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Abstract: Additive manufacturing, or 3D printing, has raised interest in many areas, such as the
food industry. In food, 3D printing can be used to personalize nutrition and customize the sensorial
characteristics of the final product. The rheological properties of the material are the main parameters
that impact the 3D-printing process and are crucial to assuring the printability of formulations,
although a clear relationship between these properties and printability has not been studied in depth.
In addition, an understanding of the mechanical properties of 3D-printed food is crucial for consumer
satisfaction, as they are related to the texture of food products. In 3D-printing technologies, each
manufacturing parameter has an impact on the resulting mechanical properties; therefore, a thorough
characterization of these parameters is necessary prior to the consumption of any 3D-printed food.
This review focuses on the rheological and mechanical properties of printed food materials by
exploring cutting-edge research working towards developing printed food for personalized nutrition.

Keywords: 3D food printing; rheological properties; mechanical properties; additive manufacturing

1. Introduction

Additive manufacturing (AM), commonly known as 3D printing, is a fabrication
technology that has raised interest in many areas. It is a manufacturing process that builds
up complex solid (or semi-solid) forms by means of a layer-by-layer process. To fuse the
layers together, chemical reactions, phase transitions, and some other material properties
have been used [1]. Mechanical engineering [2], biotechnology [3], the pharmaceutical
industry [4,5], tissue regeneration [6,7], space missions [8], the construction industry [9],
and aeronautics [10,11] are only some of the several applications that have been found for
this technology; however, it keeps on expanding and maturing into other areas such as food
design and development. For the food industry, this increased interest is based partially
on advantages such as the simplification of the supply chain and a reduction in storage
costs, but mainly on the expansion of the use of existing food materials, customization and
design, personalized nutrition, new sensory properties, and other factors [12].

3D food printing has the potential to create geometrically complex products with
economic and environmental benefits [13–15]. Its greatest advantage lies in the possibility
to customize nutrition and sensorial characteristics according to consumers’ preferences and
needs [16]. However, to achieve this, a deeper understanding of the rheological properties
of the materials used for printing (food inks) and of the mechanical characteristics of the
printed materials is needed to assure the feasibility of printing and to achieve novel textures
based on the structures printed. When dealing with complex formulations (composed of
several interacting food ingredients), rheology may be a technological challenge that can
be controlled by changing the chemical composition of the food materials or by the use of
gel-type additives [17,18]. Yet, there is still a gap in linking rheological parameters with
the feasibility of printing; it is necessary to expand the understanding of those parameters
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and their usefulness during the printing process. While several determinations have been
proposed with the intention of achieving this goal, very few studies have tried to correlate
these factors to obtain valuable information assuring the viability of printing with any
possible food ink. On the other hand, the characterization of the mechanical properties of
3D-printed food products is crucial. These properties are different from those of the base
material prior to printing; given the wide range of manufacturing parameters that can be
modified and their impact on the mechanical properties, a structured and standardized
characterization is required. Both rheological and mechanical properties must be deeply
studied because they directly impact the consumer’s perception.

Approximately 30 reviews of 3D food printing have been published from 2015 to date,
although novel contributions in the literature are narrow in scope. The main topics covered
are the printability of food materials, the printability of food macronutrients, the printing
parameters, model building and slicing, machines/printers, and future perspectives, among
other topics [19–49]. As a summary of the published literature, a diagram including the
previous studies and the topics they focused on is depicted in Figure 1. Although these
studies are numerous, in several of them, the information presented is scarcely different.
Despite the number of published reviews, an evaluation reveals that none has conducted
in-depth research on the rheological properties of the materials to be used for printing food
or the mechanical properties of printed inks in order to progress towards the development
of 3D-printed food. With this gap in the literature revealed, this review presents a brief
overview of the most frequently used techniques to 3D print food, the printing process, and
the rheological and mechanical properties of extrusion-based printed food by exploring
current cutting-edge research.

 

Figure 1. Diagram summarizing 3D food printing reviews published up to date (2015–2022).
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2. 3D Food Printing Techniques

The process of 3D printing can be achieved by the use of different techniques. Each
technique involves different processes depending on the state and form of the raw material
used (prior to printing) [28]. In the production of food, the most common techniques
are extrusion- and ink-powder-based (such as binder jetting and selective laser sintering)
(Figure 2), although the first is the most used and researched. Extrusion-based printing is
the most popular process in food production and has been used both for heated- and cold-
extruded material. In extrusion-based printers (Figure 2a,d), the extruder is mounted on a
three degrees-of-freedom mechanism. This allows the extruder to move in 3D space while
staying perpendicular to the base. For hot-extruder-based printing, the food base material,
originally in a solid state, is heated up to a semi-molten state before it is extruded. For
non-heated materials, the extrusion is highly sensitive to the rheological properties of the
material to be extruded. The use of extrusion for printing food has been proved in several
types of materials such as cheese [50,51], cereal-based snacks [52], cookie dough [14,53],
vegetables [18], meat [54], and others.
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Figure 2. Schematic diagrams and pictures of the most common 3D-printing techniques employed
in food processing (a) Extrusion-based techniques, (b) binder jetting, (c) selective laser sintering
or melting, (d) extrusion-based printer (Foodini from Natural Machines) showing a potato puree
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Photo reproduced with permission of Windell H. Oskay, www.evilmadscientist.com (accessed on
17 August 2020), The CandyFab Project, https://candyfab.org/ (accessed on 17 August 2020)).

In contrast, ink-powder-based 3D-printing technologies consist of a powder material
bed that is constantly re-filled. This technique relies on the chemical and physical reaction of
the powder to different agents. Binder jetting (Figure 2b) uses a liquid known as a binder to
solidify the powder particles, and a mechanism controls the dropping of the binder. Using
a similar approach, but with a laser source, selective laser sintering (Figure 2c,e) involves
a laser that solidifies by sintering or melting the powder particles, as in the CandyFab®

printers. Compared to extrusion-based printing, these techniques are less frequently used
for processing complex food materials (with several ingredients interacting), but they have
been used with simple food ingredients. For instance, cellulose and xanthan gum were stud-
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ied to produce cohesive geometric structures for food applications using the binder jetting
procedure [12]. A form of selective laser sintering using several food ingredients, such as
maltodextrin and starch as structural components and glucose, gluten, maltodextrin, whey
protein, and soy protein as binders, was recently patented [55]. Likewise, electrostatic inkjet
printing has been used to print chocolate with sufficient accuracy to make complicated,
artistic shapes [56].

The sensory, nutritional, physical, and functional characteristics of the printed products
that can be achieved with each technique differ according to the capabilities of the printer.
For instance, extrusion-based methods can be more flexible with the use of food ingredients
and materials to produce a highly defined printed product, as can be observed in Figure 3.
On the other hand, powder-based printers may be less flexible with the use of materials,
although complicated 3D structures can still be obtained because the powder bed is used
as a support during printing. Food material properties for printing differ widely, even for
the same extrusion technique. For instance, during extrusion-based printing, the physical
and chemical characteristics of mashed potatoes are different than those of chocolate.
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CandyFab Project, https://candyfab.org/ (accessed on 17 August 2020)).

2.1. Rheological and Mechanical Properties in the Fabrication Process of 3D Printing Food

The food printing process has four main stages: (a) formulation, (b) model design,
(c) 3D printing, and (d) post-processing (Figure 4). Formulation is the selection of the
materials to be used for the printing process, considering the intrinsic properties of the
materials and their printability when mixing all the materials together. It is important to
highlight that when formulating complex foods with several ingredients and materials,
their compositions interact and can even react. Therefore, formulating complex, nourishing
foods has been challenging and scarcely reported on. In this first stage, it is important
to consider the rheological properties of the materials because appropriate viscoelastic
properties are crucial to allow them to be extruded through the nozzle [35]. Several single
materials or very simple food formulations have been successfully printed [17,53,57,58],
but printing complex mixtures is more difficult due to the above-mentioned interaction of
the materials that leads to changes in their rheological properties [59]. Model design refers
to the structure arrangement, considering the outside shape and the infill pattern. In this
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stage, the viscoelasticity of the material is critical to assuring the accuracy and stability
of the structure of the printed form. In addition, this stage is strongly correlated to the
mechanical properties of the final product based on the infill pattern printed [60,61].
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printing food.

Most 3D-printing processes involve a single processing step to convert the materials
into a final product; however, this is currently complicated when applied to food and when
integrated into a kitchen or industrial-scale production. When dealing with food, a final
step, or post-processing, such as baking, frying, or drying, may be needed to maintain the
shape, assure microbiological safety, prolong shelf-life, or make it sensorily acceptable to
consumers. Post-processing also has an important effect on the mechanical properties of the
3D-printed material [35]. The following sections review both rheological and mechanical
properties as important parameters to be considered during the extrusion-based process. It
is important to highlight that the printing parameters (set in the 3D printer] are outside the
scope of this work, but they have been studied in depth [22]. Printing parameters depend
mainly on the capacity of the printer used and may also vary with the food ink.

2.2. The Effect of Rheological and Mechanical Properties on Texture

Regarding food, texture and mouthfeel can be crucial for consumers’ preferences
and acceptability [62]. According to the International Organization for Standardization,
texture is defined as “all the mechanical, geometrical and surface attributes of a product
perceptible by means of mechanical, tactile and, where appropriate, visual and auditory
receptors” [49,62,63]. As noted in Figure 4, when 3D printing food, rheological and me-
chanical properties have an important effect on texture. Rheological properties and their
impact on texture are evaluated using the printable materials, either before printing or once
printed. In the case of mechanical properties, the approach can be based on the printable
materials but may also be based on the printed and post-processed (e.g., fried, dried, or
cooked) materials.

For instance, some works have evaluated the application of 3D printing to developing
food products for people with dysphagia, a common problem in elderly populations [64–66].
Kouzani et al. [66] have printed tuna fish, pumpkin, and beetroot purees for people with
swallowing difficulties; they printed them with a tuna fish shape design. In order to be
appealing not only to these but to all consumers, 3D-printed food must be consistent in
terms of the sensory experience as well as visually attractive. Moreover, it is important to
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highlight that nourishing formulations also have to be also achieved [64]. To assure this, the
printability of the materials, including their design and suitability while printing, is one of
the most important parameters for the successful development of such products (Section 3).

The precise placement of texturing elements in the food and the design of complex
internal structures result in an important effect on the mechanical properties. For the
development of these inner structures and their mechanical evaluation, post-processing is
commonly performed. The manipulation of texture may lead to the creation of healthier
products with reduced salt, sugar, or fat content [49]. A deeper assessment regarding
the texture profile analysis (TPA) and the implications on how this test has performed in
3D-printed materials is covered in Section 4.

3. Rheological Properties of 3D-Printed Food

The main parameter affecting extrusion-based 3D-printing processes is the rheology of
the food ink. A printable material needs rheological properties that allow extrusion through
the nozzle and a fast stabilization once the material has been deposited to guarantee the
fidelity of the shape. In addition, the printed object should not collapse during printing
and/or post-treatment [35]. During the extrusion process, a mechanical load is required,
and its magnitude is mainly related to the rheological properties of the material but also
to the geometry of the nozzle [67,68]. Pseudoplastic materials are ideal for 3D-printing
extrusion processes because they have the ability to flow through narrow nozzles at high
speeds. Once the stress applied exceeds the yield stress inside the extruder, the material
must exhibit the capacity to hold its structure after the extrusion process, conforming to the
3D model (print fidelity). In addition, the extruded material must be capable of adhering
to the previously deposited layers [18,69,70]. As material flows out of the moving nozzle
during its deposition, kinetic energy decreases because of viscoelastic effects (conversion
to elastic energy and/or heat dissipation) until the shear stresses coexisting between the
material at the leading-edge fall below the yield stress. At this point, the flow stops and
leads to defined edges of the deposited food materials [71]. In this regard, it was necessary
to define a concept that incorporates the rheological properties of the materials to be printed,
and the term printability emerged.

Printability is defined by two main material characteristics: (i) its intrinsic properties
that facilitate handling and deposition by the printer (flowability through the nozzle), and
(ii) its capacity to hold the structure and dimensional stability, either as the final step or
until post-processing [21]. The intrinsic properties of the food material are closely related to
its macronutrient content, determining the rheological and physicochemical properties [26].
Accordingly, some authors have made a general classification of food materials as printable
or non-printable [72–74], although classifying and determining the printable nature of
complex materials such as food may be a difficult task because several parameters such as
temperature, food components, and additives, among others, may affect it. In addition, the
thixotropic behavior of the materials must also be considered [75].

Printable materials, such as some confectionary products and hydrogels, are easy to
extrude and their shape is well maintained once deposited. In chocolate, for example, cocoa
butter (fat) is the main ingredient responsible for the structural behavior [26]. Gel-type
materials, such as hydrogels and some proteins, have been widely used for 3D-printing
purposes due to their capability to hold large amounts of water through physical and
chemical mechanisms that provide them with strong structural characteristics [76,77]. Some
authors have reported that a printable material has enough flow ability to be extruded
through the nozzle without any additional materials that enhance this property [74].

Non-printable materials are hard to extrude because they can be too thick to pass
through the nozzle, exceeding the force applied by the printer to make it flow or, even
because they can lose consistency once printed even if they make it through the nozzle.
However, their high nutritional content makes them of interest for printing. Meat, for in-
stance, is a fibrous material that requires the modification of its rheological and mechanical
properties to make it an extrudable, paste-like material. Flow enhancers are commonly
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used to improve the printability of these materials [74]. Further information regarding
materials such as animal products that have been developed using 3D printing can be found
in [41]. Commonly, powder-based materials and water are used to formulate a printable
mixture. Powder characteristics such as volume, particle size, and swelling may impact the
rheological properties of the material. In addition, water content is the main factor affecting
the printability of food materials; thus, moisture control methods may ease the achievement
of convenient rheological properties for printing through extrusion processes [18].

Rheological Parameters Used to Characterize Food Ink Materials

Some rheological parameters have been used to understand the 3D-printing process
during extrusion through the nozzle and once the material has been printed; however,
more research is needed in this area. As a starting point, Table 1 presents some of these
parameters and the information for 3D-printing behavior that has been obtained from them.
Flow behavior index (n), consistency index (K), and viscosity are parameters that have
been used for 3D printing, although these are less commonly reported in the literature.
These parameters have been related to the shear-thinning behavior of the materials and the
ease of being extruded through a nozzle. Based on these parameters, several authors have
reported the rheological behavior of the studied materials and made conclusions about
their specific characteristics for printing. The viscosity of printing materials should be low
enough so that they can be extruded through a nozzle but high enough to maintain the
desired shape [78].

By definition, yield stress is the minimum shear stress that must be applied to the
material to initiate flow [79]. It has been stated that the yield stress can be used to evaluate
the extrudability of food inks because it is associated with the mechanical strength of the
material [53,80]. However, this parameter by itself does not guarantee the printability
of food materials [80]. Some other parameters commonly reported are the storage (G’)
and loss modulus (G”) of food inks, which provide information about the solid-like or
viscous-like behavior of the material. Altogether, a high value of yield stress and a high
value of elastic modulus minimizes the deformation of the food ink once deposited and
avoids the collapsing of the 3D structure [81].

Table 1. Rheological parameters used for the prediction of extrusion behavior and printability.

Parameter Definition Correlation with 3D Printing

Flow behavior index, n Parameters of the power law applied to fluids

Low values indicate high shear-thinning
properties that can be easily extruded out of
a nozzle when increasing shear stress
is applied.

Consistency index, K High values are associated with materials not
easily extruded from the nozzle.

Viscosity A measure of a fluid’s resistance to flow. It is also
a relation between shear stress and shear strain

High-viscosity materials easily stick on the
extruder walls and block the nozzle output.
Thus, an inaccurate production of the final
shape of the product may be obtained.

Yield stress (τo) The minimum shear stress that must be applied
to the material to initiate flow

- May indicate self-support.
- Above this value, the structure of the

material breaks and flows because the
internal structure cannot hold the
pressure and store the energy.

Storage modulus (G’) Defines the solid-like behavior and reflects the
mechanical strength of materials

In combination with the yield stress, this has
been used to predict the shape retention of a
printed material and a good resolution
(printing fidelity).
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Table 1. Cont.

Parameter Definition Correlation with 3D Printing

Loss modulus (G”) The viscous response of the material

G’ and G” values indicate the ability of the
matrix to support itself once printed. These
parameters give valuable information about
structure because a strong frequency
dependence might indicate a material
structure that behaves like a solid at higher
frequencies and like a liquid at lower
frequencies.

tan (δ) = G”/G’ -

High values indicate a fluid-like behavior,
and low values a solid-like behavior. So,
if G’ ≥ G”, then a resistance against collapse
and a better holding of shape after printing
is observed.

Shear modulus The ratio of shear stress to shear strain in a body

- Has been used to predict the shape
deformation.

- Predicts and quantifies the deformation
behavior after the printing process.

References: [18,26,45,69,78,82,83].

Even though these parameters have been useful for the characterization of food mate-
rials, there is still a need to broaden the methodologies for characterizing the technological
feasibility to print food. Table 2 shows the rheological parameters commonly reported
when 3D printing food, as stated. It can be observed that several materials with different
characteristics and compositions have been studied: hydrocolloids, fibers, carbohydrates,
fats, etc. Because of these different characteristics, extrinsic and intrinsic, the rheometer
settings used are obviously different, mainly in the use of parallel plain or serrated plates
and in the varying sizes of these plates. In addition, a wide range of temperatures has been
tested depending on the material. Table 2 aims to show the wide difference among yield
stress, K, n, G’, G”, and tan δ values that have been obtained by the authors that studied
these materials. Moreover, the published works do not always report the same parameters,
and comparisons are virtually impossible and, in many cases, unfair due to the different
settings and materials used. The complexity of food inks lies in the broad differences in
their rheological behavior that depend on food composition, chemical interactions, environ-
mental conditions, etc. This does not allow for the establishment of rheological value ranges
where a food is printable, because all food inks must be treated differently, and some other
parameters such as printability, as opposed to only rheological parameters, must be used.
For instance, chocolate behaves differently when compared to a vegetable-hydrocolloid
mixture. However, in general, it is also important to note that G” values are lower than
G’ values in all presented cases, meaning that a viscoelastic behavior should be exhibited
by the material and that a solid-like behavior should be prevalent during printing.
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Table 2. Rheological parameters reported for varied materials used for 3D printing.

Material Rheometer Settings Yield Stress
(Pa)

K
(Pa sn)

n
(Dimensionless) G’ (Pa) G” (Pa) G* Tan δ Reference

Carrageenan-xanthan-starch Parallel plates, diameter of 40 mm,
gap of 0.2 mm, 35–45 ◦C, 12–550 7–24 0.48–0.36 50–9000 40–1000 60–9000 - [84]

Mixtures of high and low gluten
wheat flour, sugar, butter, water,

and potato granules

Parallel plates, diameter of 25 mm,
gap of 1 mm, 20–35 ◦C - - - 10,000–

180,000 2000–78,000 - 0.35–0.53 [85]

Starch, cellulose nanofiber, milk
powder, oat, and faba bean

protein-based materials
and their mixtures

Stainless steel parallel plates, diameter
of 20 mm, gap of 1 mm, 22 ◦C 5–61 - - 260–1900 43–320 - 9.5–10.6 [86]

Agar- and
Konjac-based edible gels

Parallel plates of 25 mm,
gap of 0.8–1 mm, 25 ◦C - - - 100–800 10–60 - - [87]

κ-carrageenan hydrogels Parallel plates of 25 mm,
gap of 1 mm, 25 ◦C - - - - - - - [88]

Cheese Parallel plates of 20 mm, 25 ◦C - - - - - 32,000–66,000 0.29–0.35 [51]

Potato puree Parallel plates of 25 mm,
gap of 1 mm, 25 ◦C - 19–612 0.12–0.51 1000–9000 100–1700 - - [89]

Egg yolk Parallel plates of 60 mm,
gap of 1 mm, 25 ◦C - - - 500–1000 250–800 - [78]

Cheese Serrated parallel plates
of 25 mm, 20.5 ◦C - - - 25,000–49,000 - - 0.25–0.31 [90]

Peanut butter, rice-starch gel,
and cream cheese

Serrated and flat parallel plates of 25
mm, gap of 1 mm, 22 ◦C 7–47 - - - - 2200–67,000 - [71]

Vegetable and xanthan gum
(30%)

Sandblasted parallel plates of 25 mm,
gap of 1 mm, 25 ◦C - - - 7000–9000 1500–1800 - - [18]

Lemon juice gel Parallel plates of 20 mm, 25 ◦C - - - 500–5000 150–1800 - - [91]

Cookie dough Serrated parallel plates of 40 mm,
gap of 2 mm, 25 ◦C 7–285 - - - - - - [80]

Mashed potato Parallel plates, diameter of 20 mm,
gap of 2 mm, 25 ◦C 195–370 - - 1200–7500 300–2500 - 0.18–0.39 [83]

Fish surimi gel Parallel plates of 20 mm,
gap of 2 mm, 25 ◦C - - - 10,000–

250,000 4000–60,000 - 0.2–0.5 [92]

Vegepate and tomato puree Serrated parallel plates
of 25 mm, 25 ◦C - - - 4000–15,000 1000–3000 - - [67]

Brown rice Parallel plates of 20 mm,
gap of 2 mm, 25 ◦C 800–2100 - - 20,000–30,000 3000–4000 - - [93]

Milk protein concentrate and
whey protein isolate mixtures

Parallel plates of 35 mm,
gap of 1 mm, 25 ◦C - - - 20,000–70,000 1000–30,000 - - [94]
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Some works have aimed to correlate printability with rheological properties, although
wider conclusions are still needed [67,73]. For instance, a recent work quantitatively related
the rheological properties of food pastes to printing stability and extrusion force [67]. These
authors related the stress at collapse with the flow stress, zero shear viscosity, and storage
modulus. The stress at collapse was obtained by dividing the total sample weight at the
collapse height by the bottom surface area of the printed figure. The authors reported a
linear correlation between the evaluated rheological properties (flow stress and zero shear
viscosity) and the printing stability. In addition, they proposed a decision algorithm to
develop aqueous food recipes with the desired printability based on flow stress obtained
by shear rheology. While this work is possibly one of the first attempts to establish a
quantitative correlation of printability with rheology, stress at collapse may not be the
best parameter for this comparison. This is because structural failure during the printing
process is closely related to the shape and mechanical performance of the type of product
printed and the distribution of infill material within it [95–97].

Moreover, it is crucial to differentiate among the methodologies or techniques that are
used to characterize printability of the materials before, during, and after printing (Figure 5).
The characterization of the shear-thinning behavior (the flow sweep test), the viscoelastic
properties (the amplitude sweep test), the elastic recovery (the three interval thixotropy test),
and the temperature dependence of viscoelastic properties (the temperature ramp) is crucial
for assessing the printability of materials [81], although some other less common methods
have also been reported. For instance, viscoelastic properties and viscosity have been
mainly used to characterize food ink materials before printing. G’ and G” are obtained from
the linear viscoelastic region, and some authors have reported that the yield stress should
be obtained at the printing temperature to estimate the information regarding the stress
needed to print [84]. Yield stress must also be determined at room temperature to obtain
information about the mechanical strength of the material during the printing process [84].
In addition, some other methodologies, such as flow continuity, layer differentiation, shear
recovery, and temperature recovery, have been proposed for this stage. Finally, once the
material is printed and deposited, stress at collapse, accuracy, error percentage compared
to an ideal printing area, height at collapse, and printability in 1D, 2D, and 3D have been
used for the characterization of the printed figures [67,73,84].
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Rheological properties must be studied to establish parameters that assure that the
printing of a mixture is technologically feasible, meaning that it passes through the nozzle
and keeps its form and internal structure once extruded or post-processed. This is needed if
the 3D printing of food is to move towards healthy formulations for personalized nutrition,
which generally cannot currently be printed or extruded because of the complexity of the
mixture and the interaction of the ingredients.

4. Characterization of the Mechanical Properties of 3D-Printed Food

While the term used by the food engineering community is texture analysis, for
mechanical and materials scientists, it is essentially the mechanical characterization of
material properties. The so-called texturometer is known as a universal testing machine for
mechanics and materialists. Therefore, many of the concepts and contributions derived
from the study of the mechanical properties of 3D-printed parts can be applied when
dealing with edible printed material. This was recently discussed by Peleg [98]. Several
parameters, although not all, that could affect the mechanical properties of food (i.e.,
texture, snap, chewiness, gumminess, etc.) can be taken from the work done on non-edible
materials and are related to the stiffness, strength, deformation mechanisms, hardness
of the materials, and 3D-printed structures. These parameters were summarized in a
recent work [97] that covers a review of the literature on the mechanical characterization of
3D-printed parts fabricated via extrusion.

Numerous parameters have an effect on the resulting mechanical properties of 3D-
printed samples: (i) building orientation, (ii) infill structure, and (iii) infill density, among
others [97]. These are illustrated in Figure 6, where a computationally modeled sample
shows three different orientation possibilities. (i) Building orientation is significant, as 3D-
printed products are known to be anisotropic, meaning that their mechanical properties
depend on direction [99]. (ii)–(iii) Infill is the lattice or tessellated arrangement used to fill
3D-printed products.
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When dealing with food, the concept of TPA is the most used for characterizing the
mechanical properties of food products (material). However, when characterizing 3D-
printed food using TPA, one can obtain misleading results because the measured properties
may be related to specific manufacturing parameters or to sample dimensions and shapes.
Results obtained from these testing procedures are specific; changes in sample dimensions
and/or shapes may result in different measured properties. Proper sample design is needed
so that measured properties are universal. For instance, characterization of the mechanical
properties of the infill would be more useful if the samples were printed without contour
rasters. When contour rasters are aligned to the principal axes of the sample, they are more
likely to withstand most of the load, leading to an insignificant contribution by the infill.
Most infill patterns are known to have in-plane anisotropy. A complete understanding of
their mechanical properties demands samples with different infill structure orientations to
characterize their dependency on the loading direction.

TPA analyses have been performed to characterize both edible printing material
(mixtures and slurries prior to printing) and printed food products. This analysis has been
used mainly for compression [93] and bending (usually called cutting). Characterizing the
material properties prior to printing is crucial for evaluating the printability of products
and the rheological and viscosity measurements, as discussed in Section 3. Several works
that deal with a variety of printing materials are available, such as studies of egg white
protein mixtures [68], dairy protein mixtures [94], cheese [51], methylcellulose and gum
mixtures [13], lemon [58], orange [100], and potato puree [101].

In this section, the review of the literature focuses on work wherein the mechanical
properties were characterized using 3D-printed samples. However, one needs to be aware
that when characterizing any 3D-printed product via TPA, the results are not associated
purely with the material that is being used but also with the combination of materials and
the fabrication parameters, such as post-processing (Figures 4 and 6). Both, keeping the
same base material while changing printing parameters and changing the base material
while keeping the printing parameters constant lead to changes in mechanical properties.
This makes 3D printing a versatile fabrication technique for the production of food with
customized properties.

4.1. Effect of Infill Density

Among 3D-printing techniques, extrusion-based techniques are more frequently en-
countered, both with hot-extruder and non-heated processes. Extrusion machines are
based on a Cartesian mechanism that uses three servomotors to control the position of the
extruder in the three principal axes. This allows building parts (food) from the stack of
extruded material. Extruded material is deposited in “2D” layers conformed by contour
rasters and the infill. It has been shown that the infill affects the mechanical properties of
the printed part [60]. The important thing in the field of food printing lies in the different
sensorial perceptions of consumers provided by the variation in the internal structure
patterns [91,102]. This was studied in [52], where cereal-based products were printed and
compressed. Products made from chocolate extrusion were printed with different infill
patterns, and their snap [buckling] properties were analyzed [103].

When mechanical properties show negligible differences while testing different mate-
rial compositions, an alternative could be changing the printing parameters [104]. This can
be achieved by manipulating the infill structure and density. The effects of infill density and
topology on the texture of 3D-printed mashed potato have been determined by [105]. Mini-
mal differences were observed when modifying the infill pattern type; this was attributed
to the compressive testing direction of the samples. In this regard, consumer perception can
be modified by changing printing parameters, as studied by [57], where chocolate samples
were fabricated with different infill densities and compared against cast samples. The 100%
filled samples resulted in lower forces at break than the casted samples (a difference of
about 10 N). This demonstrates that, even when the infill percentage is set to its maximum,
the extrusion raster direction and unavoidable porosity (Figure 7) affect the mechanical
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properties. Subsequently, reductions in the forces at break in the range of 2.6 to 1.6 times
were obtained when reducing the infill percentage from 100% to 50% and 25%, respectively.
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Other authors presented a detailed study on mashed potato samples, where three
different infill densities were tested, along with variations in contour rasters and infill
patterns (Figure 7) [105]. Cylindrical samples were subjected to compression tests; as
expected, a higher number of contour rasters or higher infill densities resulted in a higher
measured Young’s modulus. 3D-printed samples were also compared with molded sam-
ples; even those that were printed with a 100% infill density resulted in lower properties
than the molded samples. Differences obtained were in the range of 50 KPa. As men-
tioned, due to the nature of the process, even parts fabricated with a 100% infill density
resulted in inevitable porosity. This porosity results mainly from two types of gaps: (i) in-
plane gaps generated due to the impossibility of fully filling the layer (Figure 7a) and
(ii) out-of-plane gaps resulting from the stacking of rasters with circular or elliptical cross-
sections (Figure 7b) [106]. Additionally, differences between fully-dense printed parts and
injected molded ones can be attributed to their anisotropy, inherent in parts fabricated with
extrusion-based processes [99].

Finally, some authors have tested different compositions of potato by-products and
yam on disc-like 3D-printed samples [107]. Samples 3D-printed with different infill
densities (20%, 50%, and 80%) were subjected to three-point bending, and the PF was re-
ported. Differences in the measured peak force were more significant for those measured at
different values of infill densities (incrementing roughly 30 N for every increment in density
of 30%) than the difference between different compositions (statistically insignificant in
most of the cases).
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4.2. Effect of Building Orientation

Yang et al. [58] evaluated the peak force, energy, and springiness of lemon juice gels
containing potato starch (10–20 g/100 g) while keeping the printing parameters constant.
As all samples were printed with the stacking direction parallel to the principal axis,
differences in peak force measurements are only attributed to the composition of the base
material. When a product has been 3D-printed by stacking the layers in the axis normal
to the printing plate and is loaded in this same direction, the mechanical properties are
governed by the local deformation at the bonding between layers.

Additionally, the anisotropy inherent in structures fabricated with extrusion-based
techniques is still an open question for 3D-printed food. In order to fully characterize the
mechanical properties, i.e., hardness, gumminess, strength, elasticity, and texture, testing
should be performed along different directions of the printed samples [108]. A possible
attempt to achieve isotropy, at least in the printing plate plane, could be achieved by
making use of cellular materials [109]. Hexagonal honeycombs are known to have in-plane
isotropy under specific conditions [110]. Some authors have printed pectin-based food
simulants in hexagonal honeycombs structures, predicting the mechanical properties by an
analytical model and finite element modeling [109]. In this work, the authors compared the
structure features of the printed objects to those estimated by computational mechanical
simulations and analytical models [110]. The effective Young’s modulus of the pectin-based
samples showed a non-linear relationship with the geometrical parameters that defined the
honeycomb; this is in agreement with what was predicted by [110].

When testing a 3D-printed air-fried potato snack along the stacking direction, the more
the surface area of each layer was in contact with the previously extruded layer, the higher
the hardness (peak force) measured in the samples [111]. Even with variations in infill
pattern topology while keeping the infill density the same, the variations in peak force were
minimal [111]. Changing the topology of the infill while keeping the density the same, the
area of a single layer was almost the same as the previously deposited one. The influence
of infill density may be more evident in the in-plane (building plane) properties [57,107].

4.3. Perspectives on the Mechanical Properties of 3D-Printed Food

The ideas exposed here allow the interested reader to form an idea of the vast pa-
rameters that can be modified to adjust the resulting mechanical properties. This is one
of the advantages that characterize additive-manufactured parts (not only food). The
mechanical properties that can be achieved depend upon the selection of the parameters.
For example, two samples made of the same base material but tested or fabricated along
direct directions result in different properties. Another example that may be encountered
is having the same base material and different outer shapes and dimensions, leading to
different mechanical properties. Hence, important insights need to be generated by this
review that are applicable to 3D-printed food. Standards for the characterization of the
mechanical properties of 3D printing food are not only a necessity but also an urgency.
These standards should include not only testing setup but also manufacturing parameters.

Each work that publishes findings on the characterization of mechanical properties
uses a different material (food) composition, fabricates samples with different shapes and
dimensions, and tests under different conditions. Hence, a direct comparison among the
data available in the literature yields inequitable results. Despite the fact that comparisons
of the mechanical properties reported in different works are unfair, here Table 3 presents a
summary of some of the recent works that include texture analyses. Note that a column that
mentions the parameters varied and the shape of the samples is included. This is important
for future research, as the properties reported are particular to these works, and readers
must not take them as generalized properties, even if they use the same base materials
and nutrients.
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Table 3. Texture analyses performed in 3D food printed materials.

Base Materials
3D-Printing
Parameter
Studied

Properties
Characterized

Shape of
the Sample Type of Test

Maximum and
Minimum

Values Reported
Reference

Protein bar with
chocolate

Infill density,
infill topology ST, H, C, Ch Square/prism Compression

ST: 0.7–2 MPa,
H: 200–400 N,
C: 0.04–0.07,

Ch: 0.5–2.3 N
[112]

Lemon juice gel Nozzle diameter H, SP, C, Gu Cylindrical Compression
H: 1.48–3.98 N,

C: 0.65–0.94,
SP: 0.85–0.94,

Gu: 9.98–379.74
[58]

Protein, starch,
and fiber

Air pressure in
extrusion H Square plate

with lattice Cutting H: 2.9–59.8 N [86]

Various gums - H, SP, C
Square/prism,

cylindrical,
and triangular

Compression
H: 1.72–2.94 N,

SP: 0.75–0.9,
C: 0.7–0.8

[104]

Cereal based - H
Cylindrical
with inner

square structure
Compression H: 20–52 N [113]

Mashed potato
Infill density,

infill topology,
perimeters

H, Gu, ST Cylindrical with
infill patterns Compression

H: 1.16–3.92,
Gu: 30–150,
ST: 0.0004–
0.04 MPa

[105]

Chocolate Infill density H Prismatic bars Compression H: 20–71 N [57]

Cereal-based Infill density,
layer height H

Cylindrical
with inner

square structure
Compression H: 10–70 N [52]

ST: stiffness, H: hardness, C: cohesiveness, Ch: chewiness, SP: springiness, Gu: gumminess.

5. Future Insights

Once rheology and mechanical properties are controlled, the post-processing of printed
food must be studied in depth to finish the process, even though it is not required for all
types of printed food. Post-processing is directly impacted by rheology because the printed
structure must maintain its shape until the end of the process, but it also impacts the
final texture of the food sample. In this regard, a multi-material printing process with
simultaneous infrared cooking was recently reported. The authors integrated an infrared
lamp heating mechanism into the printer for the precise control of the heat delivery to the
food material. In their work, they designed the printer and tested several food materials
with different cooking times, with successful results for the simultaneous printing–cooking
process [114]. While this is an innovative system for 3D printing and cooking food, several
authors have studied other, different post-processing techniques that are not simultaneous,
such as baking [52,80,115], air-frying [107], and drying [86], among others. The importance
of post-processing in 3D food printing has been studied in depth by [35].

In addition, the concept of 4D printing has also emerged. Herein, the addition of
the “space–time axis” is included. Shape, texture, taste, nutrient composition, etc., may
be changed by stimulants such as water, heat, light, or pH [116]. Starch gels, hydrogel
systems, and soy protein isolate, to name a few, have been used for 4D printing and to
induce changes; in some cases, post-processing is needed. For instance, starch-based purees
from purple sweet potatoes have spontaneously changed their shape after using microwave
dehydration [117]. An induction of color change in mashed potato/purple sweet puree
potato samples was performed after changing the pH [118], similar to [119]. Although this
technology is still exploratory, Teng et al. [116] highlighted the importance of a synergy
between the internal structure that can be designed and the stimulation of printed food.
Additionally, new materials must emerge to create new printing conditions and innovative
property changes [116].

Finally, future insights must be aligned with the acceptability of 3D-printed food
products to consumers, along with the nutritional benefits they can obtain. There is still a
gap to be filled in this sense because only a few works have focused on this [120–122]. The
vast majority started using 3D food printing as a novel fabrication technique with a high
degree of innovation while neglecting crucial aspects important to the consumer. It has
been reported that consumers tend to reject novel technologies if they associate them with
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health risks or if they believe that harmful by-products might be produced. In contrast,
health benefits and improved sensorial properties enhance consumer acceptance [121]. In
this regard, personalized nutrition is one of the most important applications in the future
of 3D printing. Customized flavors, nutritional composition, shapes, textures, etc., may
be achievable using this technology. However, consumers have suggested that food inks
must be available in the market so that the printing process is ready-made, making it more
convenient. This also assures that technical knowledge of the sort presented in this work
(rheology) is not required [122]. The food ink market is a huge opportunity for the food
industry that opens up the possibility of broadening the materials that can be used.

6. Conclusions

Food 3D printing has recently gained attention due to several advantages, such as the
expansion of the use of existing food materials, customization and design, and personalized
nutrition, among other factors. This work reviewed the main 3D-printing techniques for
processing foods, with the extrusion-based method the most currently used. Rheological
and mechanical properties were reviewed in depth because they are some of the main
characteristics that impact the feasibility of the technology and the 3D food printing–
consumer relationship. Because one of the main advantages of the technology is the
customization of nutrition, more research needs to be done related to complex and healthy
formulations to satisfy the nutritional needs of targeted groups. However, providing
healthy formulations is not enough if those formulations cannot be printed or extruded;
thus, the study of rheological properties must be explored in depth to determine parameters
that assure that the printing of a certain mixture is technologically feasible. Wide differences
among the rheological properties of food inks have been reported in the literature, so
comparisons and references are virtually impossible to set. However, the relationship of
these rheological parameters to printability must be established and studied in depth. The
methodologies that have been used to obtain information about the printability of the
materials by using rheology before, during, and after the printing process were discussed.
The lack of studies that relate rheological parameters to printability and the need to model
and generalize printing parameters using the rheological properties of the materials are
some of the practical and theoretical implications derived from this research.

Finally, given the wide range of possibilities that 3D-printing technology offers in
terms of shape design freedom, current and future efforts should be focused on standardiz-
ing the characterization procedures. 3D-printed food products, while being made of the
same (or similar) base materials, can result in different mechanical properties if the macro
shapes or the loading conditions differ. One must understand which properties should be
universal (those related to the material) and which are modifiable given the manufacturing
parameters employed for fabrication. 3D-printing technologies are employed under the
control of several parameters, and each, in turn, has an impact on the resulting mechanical
properties. Here the review covered the most influential parameters, i.e., printing orien-
tation, infill density, and topology. Material distribution within the 3D-printed product,
the topology, and the shapes of the printed products are relevant because they affect the
mechanical properties of the final product. These are crucial when dealing with the con-
sumer’s acceptance or when trying to target a specific population (e.g., elderly people
with swallowing problems). The main limitation of the present work is that, although a
general overview and explanations regarding the rheological and mechanical properties
of 3D-printed materials are presented, there is a lack of standardization in the evaluation
of such properties. This makes comparisons among different works inequitable, so the
need for standards for the characterization of the above-mentioned properties is not only a
necessity but also an urgency for upcoming studies.

Future work should include a characterization of the effect of these parameters under
other loading scenarios, e.g., tension (stretch) and torsion (twist). More research will
continue to emerge towards the evolution and presence of 3D printing food in society;
however, more effort is required to set healthier formulations with sensorial acceptance.
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