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Abstract: Avocado oil (AO) has been found to be adulterated by low-price oil in the market, calling
for an efficient method to detect the authenticity of AO. In this work, a rapid and nondestructive
method was developed to detect adulterated AO based on low-field nuclear magnetic resonance
(LF-NMR, 43 MHz) detection and chemometrics analysis. PCA analysis revealed that the relaxation
components area (S23) and relative contribution (P22 and P23) were crucial LF-NMR parameters to
distinguish AO from AO adulterated by soybean oil (SO), corn oil (CO) or rapeseed oil (RO). A Soft
Independent Modelling of Class Analogy (SIMCA) model was established to identify the types of
adulterated oils with a high calibration (0.98) and validation accuracy (0.93). Compared with partial
least squares regression (PLSR) models, the support vector regression (SVR) model showed better
prediction performance to calculate the adulteration levels when AO was adulterated by SO, CO and
RO, with high square correlation coefficient of calibration (R2

C > 0.98) and low root mean square error
of calibration (RMSEC < 0.04) as well as root mean square error of prediction (RMSEP < 0.09) values.
Compared with SO- and CO-adulterated AO, RO-adulterated AO was more difficult to detect due to
the greatest similarity in fatty acids’ composition being between AO and RO, which is characterized
by the high level of monounsaturated fatty acids and viscosity. This study could provide an effective
method for detecting the authenticity of AO.

Keywords: low field nuclear magnetic resonance; avocado oil; adulteration detection; chemometrics

1. Introduction

Avocados, which contain a high level of oil, are widely grown in New Zealand, Mexico,
Chile, South Africa and parts of China. Avocado oil (AO) is widely applied in the pharma-
ceutical and cosmetic industries [1] due to its high level of bioactive compounds in AO,
including tocopherols and carotenoids [2–4]. In addition, AO is rich in monounsaturated
fatty acids (MUFA), such as oleic acid, which are beneficial to the cardiovascular system
and help to enhance the absorption of nonpolar functional compounds and to prevent
cancers [5–7]. AO is also consumed as an edible oil due to its high nutrition values [8].
Compared with commonly-consumed corn oil (CO), soybean oil (SO) and rapeseed oil
(RO), AO is a relatively higher price and has a risk of being adulterated [9,10]. In addition,
the geographical origin and the botanical variety are also an important consideration in the
authenticity of commercial oil [11,12].

Various methods have been developed to identify the adulteration of edible oil by
detecting the fatty acid patterns of tested samples, including gas chromatography (GC) [13],
gas chromatography-mass spectrometry (GC-MS) [14–16] and high-performance liquid
chromatography (HPLC) protocols [17,18]. Despite the high sensitivity, these methods
usually either consume a lot of time or involve the application of toxic reagents, rendering
them unsuitable for rapid detection. Recently, a near infrared spectroscopy (NIR) method,
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a rapid and nondestructive method, was established to identify and quantify avocado oil
adulteration [19,20].

Low field nuclear magnetic resonance (LF-NMR) is a nondestructive, rapid and en-
vironmentally friendly detection method, whereas LF-NMR has a disadvantage in its
detection limit. Different from high field NMR that can detect a compound based on
the chemical shift of H or C in this compound, LF-NMR can usually detect a compound
according to the attenuation characteristics of the H of the compound, which is called the
relaxometry signal. The relaxometry signal of a compound is not only determined by its
structure but also by the microenvironment surrounding the compound [21]. Currently,
LF-NMR is applied in the analysis of food properties, especially in detecting the changes
in water and oil fractions [22,23]. Bound water, immobile water and free water can be
well distinguished in a relaxometry measurement by LF-NMR, which is a typical appli-
cation [24]. Compact low field NMR spectroscopy and chemometrics can be applied to
the analysis of edible oils [25]. Considering that oil adulteration usually occurs at high
adulteration levels, LF-NMR could be a suitable method for detecting AO adulteration
by cheaper oils. Therefore, this work evaluated whether the LF-NMR parameters of AO
and commonly-consumed oils (CO, SO and RO) have sufficient characteristics to be dis-
tinguished in a principal component analysis (PCA) model. In addition, the LF-NMR
parameters of all pure AO and adulterated AO were collected, and subsequently input to
the Soft Independent Modelling of Class Analogy (SIMCA), partial least squares regression
(PLSR) and support vector regression (SVR) models to develop either qualitative or quanti-
tative analysis models. In addition, the fatty acids’ composition and viscosity of tested oils
were investigated to reveal the underlying basis for the different LF-NMR parameters of
AO from SO, CO and RO. This work may provide a new method for the rapid identification
of AO adulteration.

2. Materials and Methods
2.1. Preparation of Oil Samples

Pure sample extra virgin cold pressed AO (4 brands), which were produced in France,
New Zealand or Mexico, were purchased in local Suguo supermarket (Nanjing, China);
each brand included five independent bottles of oil. SO, CO and RO samples were obtained
from oil manufacturer A (Qinhuangdao, China). The adulterated oil samples were prepared
by adding SO, CO or RO into AO at percentages of 0, 10, 20, 30, 40, 60, 80, 100% (w/w) to
prepare SO-, CO- and RO-adulterated AO samples (AO-SO, AO-CO and AO-RO); each
sample was prepared in 10 replicates. The AO used to prepare the AO-SO, AO-CO and AO-
RO samples was randomly selected from four brands. As shown in Table S1, 4 brands of AO
(n = 20), 1 brand of SO (n = 5), 1 brand of CO (n = 5), 1 brand of RO (n = 5), 6 concentration
levels (10–80%) of AO-SO samples (n = 10), 6 concentration levels (10–80%) of AO-CO
samples (n = 10) and 6 concentration levels (10–80%) of AO-RO samples (n = 10) were used
for the following LF-NMR detection. Each sample was loaded in a 7-mL screw-capped
glass vial and preserved in a refrigerator at 4 ◦C before LF-NMR detection.

2.2. Acquisition of LF-NMR Signals

The 1H relaxation time curve of the oils was acquired on a 43 MHz NMI20-040H-
I LF-NMR spectrometer (Niumag Corporation, Suzhou, China). During measurement,
each sample (5 g) was transferred into the probe (40 mm). The Carr–Purcell–Meiboom–
Gill sequence (sampling frequency = 200 KHz, repeated waiting time = 5000 ms, echo
count = 8000, the time between 90◦ and 180◦ pulse was 0.1 ms and repeat scan times = 8)
was applied to detect the transverse relaxation time (T2) of each sample. All the oil
samples were transferred to a thermostatic water bath and equilibrated to 32 ◦C, and
then were placed in the probe for 1 min before sampling [26]. As shown in Figure 1,
the relaxation time of three characteristic relaxation components was determined as T21,
T22 and T23. The start time of relaxation components (T21S, T22S and T23S), peak time of
relaxation components (T21P, T22P and T23P), end time of relaxation components (T21E,
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T22E and T23E), single component relaxation time (T2W, inverted from CPMG decay data
using a single-exponential fitting), percentage relative contribution (P21, P22 and P23),
relaxation components area (S21, S22 and S23) of each relaxation components and total area
(STotal) of all relaxation components were collected as key parameters for the following
chemometrics analysis.

Figure 1. The T2 distribution of AO adulterated by SO (A), CO (B) or RO (C) (0–100%).
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2.3. Viscosity Measurement

Oil viscosity of each sample was measured using a Physical MCR301 rheometer (Anton
Paar, Graz, Austria) with a parallel-plate (radius = 25 mm) geometry. The gap between the
plates was 1.0 mm and the measurement was applied at 25 ◦C. Data were obtained using
the shear rate from 0.1 to 1000 s−1. Each measurement was performed in quintuplicate to
obtain an average value.

2.4. Analysis of Fatty Acid Composition

Fatty acid methyl esters mixed standard (37 types) was purchased from Yuanye
Biochemical Co., Ltd. (Shanghai, China) to qualify the fatty acid composition of tested
oil samples. The methyl esterification of the fatty acids of commercial oil referred to the
method of Amit et al. with little modification [27]. Briefly, 0.1 g of oil sample was boiled
with 4 mL 2% methanolic sodium hydroxide at 70 ◦C for 10 min in glass vials. The vials
were added in 5 mL boron trifluoride 14% methanol and were again boiled for 5 min. The
vials were cooled on ice, and then 10 mL N-heptane solution and 5 mL of saturated sodium
chloride were added. The vials were shaken vigorously and left to stand for the layer
separation. The upper layer containing methyl esters was transferred to GC vials. Fatty
acids were determined using a GC-2010 plus gas chromatography (Shimadzu, Kyoto, Japan)
equipped with a flame ionization detector and a 2560 capillary column (100 m × 0.25 mm,
0.2 µm; Supelco, Sigma-Aldrich, Bellefonte, PA, USA). The operation parameters were as
follows: 1 mL/min of nitrogen was supplied; samples (1.0 µL) were loaded in a split ratio
of 1:100 at 270 ◦C of inlet temperature and at 280 ◦C of detector temperature. The oven
temperature was programmed as follows: 100 ◦C (15 min), 180 ◦C (10 ◦C/min, 6 min),
200 ◦C (1 ◦C/min, 20 min), 230 ◦C (4 ◦C/min, 10.5 min). Relative content (%) of fatty acids
was calculated as the ratio between the peak area of selected fatty acid and the total area of
all peaks. Each measurement was performed in quintuplicate to obtain an average value.

2.5. Statistics Analysis

Significance analysis: Statistical differences were analyzed by one-way analysis of
variance under the Duncan’s multiple range tests in SAS 8.0 (SAS Institute Inc., Cary, NC,
USA). Differences were significant when the p-value was smaller than 0.05. Figures were
made in Origin Pro 2016 (Origin Lab, Northampton, MA, USA).

Chemometrics analysis: Before the development of these models, all the samples
were separated into calibration sets and validation sets randomly. Each calibration set
(141 samples) was used for mathematical modelling, and another 59 samples were applied
as the validation set to evaluate the predictive ability of the following models. The original
dataset, including LF-NMR parameters T2W, T21S, T21P, T21E, T22S, T22P, T22E, T23S, T23P,
T23E, S21, S22, S23, STotal, P21, P22 and P23 were input into SIMCA version 14.1 (Umetrics
AB, Umea, Sweden) for PCA, SIMCA, PLSR and SVR analyses. The SVR analysis was
processed in MATLAB R2016b (The Math Works Inc., Natick, MA, USA).

The LF-NMR parameters from pure AO, AO-SO, AO-CO and AO-RO in Table S1 were
used in PCA and SIMCA analysis. PCA, an unsupervised multivariate method, was applied
to initially explain the most variability in the original datasets [22]. SIMCA was used to
establish models for distinguishing each population (AO, AO-SO, AO-CO and AO-RO).
The distance between a point and the centroid (Mahalanobis distance, DModXPS+) was
applied to identify the outliers of each population. When the DModXPS+ for a certain
sample was larger than the critical limit (DCrit, 95% confidence interval), the sample was
considered as an outlier. The prediction performance of the SIMCA model was evaluated
via true positive rate (TPR), false negative rate (FNR), positive predictive value (PPV), false
discovery rate (FDR) and accuracy

TPR =
TP

TP + FN
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FNR =
FN

FN + TN

PPV =
TP

TP + FP

FDR =
FP

TP + FP

Accuracy =
TP + TN

TP + FN + FP + TN
where FN is the number of false negatives, FP is the number of false positives, TN is the
number of true negatives and TP is the number of true positives.

The LF-NMR parameters from all the samples in Table S1 were used in PLSR and
SVR analysis. The supervised PLSR model was founded by a calibration set with a small
number of latent variables. The number of latent variables selected for PLSR model was
chosen according to the root mean square error of cross validation (RMSECV), carried
out by 7-fold cross validation. The PLSR and SVR models were evaluated by considering
the square correlation coefficient of calibration and validation between the predicted and
observed value (R2

C and R2
P), root mean square error of calibration (RMSEC), RMSECV

and root mean square error of prediction (RMSEP) [28].

3. Results and Discussion
3.1. Comparison of T2 Parameters between Pure and Adulterated AO

Figure 1 shows the T2 distribution of AO adulterated with different levels (0–100%)
of SO, CO or RO. Three typical relaxation components labeled as T21 (2.13–3.40 ms), T22
(65.03–72.71 ms) and T23 (209.59–251.98 ms) were identified in tested oil samples. Com-
pared with pure AO, the T23 component of AO-SO relaxes more slowly but its T21 com-
ponent relaxes faster (Figure 1A,B), whereas RO-adulterated AO was shown to share a
similar relaxation time with AO (Figure 1C). These results were due to the similarity in
the fatty acid compositions between RO and AO, which was confirmed in the following
analysis of the fatty acids’ composition. As shown in Figure S1 and Table S2, the values
of T2W (116.6–147.9 for SO and 119.3–144.1 for CO), T22P (65.0–72.7 for SO and 65.9–71.3
for CO) and T23P (209.6–252.0 for SO and 214.8–243.7 for CO) gradually increased along
with the increase (10–100%) in the adulteration level of CO or SO. The P22 values gradually
decreased along with the increase in the adulteration levels (10–100%) of SO (61.1–55.5)
or CO (61.1–55.1), whereas the P23 values gradually increased along the with the increase
in the adulteration levels of SO (36.6–42.7) or CO (36.8–43.0). In addition, adulterated
oils were generally found to possess lower P22 but higher P23 values compared with the
pure AO. However, few significant differences were found in LF-NMR parameters when
adulteration levels of SO and CO were smaller than 30% and 40%, respectively. Based
on these basic parameters, AO adulterated by SO or CO was easier to identify than that
adulterated by RO. At a lower adulteration level, adulterated AO and pure AO were
difficult to be distinguished. Therefore, suitable multivariate analysis methods, including
PCA, SIMCA, PLSR and SVR, were introduced to distinguish or predict adulteration levels
and are described in the following sections.

3.2. Classification of Pure and Adulterated AO by PCA and SIMCA Analyses

PCA was used as an unsupervised multivariate tool to estimate whether pure AO can
be distinguished from SO-, CO- and RO-adulterated AO. LF-NMR parameters of pure and
adulterated AO, including T2W, T21S, T21P, T21E, T22S, T22P, T22E, T23S, T23P, T23E, S21, S22,
S23, STotal, P21, P22 and P23 were collected and normalized using a unit variance scaling
(UV) method in SIMCA version 14.1 and subjected to the PCA model. The data used to
build the PCA models were shown in Table S3. The score plot and loading plot of PCA
are shown in Figure 2. The PCA model score plot (Figure 2A) showed that the pure AO
can be largely separated from SO- and CO-adulterated AO, whereas AO dots overlapped
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with the dots of some RO-adulterated samples. In the loading plot (Figure 2B), P23, T2W,
S22, P22 and S23 are shown to be key original variables in the principal component 1 (PC1),
and T21S, T21P, T21E, T22E and T23S are key original variables in the PC2 to discriminate AO
from adulterated AO. In the PCA model, it was still difficult to determine where tested
samples belonged when the points in the PCA plots were close to each other. Therefore,
the SIMCA model was established, as described in the following section, to distinguish AO
from other samples.

Figure 2. The PCA score plot (A) and loading plot (B) to distinguish pure AO from adulterated AO.

SIMCA is a discrimination analysis tool that builds an independent PCA model for
each category of samples (Table S3) and determines the attribution according to the distance
from the calibration set to the model [29,30]. The first step was to use the Mahalanobis
distance to detect outliers in each of the four groups (Figure S2). No outlier was detected
in any of the four groups (AO, AO-SO, AO-CO and AO-RO). The all data used to build
the SIMCA models were shown in Table S4. Fifteen pure AO samples, 42 AO-SO samples
(adulteration levels from 10 to 80%), 42 AO-CO samples (adulteration levels from 10 to
80%) and 42 AO-RO samples (adulteration levels from 10% to 80%) were randomly selected
to establish SIMCA models for calibration in Figure 3A. Five pure AO samples, 18 AO-
SO samples, 18 AO-CO samples and 18 AO-RO samples were selected for validation in
Figure 3B. In the SIMCA for pure AO (Figure 3A,B), the line of DCrit0.05 = 2.091 is the
discrimination threshold of the pure AO samples. The samples with DModXPS+ values
under DCrit0.05 were identified as AO. Samples with values slightly higher than the critical
line but closer to the AO cluster in the PCA model were also identified as AO. The remaining
samples were identified as adulterated AO. In Figure 3C–H, the SIMCA models of AO-SO,
AO-CO and AO-RO are analyzed using a similar principle to that of AO. The DCrit0.05
values for the AO-SO, AO-CO and AO-RO models were 1.548, 1.522 and 1.522, respectively.
The performance of the SIMCA models was tested by establishing receiver operating
characteristic (ROC) curves on the basis of predictions of the cross validation procedure
(Figure S3). The accuracy of each SIMCA model was judged by the area under the curve
(AUC), which was greater than 0.963 in all models (Table 1). The established SIMCA models
showed good performance in the following parameters: the measurement of fit (R2

X) >
0.993 and measurement of prediction (Q2) > 0.886. The closer these values are to 1, the
better the model. In addition, Figure 3F,I show the high accuracy of the models in both
calibration (97.87%) and validation sets (93.22%). Table 2 shows an excellent prediction
performance based on the calculated TPR (>0.93), FNR (<0.07), PPV (>0.95) and FDR (<0.05)
in the calibration sets, and TPR (>0.6), FNR (<0.4), PPV (>0.89) and FDR (<0.11) in the
validation sets. In the SIMCA model, SO-, CO- and RO-adulterated AO is easily detected
when the adulteration level reaches 20%. The SIMCA model cannot only effectively identify
whether AO was adulterated, but can also determine which type of oil was added to AO.
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Figure 3. SIMCA analysis to distinguish pure AO from adulterated AO: The DModXPS+ diagram
of pure AO (A,B), AO-SO (C,D), AO-CO (E,F) and AO-RO (G,H); the samples on the left (A,C,E,G)
were used for calibration and the samples on the right (B,D,F,H) were used for validation; (I,J) show
the specific discrimination results of calibration (I) and validation (J) in the form of confusion matrix.
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Table 1. The model parameters of PCA and SIMCA.

Model Number PCs R2
X Q2 AUC

PCA 141 6 0.995 0.981 -
SIMCA (AO) 15 7 0.996 0.886 1.000

SIMCA (AO-SO) 42 6 0.994 0.975 0.993
SIMCA (AO-CO) 42 5 0.993 0.974 0.963
SIMCA (AO-RO) 42 5 0.998 0.945 0.997

Note: PCs: principle components, R2
X: the measurement of fit for the PCA or SIMCA model, Q2: the mea-

surement of prediction, which is calculated through cross validation to evaluate the predictive ability of the
model. AUC (area under curve) is the area enclosed by the coordinate axis under the ROC (receiver operating
characteristic) curve.

Table 2. Evaluation of the prediction performance of SIMCA models based on the parameters TPR,
FNR, PPV, FDR and accuracy.

Parameters Calibration Validation

AO AO-SO AO-CO AO-RO AO AO-SO AO-CO AO-RO

True positive rate (TPR) 0.93 0.98 1.00 0.98 0.6 1.00 1.00 0.89
False negative rate (FNR) 0.07 0.02 0.00 0.02 0.4 0.00 0.00 0.11

Positive predictive value (PPV) 1.00 1.00 0.95 0.98 1.00 1.00 0.90 0.89
False discovery rate (FDR) 0.00 0.00 0.05 0.02 0.00 0.00 0.10 0.11

Accuracy 0.98 0.93

3.3. Quantitative Analysis of Adulteration Levels by PLSR and SVR

PLSR was used to build a regression model to predict the adulteration level of CO, SO
and RO in adulterated AO. A PLSR model is comprised of calibration and validation parts.
In the construction of the calibration model, LF-NMR parameters of the calibration set were
used to obtain a regression equation between the parameters and the adulteration levels.
The data used to build the PLSR models were shown in Table S5. In the validation section,
another external dataset was imported into the equations to calculate the adulteration level
of the samples [31]. The relationship between the number of latent variables and RMSECV
was found using a 7-fold cross validation approach to determine the optimum number
of latent variables [32]. This procedure is a crucial way to decrease the RMSECV value,
since an elevation in the number of latent variables may result in an over-fitting and low
predictive power but fewer latent variables could result in under-fitting and information
loss [33]. The comparative significance of the founded model was evaluated by calculating
RMSECV, RMSEC and R2 values. The model with lower RMSEC and RMSECV values
and a higher R2

C value is usually considered to be better. The predictive ability of the
established model was evaluated by calculating RMSEP and R2

P values. The model with
lower RMSEP and higher R2

P values is a relatively better one [19,32].
Based on the LF-NMR characteristic parameters of SO-, CO- and RO-adulterated

AO samples, the PLSR quantitative analysis models were established, and the results are
shown in Figure 4A,C,E. The key parameters of models, including RMSEC, RMSECV, R2

C,
RMSEP and R2

P are also shown in Figure 4A,C,E. Based on changes in RMSECV values,
three (AO-SO model), three (AO-CO model) and two (AO-RO model) latent variables
were selected for the three PLSR models since RMSECV did not decrease significantly
along with an increase in latent variable. The performance of the calibration model can be
evaluated by the RMSEC and R2

C values, whereas RMSEP and R2
P can be used to evaluate

the performance of the validation model. PLSR analysis of AO-SO and AO-CO showed
better prediction performance than that of AO-RO in both the calibration and validation
models. The R2

C and R2
P values of the AO-SO and AO-CO models exceeded 0.962 and

0.969, and the values of RMSEC, RMSECV and RMSEP were less than 0.061, 0.071, and 0.57,
respectively. In contrast, the quantitative analysis model of AO-RO had lower R2C (0.827)
and R2P (0.666) values, and higher RMSEC (0.130), RMSECV (0.145) and RMSEP values
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(0.173). According to the results of the standardized coefficients (Figure S4), T2W, T22S, T22P,
T23P, T23E, P22 and P23 were key in PLSR models of AO-SO and AO-CO, and S21, T22S, T22E,
T23S, T23E and P21 played an important role in the PLSR model of AO-RO.

Figure 4. Prediction of adulteration level of AO adulterated by SO, CO or RO, as determined by the
PLSR and SVR algorithm: AO-SO–AO adulterated with SO (A,B), AO-CO– AO adulterated with CO
(C,D), AO-RO–AO adulterated with RO (E,F) and AO-SO/CO/RO–AO adulterated with SO, CO or
RO randomly (G,H).
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In order to establish a reliable model to predict the adulteration level of RO in adulter-
ated AO, we checked the model’s linearity using the Durbin–Watson (DW) test. This study
estimated the probability associated with the DW statistics (Equation (1)), where p > 0.05
indicates the linear and p < 0.05 nonlinear behavior [34].

DW =
∑n

i=2(ei − ei−1)
2

∑n
i=1 e2

i
(1)

where ei is the ith residual and n is the number of calibration samples. The p-value
of the DW test was 0.0071 (<0.05), which indicated the PLSR model of AO-RO obeyed
nonlinearity. Consequently, the nonlinear SVR analysis was applied and the result is
shown in Figure 4F. Compared with the PLSR model, the SVR model showed much
better prediction performance in the quantitative analysis of RO-adulterated AO. The SVR
model of AO-RO offered the higher R2 (R2

C = 0.978, R2
P = 0.892) and the lower RMSE

(RMSEC = 0.047, RMSECV = 0.078, RMSEP = 0.109). In addition, the SVR analysis of
SO-adulterated AO (Figure 4B) and CO-adulterated AO (Figure 4D) also showed better
performance than PLSR analysis since higher R2

C and R2
P values as well as lower RMSEC,

RMSECV and RMSEP values were obtained in SVR models.
In real cases of oil authenticity issues, the oil used as an adulterant is not known.

Therefore, the class is composed of pure AO and all the adulterated oil combined into
one class. The LF-NMR parameters of SO-, CO- or RO-adulterated AO samples (AO-
SO/CO/RO) were randomly input into software to establish PLSR and SVR models, in
which the level of AO and adulterant oil can be calculated regardless of the kind of oil
that was added to AO. Again, the SVR model showed better performance (R2

C = 0.986,
R2

P = 0.907, RMSEC = 0.035, RMSECV = 0.064 and RMSEP = 0.089) than PLSR analysis.
Based on these results, an LF-NMR database established using an SVR model could be a
promising way to predict the alteration level of AO by oils with a lower price.

3.4. Comparison of Viscosity and Fatty Acid Composition

Both qualitative and quantitative models were established in previous sections, and
the underlying mechanism was studied in this section. A comparison of the T2 distribution
of five pure tested oils is shown in Figure 5A. The T22 relaxation component area (S22) of
AO was the largest, whereas their T23 area and relaxation time were the smallest among
all of the oils. Compared with AO, the LF-NMR curves of SO, CO and RO shifted to the
right direction. To investigate where the differences in the LF-NMR curves between AO
and the rest of the oils come from, the viscosity and fatty acid composition of these oils
were determined.

The viscosity of the four oils is illustrated in Figure 5B. The descending order of
viscosity was AO > RO > CO > SO. The fatty acid composition of the four pure oils is
illustrated in Table 3. The major fatty acids in AO were oleic oil (C18:1n9c, >64.49%), linoleic
oil (C18:2n6c, >11.77%) and palmitic (C16:0, >10.66%). The fatty acid profile of AO was
shown to be of a MUFA > polyunsaturated fatty acids (PUFA) > saturated fatty acids (SFA)
pattern, and RO shared a similar order to AO. In contrast, the SO and CO followed a PUFA
> MUFA > SFA pattern. Therefore, with the increase in the adulteration levels of SO and CO
into AO, the oleic acid content decreased and the linoleic acid content increased gradually.

In the PCA score plot (Figure 5C), AO points with lower unsaturation levels are
distributed in the positive quadrant of the PC1, whereas SO and CO points with higher
unsaturation levels are distributed in the negative quadrant. Moreover, the result in
Figure 5D shows that the viscosity is positively correlated with the value of MUFA but
is negatively correlated with the value of PUFA. The content of PUFAs in AO was the
lowest among the four tested oils, which could account for the lower level of hydrogen
protons in this sample. With the decrease in the degree of unsaturation of fatty acids, the
binding force of hydrogen protons increases, resulting in a speeding up of the decay of
the LF-NMR signal and shortening of the relaxation time [35]. The LF-NMR parameters
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of the four pure oils were analyzed, The PCA score plot and loading plot are shown in
Figure 5E,F. The cumulative variance contribution rate reached 88.7%, indicating that the
PCA model can reflect most of the information of total variations. S23, P22, P23, STotal and
T2W were crucial parameters to distinguish AO from the adulterated AO, and T21S, T21P and
T21E were helpful in distinguishing AO from RO. The parameters of the second relaxation
component (S22 and P22) and the parameters of the third relaxation component (S23 and
P23) of T2 spectra were related to the number of relatively stable and unstable hydrogen
protons, respectively [36]. Therefore, the differences in LF-NMR parameters between AO,
SO, CO and RO were mainly reflected in the values of S22, P22, STotal and T23P, and the
reason for the differences was the different fatty acid composition of oils. In a word, the
higher the saturated level of oil, the larger the viscosity of oil and the shorter the relaxation
time. In addition, a negative relationship between the polarity of oil and relaxometry
time in the T2 area, and a positive relationship between the relaxometry intensity and
hydrogen atom density have been reported [37–39]. Therefore, the discrepancies in the
polarity and hydrogen atom density between AO, SO, CO and RO could also account for
their differences in the relaxometry time and intensity, which contribute to the qualitative
and quantitative analysis of AO in this work. In real practice, LF-NMR can be used as a
rapid screening to find adulteration candidates, and then other time-consuming but more
accurate methods such as GC and GC-MS can be applied to obtain the final conclusion.

Table 3. Fatty acid composition and viscosity of pure AO, SO, CO and RO.

Samples Avocado Oil Soybean Oil Corn Oil Rapeseed Oil

Place of Origin France France New Zealand Mexico China China China

Viscosity (mPa s) 61.56 ± 1.33 61.50 ± 0.70 61.22 ± 0.80 60.12 ± 0.61 48.20 ± 0.74 50.96 ± 0.24 56.56 ± 0.28
Fatty acids (%)

Myristic acid (C14:0) 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.07 ± 0.00 0.04 ± 0.00 0.06 ± 0.00
Palmitic acid (C16:0) 11.84 ± 0.03 10.66 ± 0.01 11.47 ± 0.01 12.76 ± 0.01 10.66 ± 0.03 11.21 ± 0.01 4.67 ± 0.02

Palmitoleic acid (C16:1) 1.69 ± 0.00 1.82 ± 0.01 1.93 ± 0.00 2.53 ± 0.00 0.07 ± 0.00 0.09 ± 0.00 0.22 ± 0.00
Stearic acid (C18:0) 2.44 ± 0.02 2.31 ± 0.02 2.33 ± 0.01 2.25 ± 0.01 4.19 ± 0.01 2.06 ± 0.01 1.85 ± 0.03

Oleic acid (C18:1n9c) 69.2 ± 0.05 70.91 ± 0.01 71.03 ± 0.03 64.49 ± 0.04 24.09 ± 0.04 28.19 ± 0.02 58.14 ± 0.04
Linoleic acid (C18:2n6c) 13.24 ± 0.02 12.76 ± 0.02 11.77 ± 0.02 16.25 ± 0.02 53.39 ± 0.03 56.84 ± 0.02 20.24 ± 0.02
Arachidic acid (C20:0) 0.35 ± 0.00 0.32 ± 0.00 0.34 ± 0.00 0.32 ± 0.00 0.37 ± 0.00 0.34 ± 0.00 0.62 ± 0.00

γ-Linolenic acid
(C18:3n6) ND ND ND ND 0.05 ± 0.00 0.04 ± 0.00 0.59 ± 0.00

cis-11-Eicosadienoic
acid (C20:1) 0.27 ± 0.00 0.26 ± 0.00 0.27 ± 0.00 0.26 ± 0.00 0.20 ± 0.00 0.25 ± 0.00 ND

α-Linolenic acid
(C18:3n3) 0.65 ± 0.00 0.52 ± 0.00 0.59 ± 0.00 0.93 ± 0.00 6.37 ± 0.01 0.58 ± 0.00 7.78 ± 0.03

cis-11,14-Eicosadienoic
acid (C20:2) ND ND ND ND ND ND 0.12 ± 0.00

Behenic acid (C22:0) 0.22 ± 0.00 0.28 ± 0.00 0.18 ± 0.00 0.17 ± 0.00 0.40 ± 0.00 0.22 ± 0.00 0.35 ± 0.00
cis-11,14,17-

Eicosatrienoic acid
(C20:3n3)

ND ND ND ND ND ND 5.09 ± 0.02

cis-5,8,11,14,17-
Eicosapentaenoic acid

(C20:5n3)
0.09 ± 0.00 0.12 ± 0.01 0.08 ± 0.00 ND 0.13 ± 0.00 0.14 ± 0.00 ND

Nervonic acid
(C24:1n9) ND ND ND ND ND ND 0.28 ± 0.00

Saturated fatty
acids (SFA) 14.87 ± 0.05 13.62 ± 0.03 14.36 ± 0.03 15.54 ± 0.02 15.69 ± 0.03 13.87 ± 0.02 7.55 ± 0.06

Monounsaturated fatty
acids (MUFA) 71.16 ± 0.05 72.99 ± 0.02 73.22 ± 0.03 67.28 ± 0.04 24.36 ± 0.04 24.36 ± 0.02 58.65 ± 0.04

Polyunsaturated fatty
acids (PUFA) 13.97 ± 0.02 13.39 ± 0.02 12.43 ± 0.02 17.18 ± 0.03 59.95 ± 0.04 57.60 ± 0.02 33.81 ± 0.06

Note: ND: not detected.
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Figure 5. Analysis of fatty acids’ composition and viscosity of AO, SO, CO and RO to explain
their differences in LF-NMR signals: (A) indicates T2 distribution of each pure oil; (B) indicates the
viscosity of each pure oil; (C,D) indicate the PCA score plot and loading plot of pure oils based on
data of fatty acid composition and viscosity; (E,F) indicate the PCA score plot and loading plot of
four pure oils based on T2 parameters of LF-NMR profiles.

4. Conclusions

This work explored the possibility of applying an LF-NMR measurement and chemo-
metrics model in the detection of AO adulteration. In SIMCA models, LF-NMR allowed for
the successful classification of AO and SO-, CO- and RO-adulterated oil with an accuracy of
98%. Furthermore, PLSR and SVR models offered reliable techniques for the quantification
of SO, CO or RO that were adulterated in AO, as indicated by the high levels of R2 and
the low level of RMSE in both calibration and validation models. Compared with SO-
and CO-adulterated AO, RO-adulterated AO was more difficult to distinguish from AO
due to their similar composition of fatty acids. Based on these results, LF-NMR could be
a promising method in the rapid detection of oil adulteration, even though the models
established remain to be verified in more brands of SO, CO, RO and other kinds of oil with
a lower price.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11081134/s1. Figure S1: Comparison of key LF-NMR
parameters of AO-SO, AO-CO and AO-RO in a heatmap made in GraphPad Prism 7. Figure S2:
Detection of outliers in: (a) AO, (b) AO-SO, (c) AO-CO and (d) AO-RO populations making use of
the Mahalanobis distance (DModX). Figure S3: The ROC plot of AO, AO-SO, AO-CO and AO-RO in
SIMCA analysis. Figure S4: The standardized coefficients of AO-SO (a), AO-CO (b), AO-RO (c) and
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AO-SO/CO/RO (d) in PLSR analysis. Table S1: The preparation of oil samples. Table S2: Changes in
LF-NMR parameters of AO at different adulteration levels with SO, CO or RO. Table S3: Data used
for the establishment of PCA model. Table S4: Data used for the establishment of SIMCA model.
Table S5: Data used for the establish-ment of PLSR and SVR models.
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