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Abstract: In this study, edible insect flours from Gonimbrasia belina (Mashonzha), Hermetia illucens
(black soldier fly larvae) and Macrotermes subhylanus (Madzhulu) were prepared and assessed in
terms of proximal, physicochemical, techno-functional and antioxidant properties. The crude protein
of the edible insect flours varied between 34.90–52.74%. The crude fat of the insect flours differed
significantly (p < 0.05), with H. illucens (27.93%) having the highest crude fat. G. belina was lighter (L*)
and yellower (+b*) compared to H. illucens and M. subhylanus, and there was no significant difference
(p > 0.05) in the redness (+a*) of the edible insect flours. There were no significant differences (p > 0.05)
in foam capacity and foam stability of all three edible insect flours. Moreover, the antioxidant activity
against the DPPH radical was low for H. illucens (3.63%), with M. subhylanus (55.37%) exhibiting the
highest DPPH radical. Principal component analysis (PCA) was applied to the techno-functional
properties and antioxidant indices of the edible insect flours. PC1 accounted for 51.39% of the total
variability, while component 2 accounted for 24.71%. In terms of PC1, the FS, OBC and FC were
responsible for the major differences in the edible insect flours. The findings revealed that edible
insect flours are a good source of antioxidants and can be used as an alternative protein source and a
potential novel food additive due to their techno-functional qualities.

Keywords: edible insect flours; G. belina; H. illucens; M. subhylanus; nutritional properties;
techno-functional properties; antioxidant activity; metal chelation; Mashonzha; Madzhulu; black
soldier fly

1. Introduction

As vast as the challenge is to feed 9 billion people by 2050, increasing food availability
is insufficient due to the increasingly limited resources, such as agriculturally cultivable
land [1]. This, without a doubt, calls for innovative, alternative ways of ensuring that
adequate, quality, safe and nutritious foods are available and accessible to all people at all
times [2]. As early as 1975, Meyer-Rochow [3] argued and proposed that edible insects
could play a role in alleviating food security and combating protein deficiency in some
underdeveloped countries. Over the last two decades, there has been a renewed interest
on edible insects for human consumption globally [4–6]. The FAO report titled “Edible
insects: Future prospects for food and feed” [6] and other scientific literature seems to have
re-invigorated the earlier call made by Meyer-Rochow in 1975. This is because, compared
to conventional protein sources, edible insects have an excellent feed conversion ratio; a
source of protein, fat and minerals, and this characteristic is particularly valuable given that
future protein consumption is expected to increase with a declining food supply [7–10].

Entomophagy, the practice of consuming insects, has been practised worldwide for
centuries, yet it has only recently gained momentum in Western cultures [11]. Insects

Foods 2022, 11, 976. https://doi.org/10.3390/foods11070976 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11070976
https://doi.org/10.3390/foods11070976
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-8486-162X
https://orcid.org/0000-0002-1946-859X
https://doi.org/10.3390/foods11070976
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11070976?type=check_update&version=1


Foods 2022, 11, 976 2 of 18

are consumed prominently in Latin America, Asia, and Africa [10]. People throughout
the world have been consuming insects as a regular part of their diets for millennia [12].
Considering the growing population worldwide and the increasing demand for additional
sources of proteins, edible insects are seen as an economical alternative and as a sustainable
source of nutrients and bioactive compounds [13]. Hermetia illucens (black soldier fly),
Gonimbrasia belina (Mashonzha) and Macrotermes subhylanus (Madzhulu) are among edible
insect species that have gained attention as alternative sources of protein; the latter two are
indigenous to parts of South Africa and play a vital role in food security, rural livelihoods,
and poverty eradication [4]. Black soldier fly larvae are commercially produced in South
Africa by one of the largest industrial insect processing companies, AgriProtein. The
European Food Safety Authority (EFSA) is currently considering black soldier fly as a novel
ingredient to be used in food.

Gonimbrasia belina (G. belina) is an emperor moth species indigenous to Southern
Africa’s warmer areas. It is a giant edible caterpillar, known as the Mashonzha (in Venda),
madora (in Shona) or mopane worm or amacimbi (Ndebele), which mainly feeds on mopane
tree leaves but not exclusively. For millions in the region, Mashonzha are a significant
source of protein. Emperor moth G. belina caterpillars are a significant natural resource
for rural individuals residing in Botswana, Namibia, northern South Africa, and southern
Zimbabwe’s mopane forests [14].

Macrotermes subhylanus (M. subhylanus), known as Madzhulu in Venda and isusu in
Nigeria are termites and are gregarious insects most common during the rainy season [4,15].
They are the second most eaten insects in South Africa and are harvested during the
rainy season. At the same time, Mashonzha and Madzhulu are sold at informal markets
predominantly in the Limpopo and KwaZulu Natal provinces, and in other parts of South
Africa are considered a delicacy.

In addition to insects, algae and in vitro meat have also been considered as potential
alternatives to conventional sources [16]. The inclusion of insects among these alternatives
is highly recommended since they are widely incorporated in food cultures worldwide and
have excellent nutritional qualities.

Nevertheless, it is essential to highlight that food neophobia is still directed to the consump-
tion of edible insects, especially in western and urban societies. However, Schösler et al. [17]
reported that edible insects, if incorporated in foods in a less obvious form, such as food
ingredients (flours, powders, or pastes) in products that are indistinguishable from familiar
food items, consumers would accept them. This indicates that insects could be used as food
ingredients in the food supply chain, particularly in areas where traditional approaches are
unlikely to be adopted owing to a lack of sensory appeal, and insect flour is one way to
incorporate insects into food production systems

Therefore, it is crucial to note that the first step to large-scale industrial success is the
exploration of the nutritional, techno-functional and antioxidant properties of proposed
edible insect ingredients. Currently, available literature on the application of insect flour
mainly focuses on T. molitor (mealworm) [13,18]. There has been little attention paid to the
nutritional, techno-functional and antioxidant properties of Mashonzha, black soldier fly
larvae and Madzhulu edible insect flours from South Africa.

Therefore, the aim of this study was to establish the proximate composition, physic-
ochemical, techno-functional properties, and antioxidant activity of edible insect flours
obtained from Mashonzha, black soldier fly larvae and Madzhulu with the view to find
alternative protein sources for human consumption.

2. Materials and Methods
2.1. Source of Materials

The edible insects were sourced from different provinces of South Africa: Mashonzha
(G. belina) and Madzhulu (M. subhylanus) were sourced in the Vhembe district, Limpopo,
and the black soldier fly larvae (H. illucens) was sourced from Cape Town, Western Cape,
South Africa. The chemical reagents, 2,2 diphenyl-1-picrylhydrazyl (DPPH), 2,2′ azo-
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bis (2-methyl, 2,2-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt
(ABTS), Ferric (III) chloride, ethylenediaminetetraacetic acid (EDTA), tertiary butyl hy-
droquinone (TBHQ), ferrous (II) chloride and thiobarbituric acid (TBA) were obtained
from Merk (Sigma-Aldrich, Kempton Park, South Africa). All the chemicals used in this
study were of analytical grade, and chemical reagents were prepared according to standard
analytical procedures. Prepared reagents were stored under conditions that prevented
deterioration or contamination. The water used in the study was ultrapure water purified
with a Milli-Q water purification system (Millipore, Microsep, Bellville, South Africa).
The ethics committee of the faculty of applied sciences gave its approval to the study
(215062965/05/2021).

2.2. Preparation of Insect Flours

Representative samples of sun-dried Mashonzha (hereinafter indicated as G. belina)
and Madzhulu (hereinafter indicated as M. subhylanus) edible insects were purchased from
street vendors from the Vhembe district (Limpopo province, South Africa). Black soldier
fly larvae (hereinafter indicated as H. illucens) reared on clean larvae was purchased from
AgriProtein (Cape Town, South Africa), and the flour was prepared following the method
described by Zozo et al. [19] and freeze-dried (Wizard 2.0, SP Scientific, Johannesburg,
South Africa). The dried edible insects were subjected to a grinding/milling process using
a laboratory blender (Bamix, Checkers, Cape Town, South Africa). The flours were stored
at room temperature under conditions that prevented deterioration.

2.3. Proximate Composition Analysis

Proximate composition, i.e., moisture (925.10), crude protein (920.87), crude fat (932.06),
and ash content (923.03) of the insect flours were determined following standard methods
recommended by the Association of Official Analytical Chemists (AOAC) [20]. The crude
protein determination was performed using Dumas (TruSpec™ Leco Carbon/Hydrogen/
Nitrogen Series, Leco Africa) which was calibrated with EDTA according to Zozo et al. [19].
The crude protein was subsequently calculated by multiplying nitrogen content by a protein-
to-nitrogen conversion factor of 5.60 as recommended by Janssen et al. [21]. Moisture
percentage was calculated by drying the sample in a vacuum oven at 100 ◦C for two hours.
The dried sample was placed into a desiccator, allowed to cool, and then re-weighed. The
process was repeated until a constant weight was obtained. Crude fat was calculated by
drying fats after extraction in a Soxhlet assembly using petroleum ether. The ash percentage
was calculated by combusting the samples in a silica crucible placed in a muffle furnace at
550 ◦C. The percentage of carbohydrates on a dry basis was determined by subtracting all
the components (moisture, crude protein, crude lipid, and ash) from 100. The energy was
calculated using the formula [22]:

Energy
(

Kcal
100g

)
= 4 (% Carbohydrates + % Protein) + (9× %fat)

2.4. Determination of Physicochemical Properties
2.4.1. Evaluation of Colour Properties of Edible Insect Flours

The colour of the edible insect flours was measured using spectrophotometry (Model
CM-5, Konica Minolta Sensing, Tokyo, Japan) as described by [23], set at standard observer
10◦ and D65. The instrument was zero calibrated using a black tile (L* = 5.49, a* = −7.08,
b* = 4.66) and white calibration was performed using a white tile (L* = 93.41, a* = −1.18,
b* = 0.75). Edible insect flour samples were evenly placed in a petri-dish (30 mm diameter),
and reflectance was measured for L*a*b* colour scales. The L* coordinate is lightness,
100 represents white and closer to 0 represents black Measurements for each sample were
performed in triplicate at three different positions in the samples, with the results recorded
in L* (lightness), a* (chromaticity coordinate +a* = red and −a* = green), b* (chromaticity
coordinate +b* = yellow and −b* = blue).
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2.4.2. Determination of Bulk Density

The procedure was described by Mintah et al. [24] with some modifications. First,
5 g of the sample was transferred into a weighed measuring cylinder (50 mL) (W1) and
then compressed by tapping until sample volume remained constant. The tube was again
weighed (W2) the new volume (V1) was noted and the density (g/mL) was measured using
the following formula:

Bulk Density =
W2 −W1

V1

2.4.3. Determination of Water Activity

The water activity (Aw) of edible insect flours was measured using the method de-
scribed by Benamara et al. [25] with minor modifications. Salt humidity standards of 53,
75 and 90% relative humidity were used to calibrate the measurement cell. A sample (5 g)
of the insect flours was transferred into a sample dish and placed inside the (AW SPRINT
TH500, Novasina analyser, Zurich, Switzerland), and the cell measuring protection filter
was immediately closed. The reading was observed after a period of 60 to 80 s.

2.5. Determination of Techno-Functional Properties
2.5.1. Determination of Water Binding Capacity and Oil Binding Capacity

The water-binding capacity (WBC) of the edible insect flours was determined accord-
ing to Mshayisa and van Wyk [26] with slight modifications. Briefly, a 0.5 g sample was
mixed with 2.5 mL deionized water, vortexed for 60 s (Vortex-Genie 2, Scientific Indus-
tries, Bohemia, NY, USA), and centrifuged for 20 min at 3220 g at room temperature. The
supernatant was removed by decantation and drainage of the residual non-bound water
by placing the centrifugation tube upside-down on filter paper for 60 min. WBC was
calculated as:

WBC =
m1 −m0

m0

where m0 is the initial weight, m1 is the final weight. The oil binding capacity (OBC) was
analysed using sunflower oil instead of deionized water. Except for the vortexing step
(120 s), the experimental procedure was performed in analogy to the WBC assay. OBC was
similarly calculated.

2.5.2. Determination of Emulsion Capacity and Emulsion Stability

Emulsifying properties were determined according to the method of Mshayisa and
van Wyk [26] The samples were dispersed in distilled water 1% (w/v), and 15 mL of the
dispersion was homogenized with 15 mL of vegetable oil at a speed of 10,000 rpm for 3 min.
Subsequently, the samples were centrifuged (Thermo Electron Corporation Jouan MR1812,
Waltham, MA, USA) at 3220 g for 5 min and the volume of the individual layers were read.
Emulsion stability was evaluated by heating the emulsion for 30 min at 80 ◦C. Then, the
samples were centrifuged at 3200 g for 5 min. The emulsifying capacity (%) was expressed
as a percentage of the volume of the emulsified layer (mL) against the volume of the whole
layer (mL). Emulsion capacity and emulsion stability were calculated from the formula:

% Emulsion capacity (EA) =
Ve

V
× 100

% Emulsion stability (ES) =
V30

Ve
× 100

where: V—total volume of tube contents, Ve—the volume of the emulsified layer, V30—the
volume of the emulsified layer after heating.

2.5.3. Determination of Foam Capacity and Foam Stability

Foaming capacity (FC) and foam stability (FS) were determined according to the
method of Zielinska et al. [27]. First, 20 mL of a 1% sample was homogenized in a high
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shear homogenizer mixer (Polytron PT 2500E, United Scientific, Cape Town, South Africa)
at a speed of 10,000 rpm for 4 min. The whipped sample was then immediately transferred
into a graduated cylinder. The total volume was read at time zero and 30 min after
homogenization. The foaming capacity and foam stability were calculated from the formula:

% Foaming capacity (FC) =
V0 −V

V
× 100

% Foaming stability (FS) =
V30

V0
× 100

where: V—volume before whipping (mL), V0—volume after whipping (mL), V30—volume
after standing (mL).

2.6. Determination of Antioxidant Activity
2.6.1. Preparation of Edible Insect Extract

Two grams of the edible insect flours was mixed with 40 mL Milli-Q water in a
50 mL centrifuge tube. The edible insect flour solution was centrifuged (Thermo Electron
Corporation Jouan MR1812, Waltham, MA, USA) at room temperature for 15 min at
8000 rpm, and the supernatant was collected and stored at 4 ◦C until further analysis and
the pellet was discarded.

2.6.2. Determination of DPPH Radical Scavenging Activity

The antioxidant activity of the extract was determined by the 1,1-diphenyl-2-picryl-
hydrazyl radical scavenging (DPPH-RS) assay according to the method of Vhangani and
van-Wyk [28]. The method uses a stable chromogen radical, DPPH in ethanol, which
gives a deep purple colour. The reaction mixture was prepared by reacting 2 mL of edible
insect extract with 4 mL of DPPH (0.12 mM) in 95% in ethanol. The reaction mixture was
incubated for 30 min in the dark, and then the absorbance of the resulting solutions was
measured at 517 nm using a spectrophotometer (Lambda 25, Perkin Elmer, Singapore). The
control was prepared similarly, except that Milli-Q water was used, and TBHQ (0.1%) was
used as a positive control. The percentage of inhibition was calculated using the formula:

% DPPH− RS =
A0 (517nm)−A1(517nm)

A0(517nm)
× 100

where: A0 is the absorbance of the negative control (water) at 517 nm and A1 is the
absorbance of the edible insect extract at 517 nm test sample.

2.6.3. Determination of ABTS+ Radical Scavenging Activity

The experiment was performed according to the method of Chatsuwan et al. [29]
and Mshayisa and van Wyk [26]. The 2,2-Azinobis (3-ethylbenzothiazoline-6-sulphonic
acid) diammonium salt (ABTS•+) radical was produced by reacting 7.4 mM ABTS stock
solution with 2.45 mM potassium persulphate at a ratio of 1:1 (v/v). The mixture was
allowed to react for 12–16 h at room temperature in the dark. This working solution of
ABTS•+ solution was diluted with 95% ethanol at a ratio of 1:50 (v/v) in order to obtain an
absorbance of 1.00 at 734 nm. A fresh ABTS•+ solution was prepared daily for each assay.
The reaction mixture contained 0.15 mL of edible insect extract solution and 2.85 mL of
ABTS•+ solution. The mixture was incubated at room temperature for 6 min in the dark.
Then, the absorbance was measured at 734 nm in a spectrophotometer (Lambda 25, Perkin
Elmer, Singapore). The control was prepared in the same manner, except that distilled
water was used instead of the sample, and TBHQ (0.1%) was used as a positive control.
The scavenging activity was determined according to the equation:

% ABTS− RS =
Acontrol(730mn) − Asample(730nm)

Acontrol(730nm)
× 100
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where: Acontrol is the absorbance of the control (water) at 730 nm and Asample is the ab-
sorbance of edible insect extract at 730 nm.

2.6.4. Determination of Fe2+ Chelating Activity

The chelating effect on ferrous ions of the prepared extracts was estimated by the
method of Sudan et al. [30] with slight modifications. Briefly, 1 mL of each edible insect
extract was mixed with 1.85 mL of Milli-Q water and 0.05 mL of 2 mM FeCl2. Next, the
reaction was initiated by the addition of 0.1 mL of 5 mM ferrozine into the mixture, which
was then left at room temperature for 10 min and the absorbance of the mixture was
determined at 562 nm using a spectrophotometer (Lambda 25, Perkin Elmer, Singapore).
The percentage of chelating activity was calculated as follows:

% Chelating activity
A0 −A1

A0
× 100

where: A0 is the absorbance of the negative control (water) control and A1 is the absorbance
of the edible insect extract.

2.6.5. Determination of Reducing Power

The reducing power was determined according to the method of Athukorala et al. [31].
First, 1.0 mL aliquots of edible insect were mixed with 2.5 mL of phosphate buffer (0.2 mM,
pH 6.6) and 2.5 mL of potassium ferricyanide. The reaction mixture was vortexed for
10 s and thereafter incubated at 50 ◦C in the water bath for 20 min. Thereafter, 2.5 mL of
10% trichloroacetic acid (TCA) was added to the reaction mixture, and then vortexed for
10 s, 2.5 mL of the solution was then pipetted out into beakers and mixed with 2.5 mL of
distilled water and 0.5 mL of FeCl3 was added and absorbance was measured at 700 nm in
a spectrophotometer (Lambda 25, Perkin Elmer, Singapore).

2.7. Statistical Analysis

All assays were performed in triplicates, and the obtained data were presented as
means ± standard deviation. Statistical analysis was performed by testing significant dif-
ferences (p < 0.05) between treatments using multivariate analysis of variance (MANOVA),
and Duncan’s multiple range test was used to separate means where differences existed.
Principal Component Analysis (PCA) was applied to extract the components that explained
the variability in the edible insect flours antioxidant and functional properties. All quanti-
tative data were analysed using SPSS 27.0 (2005) (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Proximate Composition of Edible Insect Flours

The proximate composition of edible insect flours (G. belina, H. illucens and M. sub-
hylanus) is depicted in Table 1. Protein is the dominant nutrient in all three edible insect
flours, followed by crude fat. The protein content was significantly (p < 0.05) different
between all the edible insect flours, and it ranged from 34.90–52.74%. This is superior to
other protein sources, such as beef, eggs, milk, and soybeans, where protein constitutes
approximately 30 and 45% of dry matter [32]. The protein content of H. illucens (34.90%)
was significantly lower (p < 0.05) compared to M. subhylanus (52.74%). Our findings agreed
with the results reported by Bußler et al. [11] on H. illucens (34.70%). In a literature review
study conducted by Meyer-Rochow et al. [33] the protein content of the Macrotermes
species ranged from 20.4–39.7%. Moreover, Kwiri et al. [34] reported the protein content of
G. belina to be (55.41%). These values are higher than the result obtained in this study of
the same insect flour. The differences in protein content can be attributed to differences
in the edible insect flour, level of individual development, sex, feed type, climate, and
geographical location. In this way, the edible insect flours are diversified nutritionally. The
edible insects reported in this study may offer an affordable source of protein, especially for
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low-income communities and be used as ingredients in flour form to minimise the aversion
towards consuming insects [35,36].

Table 1. Proximate composition of three edible insect flours.

Edible Insects Crude Protein (%) Ash (%) Moisture (%) Crude Fat (%) Carbohydrates (%) Energy (%)

G. belina 46.70 ± 0.82 b 11.38 ± 2.20 b 5.68 ± 0.25 a 14.04 ± 0.12 b 22.10 ± 1.45 a 399.38 ± 6.03 a

H. illucens 34.90 ± 0.47 a 7.50 ± 1.65 a 5.76 ± 0.01 ab 27.93 ± 6.13 c 23.66 ± 7.84 a 485.58 ± 26.69 b

M. subhylanus 52.74 ± 1.47 c 6.41 ± 0.07 a 6.40 ± 0.06 b 6.36 ± 0.05 a 27.27 ± 1.19 a 379.91 ± 1.06 a

Values are mean ± standard deviation. Means within a column followed by the same superscript are not
significantly (p > 0.05) different.

The ash content of G. belina (11.38%), H. illucens (7.46%) and M. subhylanus (6.38%) was
higher than the values reported for M. nigeriensis (3.24%) by Omotoso [37]. However, the
values were comparable to those of Macrotermes bellicosus (M. bellicosus) (11.83%) reported
by Adepoju and Omotayo [38]. Torruco-Uco et al. [39] also reported the ash of Sphenarium
purpurascens (S. purpurascens) to be 2.31–3%, the values are much lower than the values
reported in this study. Nyakeri et al. [40] reported H. illucens to contain 14.61% ash which
is higher than the value of the similar species in this study which had 7.46% ash content.
Considerable levels of ash indicate that the samples are a good source of minerals. The
variation among the ash contents of samples may be driven by the difference in location,
diet, and season in which the insects are reared and harvested [41]. Therefore, the addition
of edible insect flour in processed food products has the potential to enhance the mineral
content of food, especially where food fortification is essential. The considerable good ash
content of the edible insect flours signifies good mineral composition that the edible insect
flours might contain [42].

As shown in Table 1, the moisture of the three edible insect flours ranged from
5.77–6.59% and no significant differences (p > 0.05) were observed amongst all the edible
insect flours. Siulapwa et al. [43] reported the moisture content of G. belina to be 9.1%, which
is higher than the value reported in this study. Moreover, Anaduaka et al. [36] also reported
high moisture values for Zonocerus variegatus (Z. variegatus) and Oryctes rhinoceros larva
(O. rhinoceros larva) to be 11.85–26.17%, respectively. The low moisture values obtained in
this study suggest that it likely results in low water activity and, therefore, can potentially
extend the shelf-life of insect flours.

As illustrated in Table 1 the crude fat content in G. belina, H. illucens, and M. subhylanus
was 13.91, 27.92 and 6.35%, respectively. H. illucens (27.92%) results were higher than those
reported by Payne et al. [44] of the similar species (14%). Ganguly et al. [45] reported the
fat of Oxya chinensis to be 2.2%, which is lower than the results obtained in this study.
Moreover, Melo et al. [46] reported S. purpurascens to be 5.75%, which is comparable to
M. subhylanus. However, Sogbesan and Ugwumba [47] reported the fat of M. subhylanus
to be 10.6–22.2%, which is higher than the values of the similar species in this study. Fat
is a major source of fuel in the body, and it is essential in the cell structures as well as in
supplying some oil-soluble vitamins, such as vitamins A, D, E, K.

As the primary source of fibre and calories for humans, carbohydrates are essential
components of proper nutrition [48]. The three edible insect flours (G. belina, H. illucens and
M. subhylanus) showed no significant difference (p > 0.05) in their carbohydrate content
and ranged from 22.33–28.10%, respectively. The observed carbohydrate content is low in
comparison with those reported by Mishyna et al. [49] for Schistocerca gregaria (S. gregaria)
and Apis mellifera (A. mellifera) flours which contained 47.2 and 54.10% carbohydrates,
respectively.

Energy is primarily derived from carbohydrates, proteins, and fats in food, and because
edible insects are high in these macromolecules, they have a high energy content [45]. As
shown in Table 1 the energy values obtained for the edible insect flours ranged from
379.91–485.58 kJ. No significant differences (p > 0.05) were observed for G. belina and M.
subhylanus. However, H. illucens was significantly different (p < 0.05) from the other two
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edible insect flours. The results reported in this study are similar to those reported by
Montowska et al. [35] on edible insect flours of 486–524 kcal/100 g. Siulapwa et al. [43]
reported G. belina energy values of (385 kcal/100 g), which is in the same range as G. belina
energy value reported in this study.

3.2. Physicochemical Properties
3.2.1. Colour Properties of Edible Insect Flours

The colour attributes of edible insect flours measured were lightness (L*), greenness
(−a*), redness (+a*), blueness (−b*), and yellowness (+b*). Lightness is the luminous
intensity of colour measured on a scale of 0 to 100, with 0 indicating black and 100 indicating
white [50]. Colour is a crucial factor influencing the acceptance of edible insects [18]. The
descriptive colour determination of the three edible insect flours G. belina, H. illucens and
M. subhylanus is shown in Table 2. There was a significant difference (p < 0.05) in the
lightness of the edible insect flours, with G. belina (57.95) being the lighter in colour. No
significant difference (p > 0.05) was observed in the redness of the three edible insect flours;
however, M. subhylanus (5.72) was redder compared to G. belina (3.92) and H. illucens (4.46),
respectively, as depicted in Figure 1.

Table 2. Physicochemical properties of three edible insect flours.

Edible Insects L* a* b* Bulk Density
(g/mL) pH

G. belina 57.95 ± 0.31 c 3.92 ± 1.49 a 20.02 ± 1.97 b 0.65 ± 0.01 b 6.12 ± 0.03 a

H. illucens 53.69 ± 0.54 b 4.46 ± 0.36 a 13.08 ± 2.68 a 0.51 ± 0.01 a 8.93 ± 0.05 b

M. subhylanus 43.52 ± 0.56 a 5.72 ± 3.90 a 12.00 ± 2.70 a 0.64 ± 0.00 b 6.14 ± 0.02 a

Values are mean ± standard deviation. Means within a column followed by the same superscript are not
significantly (p > 0.05) different.

Figure 1. Ground edible insect flour of three different species. (A) G. belina; (B) M. subhylanus; and
(C) H. illucens.

3.2.2. Bulk Density

Among other vital properties of powder products, bulk density (BD) has significant
economic and functional importance, for example, in reducing packaging costs [51]. It
is determined by particle density, internal porosity, and particle arrangement in the con-
tainer [52]. Table 2 represents the bulk density of the three edible insect flours (G. belina,
H. illucens and M. subhylanus). The bulk density of the edible insect flours varied from
0.51–0.64 g/mL and no significant difference (p > 0.05) was observed. Akpossan et al. [53]
reported higher BD for Imbrasia oyemensis (I. oyemensis) to (1.1 g/mL), while in a study
by [54] on Imbrasia belina (I. belina) the BD (0.65 g/mL) was comparable to that found
in the present study. An apparent correlation exists between the bulk density and the
protein content. Thus, the edible insect flours all had a low BD due to high protein content.
Low BD of the flours is advantageous when storability and transportation are considered
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since the products could be easily transported and distributed [55]. Low BD flours also
find application in the preparation of complementary foods and among the traditional
techniques.

3.2.3. Water Activity and pH of Edible Insects

Water activity is a measure of how efficiently the water present can take part in a
chemical (physical) reaction or the water available enough for microbial growth to occur in
a food product [56,57]. Generally, food deterioration due to microbial growth (yeast and
moulds to pathogens) occurs at a range of 0.6 to 1.0 [57]. The water activity of the three
edible insect flours G. belina, H. illucens, and M. subhylanus is depicted in Figure 2. The Aw
of the edible insect flours ranged from M. subhylanus (0.35 ± 0.26), G. belina (0.45 ± 0.01),
to H. illucens (0.53 ± 0.01), and there were no significant differences (p > 0.05) within the
different edible insect flours. This implies that the edible insect flours are not susceptible to
microbial growth. However, some enzymatic reactions, such as browning, transpire at the
range of 0.3 to 1.0 and increase rapidly at 0.6 to 0.8. In this study, M. subhylanus had the
lowest Aw; therefore, it might be susceptible to enzymatic reactions rapidly compared to
the other two edible insect flours.

Figure 2. Water activity of three edible insect flours. Values are mean ± standard deviation, means
with different superscripts are significantly different (p < 0.05).

In addition, pH in food contributes to reducing the growth of microorganisms, thereby
ensuring food safety. The pH of H. illucens (8.93) had a significant difference (p < 0.05)
between the pH of G. belina (6.12) and M. subhylanus (6.14), while there was no statistical
difference (p > 0.05) between the pH of G. belina and M. subhylanus (Table 2). Lucas-
González et al. [18] reported similar results for Acheta domesticus flour (6.31–6.48). The pH
of these edible insect flours provides essential information since it determines which type
of food matrix they can be added into without affecting their technological behaviour. Thus,
potential food ingredients with pH values close to neutrality, such as those obtained in this
study, will be better suited for application to neutral food matrices, such as meat replacers
and baked products.

3.3. Techno-Functional Properties
3.3.1. Water Binding Capacity and Oil Binding Capacity

Water binding capacity (WBC) and oil binding capacity (OBC) are critical features of
food ingredients in food processing and applications. They are related to the ability to take
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up and retain water and oil, respectively, which directly affect the texture and the flavour of
the products, especially in meat and bakery [58]. There are several intrinsic factors affecting
the water-binding properties of food flours with relatively high protein. These include
amino acid composition, protein conformation, and surface polarity/hydrophobicity [53].
Table 3 depicts the water binding capacity of the edible insect flours. Higher WBC was
notable for M. subhylanus (1.46 g/g); however, there was no significant difference (p > 0.05)
between this edible insect flour and that of G. belina (1.30 g/g). While the lower WBC value
was observed for H. illucens flour (1.11 g/g), Zielinska et al. [27] reported higher WBC of
Schistocerca gregaria (S. gregaria) (2.18 g/g). Similarly, Lucas-González et al. [18] reported
the WBC of Acheta domesticus flour to be (3.82 g/g). However, the WBC of M. subhylanus
(1.46 g/g) was higher than that reported for T. molitor (0.4 g/g). The apparent difference in
the WBC could be due to the higher protein content in the M. subhylanus, which contains
more hydrophilic groups to bind to water molecules. The WBC of the edible insect flours
is comparable to plant-based flours, such as wheat and rice, which were reported to have
WBC from 1.4–1.9 g/g [59]. This information is crucial for the application of these flours
in the food industry. The significant difference in water holding capacity between the
edible insect flours might be an indication of the different applications they might have in
food. This is the first study to report on the WBC of edible insects, such as G. belina and M.
subhylanus, to our knowledge.

Table 3. Techno-functional properties of three edible insect flours.

Edible Insects WBC (g/g) OBC (g/g) EC (%) ES (%) FC (%) FS (%)

G. belina 1.30 ± 0.12 ab 0.89 ± 0.12 a 41.76 ± 2.84 a 33.75 ± 2.29 a 5.81 ± 3.69 a 95.32 ± 2.37 a

H. illucens 0.11 ± 0.02 a 1.35 ± 0.09 b 67.33 ± 8.49 b 42.45 ± 5.07 b 5.69 ± 1.41 a 97.38 ± 1.70 a

M. subhylanus 1.46 ± 0.06 b 1.48 ± 0.07 b 45.44± 4.28 a 32.80 ± 0.47 a 4.71 ± 2.46 a 97.51 ± 1.22 a

Values are mean ± standard deviation. Means within a column followed by the same superscript are not
significantly (p > 0.05) different. WBC: water-binding capacity, OBC: oil biding capacity, EC: emulsion capacity,
ES: emulsion stability, FS: foam stability, and FC: foam capacity.

The OBC is shown in Table 3. No significant difference was found (p > 0.05) between
H. illucens (1.35 g/g) and M. subhylanus (1.48 g/g), and the lowest value was obtained for
G. belina (0.89 g/g). These values are lower than those reported for Gryllidae sp. (2.02 g/g),
G. sigillatus (2.82 g/g) and A. domesticus (3.37–3.52 g/g) [39]. Assielou et al. [60] reported
the OBC of O. owariensis larvae flour to be 265.90% (2.65 g/g), which is higher than the OBC
in this study. The OBC refers to the ability of the proteins in flour to physically bind to fat
through capillary action, which is of great importance because fat is a flavour retainer and
increases our ability to taste food. Akubor and Eze [61] illustrated that OBC has proven
useful in the formulation of bakery products and sausages, and this shows that the studied
flours (M. subhylanus, H. illucens, and G. belina), since they are low in OBC are, therefore,
low flavour retainers and therefore may be useful in food systems that do not require high
WBC/OBC values.

3.3.2. Emulsion Capacity and Emulsion Stability

Proteins are surface-active agents that can form and stabilise the emulsion by creating
electrostatic repulsion on the oil droplet surface. Generally, the emulsifying activity of pro-
teins is affected by their molecular weight, hydrophobicity, conformation stability, surface
charge, and physicochemical properties, such as pH, ionic strength, and temperature [62].
The results obtained for emulsion capacity (EC) and emulsion stability (ES) of the edible
insect flours are presented in Table 3. The emulsion capacity of G. belina, M. subhylanus,
and H. illucens were 41.76, 45.44, and 67.33%, respectively. The results for EC in this study
are higher than those reported by Mishyna et al. [49] for S. gregaria (39.5%) and A. mellifera
(20.8%) insect flours. The protein emulsification properties are known to be influenced by
their surface hydrophobicity, which affects the protein’s ability to adsorb to the oil side of
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the interface. Higher emulsion capacities are usually associated with greater disintegra-
tion [11]. M. subhylanus had the highest EC (61.69%), which agrees with the macronutrient
composition reported in Table 1.

In this study, the ES of G. belina (33.75%) and M. subhylanus (32.80%) were not signifi-
cantly different (p > 0.05). The results are lower than those reported by Akpossan et al. [53]
on I. oyemensis (84.76%). ES of H. illucens (42.45%) was comparable to that of the larva of
Cirina (45.36%) reported by Omotoso. Adebowale et al. [63] reported adequate emulsifica-
tion but poor stability in African cricket (Gryllidae sp.) flour. Food manufacturers have a
growing demand for sustainable and secure protein sources. Currently, the most widely
used emulsifiers are casein and whey [16]. Therefore, edible insect flours’ high emulsion
capacity and stability highlight the potential to effectively utilise them in food emulsions.

3.3.3. Foam Capacity and Foam Stability

Foams are colloidal systems that consist of a continuous aqueous phase and a dis-
persed gas phase [16]. Foam formation is governed by the transportation, penetration, and
reorganisation of molecules at the air-water interface. To exhibit good foaming properties,
a protein must be capable of migrating rapidly to the air-water interface, unfolding, and re-
arranging at the interface. Table 3 displays the FC and FS of the edible insect flours. The FC
was higher for G. belina (5.81%); however, no significant differences (p > 0.05) were observed
amongst all three edible insect flours. The FC values reported by Torruco-Uco et al. [39] for
Gryllidae sp. (6%) were comparable to the reported values in this study. Zielinska et al. [27]
reported FC of G. sigillatus (41%) while Assielou et al. [60] reported Oryctes owariensis (O.
owariensis) larvae to have FC of (17.87%), which is also higher than the values reported
in this study. This study shows that the low FC can be related to highly ordered globular
proteins that resist surface denaturation [53,64].

There were no significant differences (p > 0.05) in FS of the edible insect flours in
this study. However, the results obtained were higher than those reported by [54] on
I. belina larvae flour (1.4–5.1%), whereas Omotoso [65] reported Cirina forda larva FS to
be 3.00%, which is much lower than the FS reported in this study. There was a notable
significant difference between the FC and FS values of the edible insect flours, and these
results indicate that the proteins and other components of the edible insect flours have a
greater ability to form a strong and cohesive film around air bubbles and greater resistance
of air diffusion from the bubbles [66].

Presently, research is focused on finding alternatives to eggs, which are commonly
used as a foaming agent in food products [16]. The data presented in this study showed that
the three edible insect flours (G. belina. H. illucens and M. subhylanus) exhibited excellent
foaming properties; hence, they can be a suitable foaming agent and has potential for such
food applications.

3.4. Antioxidant Properties
3.4.1. DPPH-RS of Edible Insect Flours

The DPPH radical-scavenging (DPPH-RS) assay is a widely used method for evaluat-
ing the ability of food matrices to scavenge free radicals generated from the DPPH reagent,
which undergo SET mechanism [67]. DPPH is a stable free radical that shows maximum
absorbance at 517 nm in ethanol and changes from purple to yellow in the presence of
antioxidants. When a DPPH radical encounters an electron-donating substrate, such as
an antioxidant, the radical is scavenged [68]. As illustrated in Figure 3, the insect flours
differed significantly (p < 0.05) from one another, with M. subhylanus (55.57%) exhibit-
ing the highest radical scavenging activity followed by G. belina (37.44%) and H. illucens
(3.63%), respectively. In a study reported by Navarro del Hierro et al. [69] T. molitor and
A. domesticus extracts, the DPPH-RS was 57 and 72%, respectively, and the values for T.
molitor are comparable to those of M. subhylanus from this study. Nabil et al. [70] also
reported on Moroccan cladode flour, and the radical scavenging activity was between 7.18
and 72.37%, which is in line with the radical scavenging activity reported in this study.
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The results, therefore, suggest that the edible insect flours could be scavenging agents
and imply that they have the ability to react with free radicals. This study supports the
observation of Mshayisa and van-Wyk [26], who proposed that edible insects can be used
as novel functional components in food compositions.

Figure 3. Scavenging effect of DPPH-RS, ABTS-RS and Fe2+ chelating activity of edible insect flours.
Values are mean ± standard deviation; means with different superscripts are significantly different
(p < 0.05).

3.4.2. ABTS-RS of Edible Insect Flours

The ABTS+ radical scavenging activity was determined to assess the antioxidant
potential of H. illucens, G. belina and M. subhylanus. As depicted in Figure 3, no significant
differences (p > 0.05) were observed between M. subhylanus (96.81%) and G. belina (96.61%).
However, a significant difference (p < 0.05) was observed between the two edible insect
flours compared to H. illucens (95.32%). It was also observed that H. illucens showed lower
DPPH-RS as compared to ABTS-RS. The difference in scavenging patterns of ABTS-RS
and DPPH-RS could be responsible for these observations. ABTS is more accessible to
hydrophilic peptides, while hydrophobic peptides can interact easily with peroxyl radicals,
such as DPPH [71]. Most importantly, to our knowledge, this is the first study to establish
the antioxidant indices of these three edible insect flours. This study’s findings have
implications for the utilization of edible insect flours as functional components in food.

3.4.3. Metal Chelation of Edible Insect Flours

The chelation of Fe2+ was used to determine the ability of edible insect flours in
metal-chelating activity. Ferrozine quantitatively forms complexes with Fe2+ ions in the
presence of chelating agents, the development of complexes is slowed in the presence
of chelating substances disrupted, resulting in the decrease in colour formation [68]. As
shown in Figure 3, all edible insects had a high ability to chelate Fe2+. In this study, the
highest chelating ability activity was observed in H. illucens (76.30%). Moreover, there
were no significant differences (p > 0.05) in G. belina (42.00%) and M. subhylanus (41.61%).
Ferrous ion (Fe2+) is the most potent pro-oxidant among metal ions. This ion can interact
with hydrogen peroxide in a Fenton reaction to produce the reactive oxygen species and
hydroxyl free radical (OH), leading to the initiation and/or acceleration of lipid oxidation
in food [72]. Therefore, the ability of these edible insect flours to chelate Fe2+ suggests they
can reduce or avoid the free radical formation. To the best of our knowledge, this is the
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first study to empirically investigate the Fe2+ chelation of edible insect flours, such as G.
belina and M. subhylanus. The results of this study are vital since they indicate that edible
insect flours possess considerable meatal chelating activity, which is critical in antioxidant
activity since it reduces the concentration of transition metals that catalyse lipid oxidation.

3.4.4. Reducing Power of Edible Insect Flours

Reducing power is a useful indicator of food component antioxidant activity. In this
test, the ferric chloride/ferric cyanide complex is reduced to ferrous form (Fe2+) in the
presence of antioxidants, allowing the Fe2+ concentration to be measured spectrophoto-
metrically by measuring the Prussian blue colour produced at 700 nm [73]. The reducing
power assay is often used to evaluate the ability of antioxidants to donate an electron to
the free radical [74]. In this study, the ability of edible insect flours to reduce Fe3+ to Fe2+

was investigated, and the results are depicted in Figure 4. A significant difference (p < 0.05)
was observed between all the edible insect flours. H. illucens (0.61) had the highest RP,
while G. belina (0.26) had the lowest RP. As articulated by Zielińska and Pankiewicz [75],
due to their high protein nature, edible insects are, therefore, potential sources of bioactive
proteins that could also possess antioxidant activity. In addition, due to the high reducing
power, the obtained results suggest that H. illucens soluble proteins contain amino acids or
peptides that act as electron donors and can react with free radicals to transform them into
stable compounds.

Figure 4. Reducing power activity of edible insect flours. Values are mean ± standard deviation;
means with different superscripts are significantly different (p < 0.05).

3.5. Principal Component Analysis

Principal component analysis (PCA) was performed to understand the inter-relationships
among the measured techno-functional properties and antioxidant activity indices and
the similarities and differences among the edible insect samples. The suitability of data
reduction by PCA was established by several factors, such as the high correlations between
the variables (correlation matrix) and the significant (p ≤ 0.05) Bartlett’s test, as well as
the Kaiser–Meyer–Olkin measure (0.68), which was significantly higher than the recom-
mended minimum of 0.6. The PCA results were displayed using score and loading plots
(Figure 5). To determine the relative contributions of the principal components in overall
total variability, only the eigenvalues greater than one were considered. Thus, the first
three principal components (PC1, PC2 and PC3) were found to be significant and explained
87.99% variability in the data set (Table S1). Component 1 accounted for 51.39% of the
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total variability, and represented EC (0.960), Fe Chelation (0.949), ES (0.897) and DPPH-RS
(−0.897) while FS (0.837), FC (−0.080), ABTS-RS (−0.531) and WBC (0.515) contributed to
PC2, with a total variability contribution of 24.71%. The PC3 accounted for 11.89% of the
total variability due to OBC (0.745), FC (0.504), ABTS-RS (0.442) and RP (0.247), respectively,
as shown in Table S1 (Supplementary Materials). The edible insects were clearly distributed
into three clusters (Figure 5). It can be seen that M. subhylanus can be separated from H.
illucens based on the DPPH-RS, WBC, and foam stability. In Figure 5, H. illucens were
grouped in close proximity with values of component 1, whereas M. subhylanus and G.
belina are diametrically opposed in PC2 (meaning they are on the negative and opposite
sides). PCA showed that M. subhylanus and G. belina located on the opposite sides of
PC2, the FS, OBC and FC were to be majorly responsible for the difference in the edible
insect flours. This was due to the high FC and OBC exhibited by M. subhylanus samples,
while G. belina exhibited the lowest OBC. Therefore, PCA could be helpful to provide
valuable information on the classification and discrimination of edible insect flours and on
relationships between antioxidant indices and techno-functional properties.

Figure 5. Principal components analysis plot for techno-functional properties and antioxidant indices
of edible insect flours.

4. Conclusions

This study was undertaken to establish the potential for edible insect flours as a
source of nutrients, as well as their techno-functional and antioxidants properties. The
studied edible insect flour species were rich in protein and fat, which are essential nutrients
required for the human diet. The results obtained for the physicochemical properties make
the flours valuable to the food industry as potential fortifiers, such as G. belina, which was
yellower and redder in colour since this characteristic is of importance in instances where a
noticeable colour change to the product is not desired. M. subhylanus exhibited good water
binding capacity, and the flour was generally found to have superior techno-functional
properties among the studied species. This makes it useful for producing foods such as
sausages and bakery products. The studied edible insects have unique techno-functional
properties that can be exploited to provide functional ingredients. Future studies on the
shelf life, rheological and structural properties of the edible insect flours are essential prior
to incorporation in food product formulations.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods11070976/s1. Table S1: Principal components for illustrating
the interpretation in Figure 5.
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