. Similar results were also found in a previous
study, where non-reducing sugars were not detected in brine-pickled sauerkraut [20]. It
was reported that reducing sugar in vegetables was the major carbon source for microor-
ganisms in Paocai during fermentation [12]. Both glucose and fructose contents showed a
decreased trend during fermentation (Figure 2A,B), probably because they were the main
carbohydrates converted to lactic acid, which provided the taste and aroma of fermented
vegetables [20]. Besides, the degree of utilization of glucose was higher than that of fructose,
which was consistent with the results on sauerkraut [20].
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Figure 2. Glucose (A), fructose (B), and total sugars (C) of pickled chili pepper processed by PFB,
PAB, JFB, and JAB (n = 3). Different capital letters (A–D) indicate significant differences in different
treatments (p < 0.05); different lowercase letters (a–f) indicate significant differences as a function of
fermentation time (p < 0.05).

The glucose content in PAB and JAB increased and then decreased (Figure 2A), which
might be due to the abundance of microorganisms in the aged brine [21]. Many microor-
ganisms could simultaneously use a variety of sugars as carbon sources to produce flavor
substances [22]. For example, 2,3-butanediol and acetoin have obtained good fermenta-
tion yields with glucose or sucrose as a carbon source [23]. The Lacticaseibacillus casei and
Lactiplantibacillus plantarum ferment lactose through the phosphoenol pyruvate phospho-
transferase system to produce glucose and galactose-6-phosphate [24]. In addition, the total
sugar content decreased gradually in all samples; in particular, the consumption of fresh
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brine was faster than that of aged brine (PFB, PAB, JFB, and JAB consumed 20.30%, 16.34%,
43.43%, and 1.72%, respectively) (Figure 2C), indicating that the sugar consumption rate
depends on the type of brine used for fermentation.

3.1.4. Free Amino Acids Contents

Free amino acids are one of the main flavor substances in fermented vegetables, of
which quality and quantity play important effects on the flavor quality [25]. In this study,
17 FAAs were identified in four fermented chili pepper samples (Figure 3), which imparted
the umami taste, bitterness, and sweetness [3]. Fermented chili peppers had the highest
content of bitter amino acids, followed by sweet amino acids, and had the lowest content
of umami amino acids (Supplementary Table S1).
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JFB, and JAB (n = 3). The color intensity was based on a normalized scale from a maximum of 1 (red)
to a minimum of 0 (blue), which indicated the abundance of the free amino acids among high (B3),
medium (B2), and low (B1).

Figure 3 showed the changes in FAA content of four kinds of chili peppers during
fermentation, which can be divided into three categories. Category B1 was the samples
without fermentation, category B2 was the jar-fermented samples, and category B3 was the
pool-fermented samples. It indicated that the effect of fermentation containers on the FAAs
content of fermented chili peppers was more dominant than that of fermentation brines.
Compared with the pickle jar, chili peppers fermented using the large-scale pool showed
higher FAAs content, particularly for samples with aged brine (Figure 3). In other words,
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the highest amounts of FAA contents were detected in PAB samples among the samples
(PFB: 424.74 ± 2.60 mg/100 g, PAB: 478.82 ± 1.26 mg/100 g, JFB: 128.77 ± 1.72 mg/100 g,
JAB: 242.90 ± 2.11 mg/100 g) (Figure 3 and Supplementary Table S1). It might be because
that fermentation in the pool involved the mixed fermentation of multi-microorganisms
and multi-enzyme catalysis [26].

The concentration of FAAs increased until day 4 and then decreased during fermen-
tation (Figure 3). The changing trend was similar to other brine-pickled vegetables [27].
The increase of FAAs contents might be related to the utilization of soluble proteins by
LAB (e.g., Lactiplantibacillus plantarum) through the secretion of peptide enzymes and the
breakdown of protein into FAAs [4,11]. The reason for the decline of the FAA content might
be that FAAs were essential substances for microbial metabolism [28]. It could be engaged
in the energy metabolism process (ATP) and the production of other biomass molecules via
transamination, degradation, and other processes [25]. In addition, some studies have pro-
posed that LAB could overcome the low pH stress of brine-pickled vegetables by utilizing
free amino acids to produce biogenic amines [29,30].

3.2. Aroma Properties

Representative total ion chromatograms of headspace volatile components of fer-
mented chili peppers, using different brines and containers when fermented for 30 days
are depicted in Figure 4. Even though the chromatograms of volatiles on four groups of
fermented chili peppers seem to be similar, the PAB samples showed the highest numbers
of volatile compounds (96), followed by the JAB (88), PFB (80), and JFB (76). Among the
volatile compounds, esters were the most abundant volatile components in all fermented
chili peppers, followed by terpenes (Figure 4A–D). The 4-methylpentyl 2-methylbutanoate,
4-methylpentyl 3-methylbutanoate, 4-methylpentyl 4-methylpentanoate, and methyl salicy-
late were the main esters detected in all fermented chili peppers, which contributed fruity
and floral notes [3]. The (Z)-β-ocimene and limonene were the main terpenes detected in
all fermented chili peppers, which contributed citrus and floral odors [31]. Comparably,
the number of alkanes, alcohols, and acids was less than esters and terpenes. In addition
to the common volatile compounds, some unique compounds were also detected in chili
peppers fermented by different procedures. For example, methyl 4-methylpentanoate and
styrene only appeared in chili peppers fermented in pools and jars, respectively. Methyl
4-methylpentanoate was mainly produced by Bacillus amyloliquefaciens, which imparts a
sweet and pineapple aroma to fermented chili peppers [32,33]. Styrene was only found in
jar-fermented chili peppers, which might be due to the action of Debaryomyces hansenii [34].

Considering the large dataset obtained, PLS−DA modeling was used to determine the
correlation of fermentation methods with volatiles (Figure 5). During modeling, three latent
variables (LVs) were selected as being optimal to describe the volatile compounds and
explained in total 99% of Y−variance. Since each LV explained an equal proportion of the
Y−variance, all three plots are shown. Figure 5 clearly showed that four treatment groups
of fermented chili pepper presented distinct separations, indicating different fermentation
brines and containers resulted in different aroma profiles of fermented chili peppers. As
for the loading plots, more volatiles (shown with small open circles) were clustered around
the aged brine groups than the fresh ones, indicating that aged brines were rich in aroma
compounds. It was consistent with the observation in Figure 4. Similar results were
reported in other studies, with a partial decrease in the flavor of freshly brined capers [35].
Traditional Chongqing radish Paocai fermented with aged brine was considered to have the
most intense flavor and authentic taste [36].
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Figure 4. Representative total ion chromatograms of the headspace volatile compounds pickled
chili pepper processed by PFB (A), PAB (B), JFB (C), and JAB (D) fermented for 30 days. The most
abundant peaks were identified and marked on the chromatograms.

In this study, the volatiles with an absolute VID value higher than 0.800 was selected as
discriminant volatile compounds and represented by bold circles (Figure 5). Most discrimi-
nant volatiles in the jar with aged brine was associated with a positive VID value, including
hexyl butanoate, 3-methylbutyl 2-methylbutanoate, hexyl 3-methylbutanoate, isopentyl
hexanoate, heptyl hexanoate, amyl 2-methylbutyrate, and 4-methylpentyl isobutyrate. It
indicated their contents were significantly higher in chili peppers fermented in the jar
with aged brine compared to other samples. A similar observation was reported in wine
fermentation; the wine fermented in barrels showed a higher concentration of alcohols and
esters than that fermented in tanks [37]. In order to better understand the change trends on
key aroma compounds, the discriminant volatile compounds are individually plotted in
Figure 6.

As shown in Figure 6, esters were the most abundant discriminant volatiles in fer-
mented chili peppers. Most of esters were the highest in JAB and lowest in JFB, including
4-methylpentyl isobutyrate, heptyl hexanoate, amyl 2-methylbutyrate, isopentyl isovaler-
ate, and (Z)-3-hexenyl 3-methylbutanoate (Figure 6). These compounds had odor notes of
green, fresh, fruity, and apple, as reported in the literature [4,38]. It might be because the mi-
croorganisms in fresh brine are complex and need to adapt to the environment to stabilize,
resulting in fewer flavor compounds [12]. In addition, 3-methylbutyl 2-methylbutanoate
only appeared in the jar with aged brine fermented chili peppers to give them a fruity
aroma [11]. This might be because only the jar with aged brine contained Pichia fermentans
and Pichia anomala, and Pichia fermentans and Pichia anomala were positively correlated with
the content of 3-methylbutyl 2-methylbutanoate [39].
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Terpenes were the second largest aroma compounds in fermented chili peppers
(Figure 6). Most of them were at higher concentrations in the pool, such as β-chamigrene,
(Z)-β-ocimene, o-cymene, methyl-1-naphthalene, and durene, imparting a floral and herbal
aroma to the fermented chili peppers [10]. Metschnikowia pulcherrima is characterized by an
extra-cellular α-arabinofuranosidase, which influences the content of terpenes in the fer-
mented product [40]. Metschnikowia pulcherrima seems to display a high aerobic respiratory
metabolism and requires high levels of oxygen [41]. In this study, the pool fermentation
was an open fermentation with brine periodically circulated by a pump, while the pickle
fermentation was a sealed fermentation by adding water to the moat. The oxygen content
of the pool fermentation was higher than that of the jar fermentation, which seems to
be more suitable for the growth of Metschnikowia pulcherrima. The high content of most
terpenes in the pool might be related to the high level of Metschnikowia pulcherrima.

Most alkanes presented a significantly higher content in aged brines than in fresh brines,
including heptadecane, hexadecane, octadecane, and naphthalene (p < 0.05) (Figure 6). Similar
results were reported in previous studies. For example, many volatile compounds such
as naphthalene and straight chain alkanes were produced by microbial metabolism in the
second round of fermentation of radish [25]. As the alkanes threshold was high, they were
not thought to directly contribute to the typical odor of chili peppers [4].
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Alcohols, acids, and ketones were the other main volatile compounds representing the
floral, sweet, sour, and green notes in fermented chili peppers [26]. Linalool, as the floral
odor characteristic compound of Paojiao [3], showed significantly higher concentration
in the pool than that in the jar (p < 0.05) (Figure 6). Our previous study found that
Companilactobacillus versmoldensis and Levilactobacillus brevis were the dominant bacterial
species that were positively correlated with linalool, and might be more abundant in
the pool [4]. In addition to linalool, the contents of isohexanol, hexanol, acetic acid, 3,7-
dimethyl-6-octenoic acid, and 3,5-dimethyl-2-octanone were also higher in the aged brine
than those in the fresh brine (Figure 6). LAB and yeast seemed to be more abundant in
the aged brine than the fresh brine [12]. The cell metabolism of LAB and yeast during
fermentation might be related to the high content of most alcohols, acids, and ketones in
the aged brine [11]. As aroma production might be highly related to microbial actions,
future work will further investigate microorganism profiles among different fermentation
procedures, in order to better understand the different bio-synthesis pathways of aroma-
related metabolites produced by LAB and/or yeast strains.

4. Conclusions

In the study, the effects of different brine (fresh/aged brine) and large-scale containers
(pool/jar) on the taste and aroma formation of fermented chili peppers during natural
fermentation were investigated. Considering the large datasets, clustered heatmap, PLS-
DA modeling, and kinetic modeling were conducted to extract the key flavor compounds
distinguishing chili peppers fermented using different procedures.

As for taste properties, the results showed the effect of brine on organic acid and
sugar profile was more dominant than that of containers, while FAAs content production
was more affected by containers than brines. Specifically, chili peppers fermented using
aged brine exhibited a significantly lower pH value and higher organic acid content than
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that fermented using fresh brine (p < 0.05). Sugar was consumed faster in chili peppers
fermented by fresh brine than that by aged brine. Compared with the pickle jar, chili
peppers fermented using the large-scale pool showed higher FAAs content, particularly for
samples with aged brine, such as Asp, Thr, Ser, and Ala.

As for aroma, more aromatic compounds were detected in chili peppers with aged
brines. Among the samples, the PAB samples showed the highest numbers of volatile
compounds (96), followed by the JAB (88), PFB (80), and JFB (76). These volatile compounds
mainly include esters, terpenes, alkanes, alcohols, ketones, and acids. The esters, alkanes,
alcohols, acids, and ketones of aged brine were significantly higher than those of fresh brine-
fermented chili peppers (p < 0.05), including 4-methylpentyl isobutyrate, heptyl hexanoate,
amyl 2-methylbutyrate, isopentyl isovalerate, (Z)-3-hexenyl 3-methylbutanoate, heptadecane,
hexadecane, octadecane, naphthalene, isohexanol, hexanol, acetic acid, 3,7-dimethyl-6-octenoic
acid, and 3,5-dimethyl-2-octanone. Compared with the pickle jar, the content of terpenes
in chili peppers fermented in the pool was higher, including β-chamigrene, (Z)-β-ocimene,
o-cymene, methyl-1-naphthalene, and durene. In general, jar fermentation with aged brine
contributed more flavor to pickled chili peppers than other procedures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12010101/s1. Table S1: Free amino acids content of pickled
chili pepper processed by different procedures during 30 days’ fermentation.
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