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Abstract: The incidence of lipid metabolism disorder and obesity that is caused by high-calorie
diets is increasing year by year, which has become an urgent global health problem. This study
was performed to explore the intervention effects of polysaccharides that were extracted from
Auricularia auricula-judae resources in the Qinba Mountain area on nutritional obesity in C57BL/6J
mice that was induced by high fat and high fructose diets (HFFD) and to investigate their underlying
molecular mechanisms. The results showed that dietary supplementation of Auricularia auricula-judae
polysaccharides (AAP) significantly improved mice’s insulin resistance state, altered serum lipid
metabolites, and slowed down body weight gain that was induced by HFFD. In addition, AAP
supplementation decreased inflammatory factor levels and alleviated liver histomorphology changes.
Furthermore, AAP down-regulated liver adipogenic-related gene expressions, suppressed cholesterol
synthesis-related gene levels, up-regulated fatty acid β-oxidation-related gene expressions, and
promoted cholesterol efflux-related gene expressions, thus improving mice hepatic lipid metabolism
homeostasis. Moreover, the intervention effects were closely related to mitochondrial function.
These results provide a scientific basis for the further development and utilization of Auricularia
auricula-judae resources in the Qinba Mountain area.

Keywords: Auricularia auricula-judae polysaccharide; nutritional obesity; high-calorie diet; lipid
metabolism; inflammatory response

1. Introduction

With the continuous improvement of living standards, the dietary structure of res-
idents has undergone tremendous changes. Obesity, insulin resistance, type II diabetes,
and other metabolic syndromes that are caused by glucose and lipid metabolism disorders
have become global health problems [1]. According to the World Health Organization,
the number of obese people in the world surpassed 650 million in 2016, with a projected
increase to 1.12 billion by 2030. At least 2.8 million people die each year as a result of obesity.
In China, the incidence of obesity is also rapidly rising. The number of obese people in
China has reached 90 million, making it the country with the largest obese population in
the world [2]. The evidence indicates that an effective way to prevent obesity and the con-
sequent associated pathologies is to maintain a healthy lifestyle that includes a varied and
balanced diet [3]. In recent years, it has been found that some natural plant extracts have
good therapeutic effects, multiple action targets, and fewer side effects while preventing
and treating obesity [4]. To improve diet and health, it is of great practical significance to
discover natural functional components with local characteristics that are derived from raw
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food materials and to investigate their intervention effects and mechanisms on high-calorie
diet-induced obesity.

Auricularia auricula-judae, known as “black treasure”, is a kind of saprophytic fungus
that grows on rotted wood in forests and consists of two parts, the mycelium and fruiting
body [5]. Auricularia auricula-judae was first recorded in “Shen Nong’s Materia Medica”.
China is the main Auricularia auricula-judae producer in the world, and its annual output
accounts for more than 90% of the world’s total output. Northeast Auricularia auricula-judae
is particularly well-known [6]. Except for the northeast region, the Qinba mountainous
area in Shaanxi Province has dense forests, sufficient sunlight, a humid climate, and a large
temperature difference between day and night in summer and autumn, which are suitable
conditions for the growth of Auricularia auricula-judae. Polysaccharides are one of the
most important active components in the fruiting body of Auricularia auricula-judae, which
promotes antioxidant, immunomodulatory, antitumor, anticoagulant, antifatigue, and other
activities [7,8]. Studies have found that Auricularia auricula-judae and its polysaccharides
can reduce serum triglycerides and cholesterol [9–11], but the molecular mechanism of
its influence on lipid metabolism is still unclear. At present, most research focuses on the
well-known Northeast Auricularia auricula-judae resources. Due to the complex structure
of polysaccharides and the difficulty in separation and purification, different extraction
methods often affect the yield, structural characteristics, and biological activity of natural
polysaccharides. Studies on Auricularia auricula-judae polysaccharides (AAP) in the Qinba
Mountain area are rarely reported. Our research team previously found that the hot water-
extracted Auricularia auricula-judae polysaccharides in the Qinba Mountains were mainly
composed of mannose, glucuronic acid, and xylose, with a relative molar percentage
of 60.87:20.83:9.86, which was similar to the polysaccharides that were extracted from
Auricularia auricula-judae in northeast China. The free radical scavenging experiment results
in vitro showed that both of them had good antioxidant capacities. However, it is not clear
whether AAP from the Qinba Mountains has good weight loss and lipid-lowering potential,
and its molecular mechanism that is related to metabolic disorders that are caused by a
high-calorie diet needs to be further studied.

Therefore, this study aims to explore the intervention effect of AAP from the Qinba
Mountains on obesity in mice that is induced by high-fat and high-fructose diets (HFFD)
and to investigate the underlying molecular mechanism of the potential anti-obesity effect
of AAP based on lipid homeostasis and inflammatory response regulation. This study
is expected to provide a theoretical basis for guiding residents’ rational diet structure
and solving the problem of overnutrition. It has positive significance for developing
and utilising Auricularia auricula-judae resources in the Qinba Mountain area and nutri-
tional and functional foods with Auricularia auricula-judae polysaccharides as the main
functional component.

2. Materials and Methods
2.1. Samples Preparation

The fruiting bodies of Auricularia auricula-judae (purchased from Shaanxi Tianmei
Green Industry Co., Ltd. (Hanzhong, China), and grown in the Qinba Mountain area of
northwest China) were crushed with a multi-functional crusher (200y, Yongkang Boou
Hardware Products Co., Ltd., Yongkang, China) and sieved by 40-mesh sieve. Auricularia
auricula-judae powder (30 g) was extracted with boiling water (material–liquid ratio was
1:50) at 100 ◦C for 2 h. After centrifugation at 2808× g for 15 min, the supernatant was
transferred into a fresh tube, and the precipitate was re-extracted. The supernatants were
combined and concentrated using a rotary evaporator (R-1005, Zhengzhou Changcheng
Science Technology and Trade Co., Ltd., Zhengzhou, China). Then, anhydrous ethanol
was added into the concentrated solution in a ratio of 1:4 (volume fraction) for ethanol
precipitation for 12 h. After centrifugation at 2808× g for 15 min, the supernatant was
discarded, and the residue was retained and dissolved in hot water. After the residue
was fully dissolved, the protein was removed by the Sevage method. Specifically, Sevage
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reagent (dichloromethane: n-butanol = 4:1, v/v) was added into the solution and stirred
for 20 min to cause the protein to fully denature and precipitate out. After centrifugation
at 2808× g for 15 min, the supernatant was transferred to an aqueous solution, and the
precipitation layer and organic layer were discarded. The deproteinization procedure was
repeated 4~5 times. The cellophane with a molecular cut-off of 3000 Da was used for
dialysis in a flowing tap water for 3 days. Then, the solution was concentrated by a rotary
evaporator, freeze-dried, and finally weighed and bagged to obtain a crude polysaccharide
sample of Auricularia auricula-judae. The carbohydrate content, protein content, and uronic
acid content of AAP were 53.15 ± 4.52%, 1.45 ± 0.12%, and 11.04 ± 0.59%, respectively.
The AAP was mainly composed of mannose, glucuronic acid, xylose, and the relative mole
percentage was 60.87:20.83:9.86.

2.2. Experimental Design

A total of 60 7-week-old SPF C57BL/6J male mice were purchased from the Experi-
mental Animal Center of Xi’an Jiaotong University (license number: SCXK 2018-001). The
animal experiment protocol was approved by the Animal Ethics Committee of the Labora-
tory Animal Center of Northwest University (Approval Code: NWU-AWC-20200401M)
and was carried out in accordance with the “Administrative Regulations on Laboratory
Animals” of the National Science and Technology Commission of the People’s Republic of
China. The mice were reared under standard conditions (temperature 25 ± 2 ◦C, relative
humidity 40 ± 10%, light-dark cycle of 12/12 h, clean bedding, and free water and food
intake). Standard feed (AIN-93M) and 45% (TP230100) high-fat feed were purchased from
TROPHIC Animal Feed High-Tech Co., Ltd. (Nantong, China) and stored in a refrigerator
at 4 ◦C. The energy content of the standard diet was 3.6 kcal/g, and the energy content of
the 45% high-fat diet was 4.5 kcal/g. After one week of adaptation, the mice were randomly
divided into 6 groups, with 10 mice in each group. The specific treatment methods were
as follows (Figure 1A). The mice in the normal diet (ND) group were fed with AIN93M
standard feed and distilled water. The mice in the HFFD induction group were fed with
45% high-fat feed and 10% high fructose drinking water. The mice in the ND+AAP negative
control group were given standard feed containing 200 mg/kg/day AAP and distilled
water. The HFFD + AAP treated group mice were given 50, 100, or 200 mg/kg/day AAP in
45% high-fat feed, respectively, and 10% high-fructose drinking water. The experimental
period was 12 weeks. All surgery was performed under anaesthesia, and all efforts were
made to minimise suffering.
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Figure 1. The effects of Auricularia auricula-judae polysaccharides on HFFD induced mice body
weight and fat accumulation. Seven-week-old male C57BL/6J mice were randomized into 6 groups
(n = 10 per group): ND, ND + AAP, HFFD, and HFFD + AAP (Auricularia auricula-judae polysaccha-
ride, 50, 100, 200 mg/kg/day, in feed) for 12 weeks. (A) Above: Timeline of C57BL/6J mice with
AAP and/or HFFD treatment; Below: Body weight; (B) Above: Representative mouse pictures after
12 weeks feeding; Below: Body weight gain; (C) Weight of subcutaneous fat and epididymal fat. The
data are presented as the mean ± SEM, * p < 0.05, ** p < 0.01, vs. ND group, # p < 0.05, ## p < 0.01 vs.
HFFD group.

2.3. Assessments
2.3.1. Body Weight, Food Intake, Fluid Intake Measurement

During the 12 weeks of rearing, the body weight, food intake, and drinking wa-
ter intake of the mice were recorded every week. The average food intake, energy
intake, and food efficiency ratio of the mice were calculated. Wherein the energy in-
take (kcal) = food intake (g) × feed energy content (kcal/g) + drinking water intake (mL)
× fructose water energy content (kcal/mL); food efficiency ratio (FER) = Weight gain
(g)/energy intake (kcal).

2.3.2. Intraperitoneal Glucose Tolerance Test and the Homeostasis Model Assessment of
Insulin Resistance Index

The mice were fasted one day before the end of the feeding cycle. Blood was taken
from the mice’s tail vein, and the fasting blood glucose and fasting insulin levels of the
mice were measured immediately by ELISA kits (Shanghai Xinle Biotechnology Co., Ltd.,
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Shanghai, China). For the glucose tolerance test, glucose (2 g/kg body weight) was injected
intraperitoneally, and the plasma glucose levels were measured before and 15, 30, 60, and
120 min after the injection. We used the following formula to calculate the homeostasis
model assessment of insulin resistance (HOMA-IR) index:

(fasting insulin concentration (mU/L) × fasting glucose concentration (mg/dL) × 0.05551)/22.5 (1)

2.3.3. Blood Sample Collection and Tissue Weight Measurement

The mice were fasted for 12 h and then weighed. After anaesthesia, blood samples
were collected from the retro-orbital sinus/plexus. The plasma was centrifuged at 1096× g
for 30 min at room temperature to obtain mice serum. The mice were sacrificed, and mouse
liver, subcutaneous white adipose tissue (iWAT), and epididymal white adipose tissue
(eWAT) were immediately separated, washed with PBS buffer, weighed, and quickly stored
at −80 ◦C or fixed in 4% paraformaldehyde at 4 ◦C. We used the following formula to
calculate the liver index (%):

Liver index (%) = liver mass/body mass × 100% (2)

2.3.4. Lipid Analysis

For the determination of the serum lipid levels, Enzymatic assay kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) were used to measure the total serum cholesterol
(TC, A111-1-1), triglyceride (TG, A110-1-1), low-density lipoprotein (LDL-C, A113-1-1), and
high-density lipoprotein (HDL-C, A112-1-1) levels according to the kit instructions.

For the extraction and detection of serum metabolite, 50 µL of the serum sample
was transferred to a centrifuge tube, and 200 µL of the extraction solution (methanol:
acetonitrile = 1:1 (v/v), containing the isotope-labelled internal standard mixture) was
added and vortexed for 30 s. Then, it was ultrasonicated for 10 min (ice-water bath) and
incubated at 40 ◦C for 1 h. Then, the samples were centrifuged at 4 ◦C 10,010× g for
15 min. The supernatant was taken and tested on a computer in a sample inlet bottle.
Another equal amount of supernatant was taken from all the samples and mixed into
the QC samples for testing on the computer. The target compounds were separated on a
Waters Acquity UPLC Behamide (2.1 mm × 100 mm, 1.7 µm) LC column using a Vanquish
(Thermo Fisher, Shanghai, China) UPLC. Phase A of the liquid chromatography was an
aqueous phase containing 25 mmol/L ammonium acetate and 25 mmol/L ammonia, and
Phase B was acetonitrile. The temperature of the sample tray was 4 ◦C, and the injection
volume was 2 µL. The Thermo Q Exactive HFX mass spectrometer is capable of primary and
secondary mass spectral data acquisition under the control of control software (Xcalibur,
Thermo Fisher, Shanghai, China). Detailed parameters are as follows: Sheath gas flow
rate: 30 Arb; Aux gas flow rate: 25 Arb; Capillary temperature: 350 ◦C; Full ms resolution:
60,000; MS/MS resolution: 7500; Collision energy: 10/30/60 in NCE mode; Spray Voltage:
3.6 kV (positive) or −3.2 kV (negative). After the original data were converted into mzXML
format using the ProteoWizard software, the independently written R program package
(the kernel was XCMS) was used for peak recognition, peak extraction, peak alignment,
and integration, and then, the data were matched with the two-stage mass spectrometric
database that was built by BiotreeDB (V2.1) for material annotation. The cut-off value of
algorithm scoring was set to 0.3.

2.3.5. HE Staining of Liver Tissue

The liver tissues of mice were fixed in 4% paraformaldehyde and embedded in paraffin
for HE staining. The tissue sections were placed in xylene I for 10 min, xylene II for 10 min,
100% ethanol I for 5 min, 100% ethanol II for 5 min, 90% ethanol for 5 min, 80% ethanol
for 5 min, and 70% ethanol for 5 min, for dewaxing and rehydration. Then, the tissues
were washed 3 times with PBS for 5 min each. The nuclei were stained with haematoxylin
for 5 min and then differentiated with 1% hydrochloric acid alcohol, and rinsed indirectly
with tap water for 15 min, followed by adding 1% dilute ammonia water. The tissue cell
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plasma was dyed with eosin staining solution for 3 min, then dehydrated with ethanol, and
made transparent with xylene. Finally, the film was sealed with neutral resin and observed
through an optical microscope.

2.3.6. Gene Expressions Analysis

Total RNA was extracted from liver tissues with a Takara MiniBEST Universal RNA
Extraction Kit (Takara MiniBEST Universal RNA Extraction Kit, Dalian, China), and its
purity was tested with the Nano-200 nucleic acid quantifier. The RNA was stored at
−80 ◦C prior to further analysis by microarray and real-time quantitative PCR (RT-qPCR).
According to the instructions of the reverse transcription kit (Takara PrimeScript RT Master
Mix, Dalian, China), 1 mg of RNA was reversed to cDNA with a 9600 gene thermal cycler
PCR machine. To detect the target gene mRNA levels, real-time quantitative PCR was
performed by the CFX96TM real-time system (Bio-Rad, Hercules, CA). The mouse-derived
primers are shown in Table 1. Gapdh was used as an internal control, and 2−∆∆Ct was used
to calculate the relative gene expression.

Table 1. Primer sequences that were used for semi-quantitative RT-PCR analysis.

Forward Primer Reverse Primer

Pparg TGCTGTTATGGGTGAAACTCTG CTGTGTCAACCATGGTAATTTCTT
Pgc1a GAAAGGGCCAAACAGAGAGA GTAAATCACACGGCGCTCTT
Fasn AGGTGGTGATAGCCGGTATGT TGGGTAATCCATAGAGCCCAG
Acaca CCGATTCATAATTGGGTCTGTGT CCATCCTGTAAGCCAGAGATCC
Cpt1a CGGTTCAAGAATGGCATCATC TCACACCCACCACCACGATA
Cpt2 AGCCAGTTCAGGAAGACAGA GACAGAGTCTCGAGCAGTTA

LXRβ CGACTCCAGGACAAGAAGC TCAAGAAGACACCACCAAGG
Srebp1c AAGCAAATCACTGAAGGACCTGG AAAGACAAGGGGCTACTCTGGGAG

ME1 AGTATCCATGACAAAGGGCAC ATCCCATTACAGCCAAGGTC
Acat2 TTTGCTCTATGCCTGCTTCA CCATGAAGAGAAAGGTCCACA
Abcg5 TGGCCCTGCTCAGCATCT ATTTTTAAAGGAATGGGCATCTCTT
Abcg8 CCGTCGTCAGATTTCCAATGA GGCTTCCGACCCATGAATG
Sirt1 TCTGTCTCCTGTGGGATTCC GATGCTGTTGCAAAGGAACC
Tfam GCTTCCAGGGGGCTAAGGAT CCCAATCCCAATGACAACTC

COX II GCCGACTAAATCAAGCAACA CAATGGGCATAAAGCTATGG
Hmgcr ATCCAGGAGCGAACCAAGAGAG CAGAAGCCCCAAGCACAAAC

IL6 TTCCATCCAGTTGCCTTCTTG TATCCTCTGTGAAGTCTCCTCTC
IL10 GCTCCAAGACCAAGGTGTCTACAA CCGTTAGCTAAGATCCCTGGATCA
IL1β TGACGGACCCCAAAAGATGA TCTCCACAGCCACAATGAGT
Tnfα CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG

Gapdh TGGAGAAACCTGCCAAGTATGA TGGAAGAATGGGAGTTGCTGT

2.3.7. Statistical Analysis

Each experiment was repeated at least six times, and the obtained data were expressed
as the mean ± standard error (X ± SEM). Significant differences between the mean values
were determined by a one-way ANOVA using SPSS 19.0. The means were considered
statistically significant if p < 0.05.

3. Results
3.1. Dietary Supplementation of AAP Reduced the Food Efficiency Ratio and Slowed Down the
Bodyweight Gain of Obese Mice Fed by HFFD

Bodyweight gain is the most direct manifestation of obesity. As shown in Figure 1A,
the mice in the HFFD group were significantly fatter than those in the ND group. However,
when 100 mg/kg/day AAP was added, this phenomenon was obviously weakened. The
bodyweight of the HFFD-fed mice increased remarkably compared with that of the ND
group in the second week (p < 0.05). Significantly, the weights of the mice in the AAP
intervention group were lower than those in the HFFD group in the period from the 4th to
12th week (p < 0.05/p < 0.01) (Figure 1B). In addition, Figure 1C illustrates that, at the end
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of feeding, the bodyweight gain of the mice in the HFFD group was also markedly higher
than that in the ND group (p < 0.01), while AAP reversed this trend (p < 0.05/p < 0.01).
The above results indicate that dietary supplementation of AAP significantly alleviated the
weight gain of mice that was caused by HFFD.

The accumulation of subcutaneous fat and epididymal fat in mice is demonstrated in
Figure 1C. Compared with the ND group, the weight of subcutaneous fat and epididymal
fat in the HFFD treatment group was boosted obviously (p < 0.01), and the supplemen-
tation of 100 mg/kg/day and 200 mg/kg/day AAP significantly (p < 0.05) inhibited the
accumulation of subcutaneous and epididymal adipose that was caused by HFFD.

To further explore whether the increase in the weight of mice was caused by the
increase in food intake, the energy intake and FER were calculated during the experiment
period. The results in Figure 2A show that the food intake of the HFFD-fed mice was
markedly reduced, which may be due to the fact that HFFD was a diet rich in energy and
mice required less food to maintain normal life activities. When compared with the ND
group, a better flavour may contribute to the increased food intake after adding AAP. As for
the total fluid intake (Figure 2B), there was no significant difference among all the groups.
It was calculated that the energy intake and FER of the HFFD group were markedly higher
than those of the ND group (Figure 2C,D), and dietary supplementation with low, medium,
and high doses of AAP could effectively inhibit the increase in the FER value, whether fed
with a normal diet or a high-fat diet (p < 0.01) (Figure 2D).

Figure 2. Effects of Auricularia auricula-judae polysaccharides on food intake and food efficiency ratio
of mice. During the 12 weeks of mice rearing, the (A) food intake and (B) fluid intake of the mice
were recorded every week. The calculated (C) energy intake and (D) food efficiency ratio of the
mice. The data are presented as the mean ± SEM, * p < 0.05, ** p < 0.01, vs. ND group, ## p < 0.01 vs.
HFFD group.
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3.2. Dietary AAP Supplementation Improved Glucose Tolerance and Insulin Resistance in Obese
Mice Induced by HFFD

Studies have shown that high-fat diet-induced obesity is usually accompanied by
systemic insulin resistance [12]. In order to explore the regulatory effect of AAP on glucose
tolerance, the fasting glucose levels and glucose tolerance test (GTT) were carried out
after feeding for 12 weeks. Figure 3B illustrates that the fasting glucose level of mice in
the HFFD induction group was remarkably higher than that in the ND group (p < 0.01),
and supplementation of different doses of AAP obviously reversed this phenomenon
(p < 0.05/p < 0.01). As shown in Figure 3A, which is the result of the GTT test, within
15 min after the intraperitoneal injection of 2 g/kg glucose, the blood glucose level of mice
in the HFFD group was notably increased (p < 0.01). However, AAP alleviated the increase
in blood glucose that was caused by the HFFD. After 30 min, the blood glucose levels of the
mice in all the groups began to decrease. The blood glucose reduction in the HFFD + AAP
group with different concentrations was significantly greater than in the HFFD-induced
obesity mice.

Figure 3. Effects of Auricularia auricula-judae polysaccharides on glucose tolerance and insulin
resistance in obese mice that was induced by HFFD. At the end of 12-week feeding, mice were
detected by (A) glucose tolerance tests; (B) fasting glucose levels; (C) fasting insulin levels; (D) insulin
resistance index, HOMA-IR. The data are presented as the mean ± SEM, n ≥ 6, * p < 0.05, ** p < 0.01,
vs. ND group, # p < 0.05, ## p < 0.01 vs. HFFD group.

Furthermore, the fasting serum insulin level is an important indicator of insulin resis-
tance. After 12 weeks of feeding, the mice in the HFFD group developed hyperinsulinemia,
and the fasting insulin values were strikingly boosted (p < 0.01), indicating that HFFD in-
duced insulin resistance in mice. Interestingly, the dietary supplement of AAP remarkably
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improved this trend (p < 0.01) (Figure 3C). Similar modulatory effects were also illustrated
by HOMA-IR analysis (Figure 3D).

3.3. Dietary Supplement of AAP Regulated Serum Lipid Levels in HFFD-Induced Obese Mice

In order to explore the intervention effect of AAP on the blood lipid metabolism
disorder of obese mice, the levels of TG, TC, HDL-C, and LDL-C in the serum of mice were
detected. As shown in Figure 4A,B, the dietary supplementation of AAP significantly sup-
pressed the increase in TG and TC levels that were caused by the HFFD (p < 0.05/p < 0.01).
Moreover, the findings in Figure 4C,D demonstrate that the HFFD markedly increased
LDL-C levels (p < 0.01) and decreased HDL-C levels (p < 0.01), whereas the diets that were
supplemented with 100 mg/kg/day or 200 mg/kg/day AAP significantly down-regulated
LDL-C expression (p < 0.01), indicating that AAP had abilities to balance serum lipid
metabolism disorder that was caused by the HFFD.

Figure 4. Effects of Auricularia auricula-judae polysaccharides on serum lipid levels in the HFFD-
induced obese mice. (A) Triglyceride levels; (B) total cholesterol levels; (C) high-density lipoprotein
cholesterol levels; (D) low-density lipoprotein cholesterol levels. The data are presented as the
mean ± SEM, n ≥ 6, * p < 0.05, ** p < 0.01, vs. ND group, # p < 0.05, ## p < 0.01 vs. HFFD group.

In addition, lipids and lipid-related metabolites in mouse serum were detected by mass
spectrometry and the results are illustrated in Figure 5. In positive ion mode (Figure 5A), com-
pared with obese mice that were induced by HFFD, the dietary supplementation of AAP signifi-
cantly up-regulated the levels of serum lipid-related metabolites, such as L-Palmitoylcanitine,
PC (16:0/16:0), Dodecanoylcarnitine, PC (P-16:0/16:0), PC (22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:0),
L-Hexanoylcarnitine, PC (22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:1(11Z)), Linoleyl carnitine, PC
(P-16:0/18:0), L-Octanoylcarnitine, LysoPE (22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), Elaidic car-
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nitine, and trans-Hexadec-2-enoyl carnitine (p < 0.05), while it down-regulated Glycerophos-
phocholine, LysoPE (18:3(6Z,9Z,12Z)/0:0), PC (22:2(13Z,16Z)/14:0), LysoPE (18:1(9Z)/0:0),
7-Ketocholesterol, PC (18:2(9Z,12Z)/18:0), LysoPE (18:2(9Z,12Z)/0:0), Campesterol, PC
(18:2(9Z,12Z)/15:0), LysoPC (16:1(9Z)/0:0), LysoPC (18:2(9Z,12Z)), N-Palmitoylsphingosine,
LysoPC (22:4(7Z,10Z,13Z,16Z)), and Cer (d18:0/16:0) levels (p < 0.05). Then, the MetaboAn-
alyst database was used to analyze the metabolic pathways of these metabolites. It was
found that these metabolites participated in glycerophospholipid metabolism, linolenic
acid metabolism, alpha-Linolenic acid metabolism, ether lipid metabolism, arachidonic
acid metabolism, fatty acid degradation, and steroid biosynthesis. In addition, in the
negative ion mode (Figure 5B), the serum concentrations of 10 metabolites including Dode-
canoic acid, Palmitoleic acid, 12-Methyltridecanoic acid, 2-Ethyl-2-Hydroxybutyric acid,
Succinic acid semialdehyde, isoformous acid, Cortisone, Traumatic acid, LysoPA (16:0/0:0),
and 15-Keto-prostaglandin E2 showed statistically significant differences (p < 0.05). These
metabolites were associated with metabolic pathways such as fatty acid biosynthesis,
butanoate metabolism, alanine, aspartate, and glutamate metabolism, biosynthesis of
unsaturated fatty acids, and steroid hormone biosynthesis.

Figure 5. Effects of Auricularia auricula-judae polysaccharides on lipids and lipid-related metabolites
in obese mouse serum. (A) Positive ion mode; (B) Negative ion mode. n = 6.
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3.4. Dietary AAP Supplementation Reduced Mice Liver Weight Gain and Alleviated Liver
Histomorphology Changes Induced by HFFD

The liver weight is a basic indicator reflecting the health status of the liver [13]. As
illustrated in Figure 6A,B, the liver weight and liver index of the mice that were fed by
HFFD were remarkedly higher than those in the ND group (p < 0.01). However, the low,
medium, and high doses of AAP intervention groups significantly inhibited the increases
in liver tissue weight and liver index that was caused by HFFD (p < 0.01). Haematoxylin
and eosin (HE) staining was further performed to observe the tissue state of the liver.
After HE staining, the nuclei and cytoplasm of the liver tissues were stained blue and
red, respectively. Compared with the ND group, the liver in the HFFD model group
showed steatosis, enlarged hepatocytes, and a large number of fat droplet vacuoles in
the cytoplasm (Figure 6C). Obviously, the hepatomegaly of the liver in AAP intervention
mice was lightened to some degree, and the vacuoles of fat droplets in the cytoplasm were
decreased. It showed that AAP significantly alleviated the morphological changes in liver
tissue that was induced by HFFD.

Figure 6. Effects of Auricularia auricula-judae polysaccharides on liver histomorphology changes in
obese mice that were fed by HFFD. (A) liver weight; (B) liver index; (C) representative HE staining of
liver (×400). The data are presented as the mean ± SEM, n ≥ 6, ** p < 0.01, vs. ND group, ## p < 0.01
vs. HFFD group.

3.5. Dietary Supplement of AAP Inhibited Liver Inflammatory Response in HFFD-Fed Mice

Excessive accumulation of lipid droplets in the liver will increase the risk of hepatitis
and nonalcoholic fatty liver disease [14]. As shown in Figure 7, when compared with ND
mice, the levels of inflammatory mediators such as IL-6, IL-1β, and TNF-α mRNA in the
liver of the HFFD model mice increased (p < 0.01), whereas the levels of anti-inflammatory
mediators IL-10 mRNA decreased markedly (p < 0.01), which was consistent with the
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reference. AAP significantly (p < 0.05/p < 0.01) inhibited the gene expressions of IL-6, IL-1β,
and TNF-α and promoted the gene expressions of IL-10, thus suppressing the mice’s liver
inflammation response that were fed by HFFD.

Figure 7. Effects of Auricularia auricula-judae polysaccharides on liver inflammatory response in
HFFD-induced obese mice. The mRNA levels of inflammatory response including (A) IL-1β, (B) IL-6,
(C) IL-10, (D) TNF-α. The data are presented as the mean ± SEM, n ≥ 6, * p < 0.05, ** p < 0.01, vs. ND
group, # p < 0.05, ## p < 0.01 vs. HFFD group.

3.6. AAP Down-Regulated the Pro-Lipid Accumulation Genes Expressions, Up-Regulated
Pro-Lipolysis Genes and Mitochondrial Active Genes Expressions, Improving Liver
Lipid Metabolism

In order to further investigate the potential mechanism of AAP in inhibiting the ex-
cessive accumulation of liver lipid droplets that were caused by HFFD, the mRNA levels
of genes that are related to lipogenesis regulation were detected in this study. As demon-
strated in Figure 8A, the expressions of lipogenesis-related genes, including peroxisome
proliferator-activated receptor γ (Pparg), cholesterol regulatory element-binding protein
1c (Srebp1c), acetyl-CoA carboxylase (Acaca), fatty acid synthase (Fasn), and malic enzyme
(ME1), were significantly higher in the HFFD treatment group than in the ND group
(p < 0.01). Compared with the HFFD group, the mRNA levels of the above genes were
markedly decreased after supplementation with different doses of AAP, suggesting that
AAP exerts good regulatory activity on mouse liver lipogenesis.

The liver cholesterol metabolism-related gene expressions are shown in Figure 8B. The
expressions of cholesterol synthesis regulatory genes, including hydroxymethylglutaryl-
CoA reductase (Hmgcr) and cholesterol acyltransferase 2 (Acat2) in the HFFD fed mice
liver, were markedly boosted, while AAP significantly down-regulated Hmgcr and Acat2
mRNA expressions (p < 0.05/p < 0.01). Besides, it has been reported that liver receptors
(LXR), ABCG5, and ABCG8 can promote the elimination of cholesterol from the body.
After HFFD treatment, the expression of LXRβ in the mice livers decreased obviously,
whereas the expressions of LXRβ, Abcg5, and Abcg8 were enhanced in the HFFD+AAP
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group (p < 0.05/p < 0.01) (Figure 8B). These results demonstrated that AAP had a certain
regulatory effect on cholesterol metabolism.

Figure 8. The effects of Auricularia auricula-judae polysaccharides on liver lipid metabolism-related
gene expressions in obese mice that were induced by HFFD. (A) mRNA levels of lipogenic genes
including Pparg, Srebp1c, Fasn, Acaca, and ME1; (B) The mRNA levels of cholesterol synthesis
genes including Hmgcr, Acat2, LXRβ, Abcg5, and Abcg8; (C) mRNA levels of lipolytic genes and
mitochondrial-related genes including Cpt1a, Cpt2, Pgc1α, Sirt1, Tfam, and COXII. The data are
presented as the mean ± SEM, n ≥ 6, * p < 0.05, ** p < 0.01, vs. ND group, # p < 0.05, ## p < 0.01 vs.
HFFD group.

To further explore whether the specific mechanism of AAP in regulating lipid metabolism
was related to the biological activity of mitochondria, the mRNA levels of mitochondrial-
related lipid metabolism genes were detected. As shown in Figure 8C, HFFD significantly
reduced the expressions of fatty acid β-oxidation-related genes Cpt1α and Cpt2, and AAP
supplementation could notably reverse this tendency (p < 0.05/p < 0.01). In addition, genes
that are related to mitochondrial function including Pgc1α, Sirt1, COXII, and TFAM showed
the same trend as the above genes.

4. Discussion

The United Nations has proposed “one meat, one vegetable, and one mushroom” as
a rational dietary structure in the 21st century. Each year, about six million tons of edible
mushrooms are commercially produced around the world. Modern medical research has
shown that edible fungi such as Ganoderma lucidum, shiitake mushrooms, and Tremella
have immune regulating, antitumor, and hypoglycaemic effects [15–18]. Among them, the



Foods 2022, 11, 942 14 of 18

main active ingredient, edible mushroom polysaccharide, has exerted great advantages
in repairing human cells, treating hepatitis, cardiovascular diseases, and anti-ageing, and
has become an important pathway for humans to screen new pharmaceutical compo-
nents [19,20]. The results of this study demonstrate that dietary supplementation with
polysaccharides that were extracted from Auricularia auricula-judae significantly inhibited
mouse subcutaneous and epididymal fat accumulation, decreased serum TG and TC levels,
remarkably down-regulated LDL-C expression, and slowed down weight gain.

Eating habits are the main cause of obesity [21]. In addition to a high-fat diet, the
influence of fructose on the occurrence and development of obesity and fatty liver is
particularly noticeable. Fructose, an isomer of glucose, is the sweetest natural sweetener
and is abundant in soft drinks and other foods. Since the introduction of high fructose corn
syrup (HFCS) into the food processing industry in the 1970s, fructose intake has increased
year by year, especially for some teenagers who drink soft drinks instead of water [22].
Fructose metabolism in the body is different from glucose metabolism in many ways [23,24].
Fructose promotes food intake and slows energy metabolism in a resting state. In addition,
without increasing the energy intake, fructose could bypass the key rate-limiting step in
the glycolytic pathway that is regulated by the cell energy state and generate excessive
acetyl coenzyme A to enter the de novo fat synthesis pathway to synthesise fat [25]. The
most important difference is that fructose, when metabolized intracellularly, causes rapid
and irreversible ATP consumption, purine nucleotide conversion, and eventually, uric
acid production. Fructose-induced uric acid production can reduce fatty acid oxidation,
especially through inducing mitochondrial oxidative stress to activate the fat synthesis
pathway, leading to obesity and visceral fat accumulation [26,27]. α-glucosidase is a key
enzyme regulating glucose metabolism. Previous studies have shown that the α-amylase
activity inhibition rate of 1 mg/mL AAP was 58.52%, which was obviously higher than that
of Auricularia cornea var. Li, Auricularia polytricha, and Mulberry polysaccharides [28]. AAP
and its in vitro hydrolysate could significantly improve the body weight and blood sugar
changes of streptozotocin-induced type 2 diabetic rats, reduce TG and LDL-C levels, as well
as promote insulin secretion and hepatic glycogen synthesis [29]. The results of this study
found that the addition of AAP significantly inhibited the increase in the blood glucose and
insulin levels and decreased HOMA-IR index, indicating that AAP had positive regulatory
effects on insulin resistance (Figure 3).

Numerous studies have shown that natural polysaccharides can improve the disorder
of lipid metabolism by changing genes that are related to lipid metabolism. Polysaccharides
regulate TG metabolism mainly through three pathways, the ATGL-(PPAR-α)-(PGC-1α)
pathway, the (SREBP-1c)-ACC/FAS pathway, and the ACC-CPT1 pathway, and regulate
cholesterol metabolism primarily through the (SREBP-2)-HMGCR pathway, the PCSK9-
LDLR pathway, and bile acid synthesis pathway [30]. Wu et al. screened out 13 genes that
are involved in lipid metabolism in the liver and epididymal tissue by gene expression
profiling array and found that black tea polysaccharides inhibited fat formation, acceler-
ated fat digestion, and promoted lipolysis by regulating the expressions of differential
genes affecting lipid metabolism, including bile acid secretion, transforming growth fac-
tor signalling, insulin signalling, glycolipid metabolism, fatty acid degradation, and the
AMPK signalling pathway [31]. The polysaccharide from Cyclocarya paliurus leaves exerts
therapeutic effects on hyperlipidaemic rats through the induction of ATGL and PPAR-α
and the down-regulation of FAS and HMGCR [32]. Schisandra polysaccharide has been
shown to markedly suppress the hepatic lipogenesis related genes, SREBP-1c, ACC, and
FAS expressions [33]. The intervention of 800 mg/kg/d green tea polysaccharides could
up-regulate the expressions of CPT-1, down-regulate the expressions of PPARγ, SREBP-1c,
FAS, and LXRα, thus significantly reducing the fat index and adipocyte area, and inhibit-
ing mouse obesity [34,35]. In this study, we found that AAP down-regulated the mRNA
expressions of liver adipogenic genes Pparg, Srebp1c, Fasn, Acaca, and ME1; suppressed
cholesterol synthesis-related genes Hmgcr and Acat2 mRNA levels; up-regulated fatty acid
β-oxidation-related genes Cpt1α and Cpt2 expressions; and promoted the expressions of
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cholesterol efflux-related genes LXR, Abcg5, and Abcg8, thus improving the homeostasis
of liver lipid metabolism in mice (Figure 8). Furthermore, it has been demonstrated that
PGC-1α plays an important role in a variety of metabolic processes, including mitochon-
drial biogenesis and mitochondrial β-oxidation, and PGC-1α has emerged as an important
therapeutic target for fatty liver disease [36]. AAP up-regulated Pgc1α and Sirt1 expres-
sions, and its intervention on HFFD-induced liver lipid metabolism disorder was closely
related to the regulatory effects on mitochondrial function. However, as a non-digestible
polysaccharide, how AAP acts on the target tissues and exerts its anti-obesity effect needs
further in-depth study.

The body is in a state of chronic inflammation when obesity occurs, and the levels of
TNF-α, ILs, and other inflammatory factors in the circulation and tissues of obese patients
are significantly increased [37]. Fat accumulation in obesity leads to the hypertrophy of
adipocytes, putting cells in a state of stress and activating pro-inflammatory pathways.
In addition, the excessive enlargement of adipocytes leads to increased lipolysis, and
the formation of metabolic endotoxemia (increased lipopolysaccharide and endotoxin
in circulation) also contributes to inflammation [38,39]. The inflammatory factor TNF-α
induces the decomposition of adipocytes to release free fatty acids, which, in turn, bind
to Toll-like receptors on the surfaces of macrophages and adipocytes, further activating
inflammatory pathway signals and promoting inflammatory factor release [40]. Further-
more, the transduction of insulin signals may be interfered with by inflammatory factors,
resulting in insulin resistance, which then causes various metabolic disorders [41]. Polysac-
charides have attracted the increasing attention of scientists around the world for their
safety, potent anti-inflammatory, and immunomodulatory properties [42]. In our study,
50, 100, and 250 µg/mL of Polygonatum sibiricum polysaccharides alleviated IL-1β, IL-6,
and TNF-α levels and promoted proliferation, glucose uptake, and glucose transporter
4 expression in IR-3T3-L1 adipocytes [43]. Wu et al. reported that Ganoderma lucidum
beta 1,3/1,6 glucan (MBG) suppressed high-cholesterol diet-induced inflammation in male
C57BL/6J mice by stimulating serum IgA and IgG production, boosting poly-Ig receptor
expression, and increasing IL-2 production by NK cells [44]. The results of our study
demonstrate that AAP markedly down-regulated the gene expressions of IL-6, IL-1β, and
Tnf-α, while up-regulating the gene expression of anti-inflammatory factor IL-10 in liver
tissue (Figure 7), which could be one of the mechanisms underlying its liver-protecting and
weight-reducing effects.

In recent years, studies have shown that the multiple biological activities of polysaccha-
rides may be closely related to the regulation of intestinal flora. On the one hand, intestinal
flora can degrade the polysaccharides to generate monosaccharides, thereby promoting the
absorption and utilization of the polysaccharides by the body, simultaneously generating
metabolites with certain biological activity, such as short-chain fatty acids (SCFAs). On the
other hand, the polysaccharides can directly increase the abundance of beneficial bacteria
and reduce the abundance of harmful bacteria, improving the physiological levels of the
body [45]. Zhao et al. compared the effects of six edible fungi (Auricular, Flammulina
Velutipes, Lentinus edodes, Agaricus bisporus, Pleurotus ostertaus, and Pleurotus eryngii) on the
composition and diversity of intestinal flora using an in vitro fermentation system. The
results showed that edible fungi increased the content of SCFAs, thus reducing the pH
of the fermentation broth, and had a significant effect on the diversity of intestinal flora.
In particular, AAP could significantly increase the abundance of Bifidobacterium and Bac-
teroides and reduce the abundance of Fusobacterium [46]. Zhang et al. found that Auricularia
auricula-judae powder and Auricularia auricula-judae crude polysaccharides both markedly
reduced the levels of TC and LDL-C in model SD rats by regulating intestinal flora and its
metabolites. Among them, Auricularia auricula-judae powder increased the abundance of
Prevost’s bacteria and high-abundance SCFAs-producing bacteroides related to a diet that
was rich in dietary fibre, while Auricularia auricula-judae polysaccharides mainly promoted
the abundance of low-abundance SCFAs -producing bacteria, such as Flavobacterium and
Clostridium IV [11]. Although it has been demonstrated that many natural polysaccharides
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can improve the intestinal flora diversity of mice that is induced by a high-calorie diet, it is
difficult to prove the causal relationships based on correlation analysis. The effective dose,
molecular mechanisms, and metabolic process of polysaccharides in regulating obesity
need to be systematically investigated.

The structure of an active substance determines its function. The types and contents
of the active components in crops from different origins and varieties are different. Ad-
ditionally, different extraction methods often affect the yield, structural properties, and
biological activity of natural polysaccharides. At present, the research on the lipid-lowering
of AAP mainly focuses on the well-known Northeast Auricularia auricula-judae resources.
Our research team previously compared the physicochemical properties and antioxidant
activities of AAP in the Northwest Qinba Mountains with AAP in Heilongjiang and ana-
lyzed the differences between AAP that was obtained by different extraction methods, such
as hot water extraction, enzymatic extraction, and ultrasonic extraction. The results showed
that the AAP from the Qinba Mountains was mainly composed of mannose, glucuronic
acid, and xylose, and the relative molar percentage was 60.87:20.83:9.86, which was similar
to the northeast. In addition, the content of mannose and glucuronic acid in AAP that
was prepared by hot water extraction was the highest. Mannose is not only an important
monosaccharide for protein glycosylation in mammals but also an inefficient source of
cellular energy. Sharma et al. found that a certain amount of mannose supplementation
inhibited the weight gain of mice that were fed with a high-fat diet, as well as reduced the
proportion of fat, prevented fatty liver, enhanced endurance and maximum oxygen con-
sumption, and improved glucose tolerance [47]. Mannose increased the ratio of firmicutes
to bacteroidetes in the gut microbiota of mice. Moreover, functional transcriptomic analysis
of the mouse caecal microbiota revealed that the coherent changes in microbial energy
metabolism were caused by mannose, and it is speculated that mannose played a role by
reducing the energy that is produced by the metabolism of complex carbohydrates by in-
testinal flora and reducing energy intake [47]. The results of this study showed that dietary
supplementation of 100 mg/kg·day of Auricularia auricula-judae water-extracted polysac-
charide from the Qinba Mountains significantly reduced the food efficiency ratio, inhibited
the accumulation of subcutaneous fat and epididymal fat, improved lipid metabolism, and
slowed down the mice body weight gain that was induced by HFFD (Figure 1). Due to the
complexity and diversity of polysaccharides structure, the relationship between molecular
weight, monosaccharide composition, glycosidic bond connection mode, the advanced
structure of polysaccharides, and their functional activities is not clear enough, the main
active groups of AAP which play a role in weight loss need further in-depth investigation.

5. Conclusions

This study showed that AAP that was extracted from Qinba Mountain Auricularia
auricula-judae exerted good abilities to inhibit nutritional obesity in mice, which was related
to the regulations of the inflammatory response and lipid metabolism. Dietary supplemen-
tation of AAP significantly reduced the accumulation of subcutaneous and epididymal
fat in mice, altered serum lipid metabolites, and slowed down body weight gain that was
caused by HFFD. AAP remarkably suppressed fasting glucose and fasting insulin levels
and improved the insulin resistance state in mice. Additionally, AAP supplementation
decreased inflammatory factor expression and alleviated liver histomorphology changes
that were caused by HFFD. Furthermore, AAP down-regulated the expressions of liver
pro-lipid accumulation genes and up-regulated pro-lipolysis and mitochondrial active gene
expressions, improving liver lipid metabolism. These results lay a theoretical basis for an
in-depth study on the anti-obesity function of AAP and provide a scientific basis for the
further development and utilization of Auricularia auricula-judae resources in the Qinba
Mountain area.
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