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Abstract: In this study, an online multi-sensing platform was engineered to simultaneously evaluate
various process parameters of food package sterilization using gaseous hydrogen peroxide (H2O2).
The platform enabled the validation of critical aseptic parameters. In parallel, one series of micro-
biological count reduction tests was performed using highly resistant spores of B. atrophaeus DSM
675 to act as the reference method for sterility validation. By means of the multi-sensing platform
together with microbiological tests, we examined sterilization process parameters to define the most
effective conditions with regards to the highest spore kill rate necessary for aseptic packaging. As
these parameters are mutually associated, a correlation between different factors was elaborated.
The resulting correlation indicated the need for specific conditions regarding the applied H2O2 gas
temperature, the gas flow and concentration, the relative humidity and the exposure time. Finally,
the novel multi-sensing platform together with the mobile electronic readout setup allowed for the
online and on-site monitoring of the sterilization process, selecting the best conditions for sterility
and, at the same time, reducing the use of the time-consuming and costly microbiological tests that
are currently used in the food package industry.

Keywords: gaseous hydrogen peroxide; multi-sensing platform; aseptic parameters; sterility; spore
kill rate

1. Introduction

Package sterilization is one of the most important stages of aseptic filling procedures [1–4],
especially in the food industry. The aim is to deliver food products that are safe for the
customer and have long-term stability [2,3,5]. To achieve this, several methods have been
developed to control the quality of food products, such as milk [6–12]. However, there is
only a little research regarding online and on-site monitoring for controlling the efficiency
of package sterilization.

For package sterilization, H2O2 has become favorable over the past decade as a
sterilant for the food and pharmaceutical industries [4,11,13,14] because it decomposes to
water and oxygen, which are totally environmentally friendly end products. H2O2 is either
applied in liquid form at lower temperatures or in gas form at elevated temperatures [3,5,15].
The application of H2O2 is combined with hot air flow or radiation [16–18]. When applying
H2O2 in the gas form to sterilize packages, many physical and chemical factors come
into play [5,19], including the concentration and temperature of the gas, flow direction,
the relative humidity in the sterilization chamber and finally, the efficacy of the sterilant
gas on the spore kill rate. These factors influence the quality of the sterilization efficiency.
Therefore, setups that control the quality are designed to predefine and check the conditions
inside the sterilization chamber [5,20]. Additionally, numerical methods have been applied
to analyze and optimize the process parameters during or after sterilization to define the
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maximal content of residual components, etc. [15,20–23]. Nevertheless, above all of these
control setups and methods, microbiological experiments are also required as a reference
method and industrial standard to confirm the sterilization [24–26]. Typically, traditional
microbiological tests utilize microorganisms, such as Bacillus atrophaeus spores, as highly
resistant bio-indicators [4]. These tests are frequently used in the industry to guarantee
the efficacy of the sterilization process [4,25]. Microbiological tests, such as endpoint
testing and count reduction testing [26], can deliver spore viability results in a minimum of
48–72 h [25]. From an industrial point of view, this yields a financial loss at the production
and maintenance levels, as the sterile product must be stored until the test results have
come back clear. In the case of a negative test result, large amounts of products need to
be destroyed because it is impossible to distinguish at which point the sterilization was
compromised between the tests. Therefore, looking into other methods to avoid this loss is
beneficial in order to find a path toward online and on-site sterilization validation.

Over recent years, more specific methods and systems have been developed to de-
termine optimum sterilization conditions using gaseous H2O2, including electrochemical,
conductometric or colorimetric methods [14,27–29]. However, most of these methods
cannot be involved in the online or on-site monitoring of sterilization because of transporta-
bility, sample preparation, response time or selectivity issues [27,28]. The aim of recent
research over the last decade, therefore, has been to convert sterilization assessment into
a less costly evaluation, upgrade it to a higher level of online monitoring and, in parallel,
speed up the microbiological processes in a way that maintains the consistency of the
output [19,30,31].An exemplary piece of research from the same group in 2013 evaluated
the individual critical parameters (such as H2O2 concentration and the exposure time of the
spores) in aseptic processing and assessed their relationship with the logarithmic kill rate
of spores [32]. This was an important step toward the online monitoring of the sterilization
process; however, these parameters have not yet been monitored simultaneously. Another
motivating study in 2019 suggested the combination of a calorimetric gas sensor and a
spore-based biosensor for sterility validation, which also took into account several critical
factors, such as the temperature and concentration of the H2O2 gas, spore viability and
exposure time [19,33]. These attempts have been carried out to validate which conditions
have the best effect on the inactivation of the spores (in that case, B. atrophaeus). Here, spores
were exposed to different H2O2 concentrations for short periods (~ 2 s) under several gas
temperatures and gas flows and then their viability was examined [19,33,34].

The aim of the current study was to implement the simultaneous online control of
multiple process parameters that directly influence sterilization. The on-site monitoring of
the critical factors in sterilization processes would allow us to determine valid sterilization
straightaway. In this way, the industrial losses due to the delays from the time-consuming
microbiological tests could be avoided. To follow on from the above-mentioned pioneer-
ing research, in the case of package sterilization using gaseous hydrogen peroxide, two
additional parameters needed to be considered besides H2O2 concentration and gas tem-
perature: relative humidity and gas flow direction. These factors, together with exposure
time of the spore to the gaseous H2O2, could influence the sterility efficacy depending on
the type of process. Therefore, developing a multi-sensing platform for the assessment of
multiple factors was deemed to be useful for the simultaneous online monitoring of those
factors. To achieve this, different sensor setups were implemented on a single board to
validate the conditions that led to the highest spore kill rate. A flexible calorimetric gas
sensor was utilized to detect the temperature and concentration of the gaseous H2O2 [31],
a humidity sensor was applied to record the relative humidity in the sterilization chamber
and an array of temperature sensors monitored the flow direction. Additionally, various
H2O2 concentrations and exposure times of the spores to the gaseous H2O2 were consid-
ered. In parallel with the multi-sensing platform, one series of microbiological experiments
(by means of count reduction testing) was performed, under the same conditions that were
set for the characterization of the multi-sensing platform, in order to validate spore viability.
Once the highest spore kill rate has been confirmed by the multi-sensing platform, no more
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time-consuming traditional microbiological tests would be required. The novelty of this
study is, therefore, the application of a single multi-sensing platform to take control of
aseptic processing and confirm sterilization validity both online and on-site.

2. Materials and Methods

The developed multi-sensing platform consisted of multiple electrodes and electrode
setups on a printed circuit board (PCB), which could simultaneously detect and record
different process parameters in the sterilization process (Figure 1). These electrodes and
setups included (i) a flexible calorimetric gas sensor for the detection of H2O2 temperature
and concentration, (ii) a high-temperature resistant humidity sensor for assessing the
humidity in the chamber and (iii) an array of Pt100 temperature elements for monitoring
the gas flow direction. The arrangement of these sensors on the PCB allowed for an equal
and symmetric gas inlet to all sensors. The PCB was mounted inside the chamber of an
experimental test rig, where sterilization using H2O2 gas occurred. Detailed information on
the experimental test rig and the positioning of the PCB is provided elsewhere [35,36]. In the
sterilization chamber, 35% w/w gaseous H2O2 was applied in the different concentrations
of 0, 2.2, 4.1, 5.7, 7.1 and 7.7% v/v and 0, 2.2, 4.1, 5.7 and 6.6% v/v for the two gas flow rates
of 8 and 12 m3/h, respectively. Additionally, three initial gas temperatures (210, 240 and
270 ◦C) were utilized to define various scenarios for the sterilization process (see Table 1 as
a reference to the various scenarios).

The readout and analysis of the data from the multi-sensing platform was performed
via an Arduino micro-controller, National Instruments (NI) data acquisition (DAQ) cards
and a data logger (Delphin). In parallel with these experiments, microbiological tests (count
reduction testing) were performed, as a reference method, under the same scenarios as for
the operating cycles of the multi-sensing platform in order to validate the spore sterilization
and fulfill ongoing industrial standards.
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Table 1. A table of the varying conditions applied to the spore sterilization experiments.

c (H2O2) (% v/v) Gas Flow Velocity
(m3/h)

Gas Temperature
(◦C) Time Intervals (s)

0

8
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

12
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

2.2

8
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

12
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

4.1

8
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

12
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

5.7

8
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

12
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

7.1/6.6

8
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

12
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

7.7

8
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

12
210 0.2, 0.4, 0.6
240 0.2, 0.4, 0.6
270 0.2, 0.4, 0.6

A flexible calorimetric gas sensor based on a polyimide sheet was the first sensor
implemented in the PCB multi-sensing platform and was used to determine the temperature
and concentration of the H2O2 during the aseptic process (bottom left of Figures 1 and 2a).
As reported previously [31], the calorimetric gas sensor was designed as a differential setup
for two identical metallic meander structures serving as an RTD (resistance temperature
device): here, one element was activated by a catalyst and the other was only covered
by a polymer as a passivation layer. Upon exposure to high-temperature gaseous H2O2
(of different concentrations), the catalyst (in this case, MnO2) reacted with the H2O2 and
decomposed it into water and oxygen, i.e., fully environmentally friendly end products
(Figure 2b).
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The heat produced from this reaction was measured by the activated RTD on the
sensor setup, using Equation (1):

2 H2O2 —> 2 H2O + O2, ∆H = −105.3 kJ/mol (1)

The difference between the temperatures measured by the active and passive elements
represented the sensor signal, which corresponded to the H2O2 concentration. For the
calorimetric gas sensor, which was mounted on the multi-sensing platform, the signals were
read out with a sampling rate of 1 Hz by means of a National Instruments measurement
card (NI 9219) together with an adapted software (LabVIEW 2017). The assessment of the
temperature and concentration of the H2O2 gas using the calorimetric gas sensor was a
step toward the validation of the optimum sterilization conditions as it had a correlation
with the logarithmic kill rate of the spores (which is discussed in the results section).

For the detection of the relative humidity in the sterilization chamber containing
the gaseous H2O2, a SHT31-D sensor (Sensirion AG) was applied to the multi-sensing
platform (Figure 1, top left). The sensor was able to withstand short-term exposures to
temperatures above 120 ◦C and monitored the relative humidity in the chamber during
the whole sterilization process (i.e., under the various scenarios mentioned in Table 1). A
micro-controller board (Arduino Duemilanove, Arduino IDE 1.8.15) was employed to read
out the sensor values. By taking advantage of the humidity assessment, the change of
relative humidity in the chamber was also monitored and its relationship to the sterilization
validity was determined as a correlation toward the logarithmic kill rate of the spores.

The H2O2 gas flow detection was assessed by means of a specifically designed sensor,
which fulfilled the conditions for the gas flow measurements (Figure 1, bottom right).
An arrangement of four Pt100 temperature elements (Heraeus Nexensos SMD, Conrad
Electronics), which were soldered on the PCB platform, was used.

For the calibration of this arrangement, the PCB was placed in a 3D-printed PCB
holder, which was made in-house, and fixed in such a way that any slipping and moving of
the plate was avoided. This housing could also withstand the harsh conditions inside the
sterilization chamber. A flexible test tube was used to allow the gas (at room temperature)
to flow in different directions through the device in such a way that the changes in flow
direction could occur and be detected with the Pt100 temperature sensors on the PCB.
Without additional gas flow, the Pt100 elements initially registered the same temperature.
However, as the H2O2 gas flow was applied, the distributed temperature profile changed,
which led to a change in the resistance of the respective elements or among each other.

For the sterilization experiments using gaseous H2O2, the PCB was placed below the
H2O2 outlet nozzle in the experimental test rig, according to the description in [35]. A data
logger (Expert Logger 100, Delphin Technology AG), together with the adapted LabVIEW
software, was used to process the flow characterization data from these experiments. The
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flow direction could, therefore, be determined by the observation of the temperature
changes. The evaluation of the gas flow in the sterilization chamber was important. The
influence of this factor on sterilization is also discussed in the results section as a correlation
with the logarithmic kill rate of the spores.

In parallel to the characterization of the multi-sensing platform under various condi-
tions, the spore viability during the sterilization process was also evaluated using count
reduction tests as a reference method. A series of experiments was designed using resistant
spores of B. atrophaeus DSM 675 with a starting germ count (N0) of 106 colony-forming
units (CFU)/mL under varying conditions. The spores, which were immobilized on a
glass substrate (similar to spore immobilization on the biosensor as discussed in [19]),
were placed in the sterilization chamber and exposed to the various concentrations of
gaseous H2O2 (0, 2.2, 4.1, 5.7, 7.1 and 7.7% v/v) for very short time intervals (0.2, 0.4 or
0.6 s). Two different gas flow rates (8 and 12 m3/h) and three different gas temperatures
(210, 240 and 270 ◦C) were selected for the evaporated hydrogen peroxide used in these
microbiological experiments (also see Table 1). The values corresponded to the dose rates
that are typically applied in industrial processes. It has to be noted that at a H2O2 gas
flow of 12 m3/h, a maximum H2O2 concentration of 6.6% v/v could be used due to the
limitations of this experimental setup.

In the count reduction test, the ratio between the starting (N0) and final germ count
(N) of the spores is referred to as the logarithmic kill rate (LKR = log(N0/N)) in relation
to the varying parameters. Large LKR values indicate that more spores have been killed
and a more reliable sterilization has been performed (i.e., an LKR of 6 implies that from an
initial spore count of 106, the final germ count has been reduced to one).

The count reduction test series was performed for the various scenarios defined in
Table 1 and the spore kill rates for the critical process parameters were evaluated. Finally,
the correlation between the spore kill rates and the different sterilization conditions was
assessed to acquire a valid statement for successful sterilization (which is discussed in the
results section).

3. Results and Discussion
3.1. Calorimetric Gas Sensor

The calorimetric gas sensor in the multi-sensing platform was used to determine the
temperature and concentration of the H2O2 at the gas flow velocities of 8 m3/h (Figure 3a)
and 12 m3/h (Figure 3b) when applying the different gas temperatures of 210, 240 and
270 ◦C. At the same time, the H2O2 concentration varied between 0 and 7.7% v/v (the
blue dashed line in Figure 3a,b at the right-hand y-axis). The sensor was exposed to each
concentration of gaseous H2O2 for 180 s and, after each exposure, to hot air for 180 s (at
corresponding temperatures of 210, 240 and 270 ◦C) to re-equilibrate.

For a gas flow of 8 m3/h, the increase in the temperature difference (i.e., the sensor
signal) when the initial gas temperature rose from 210 to 270 ◦C (Figure 3a) can be recog-
nized. Here, the active element of the sensor reacted more with the gaseous H2O2 at higher
temperatures and the difference between the active and passive elements became more
pronounced. This can be explained by the sensor’s sensitivity and its correlation with the
gas temperature.

In previous research, the relationship between the gas temperature and the sensitivity
of the gas sensor has been studied [36]. At lower gas temperatures, the sensitivity decreases
according to the Arrhenius equation, as described in that study. This effect can also be
clearly observed in the temperature measurements here: the sensitivity of the calorimetric
gas sensor at 210, 240 and 270 ◦C was evaluated as 1.8, 1.9 and 3.5 ◦C/% v/v, respectively.
At a gas flow velocity of 12 m3/h, the sensor signal was higher at 210 and 240 ◦C in
comparison to the same temperatures at a gas flow of 8 m3/h (Figure 3b). This effect can be
explained by the heat dissipation on the sensor surface, which correlated with the gas flow
rate [36].
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At a gas temperature of 270 ◦C, the sensor signal decreased (Figure 3b) in comparison
to the signals at gas temperatures of 210 and 240 ◦C. This effect could be explained by the
fact that, with the high temperature at a gas flow of 12 m3/h, the passive element heated
up as well as the active element; therefore, the temperature difference did not increase in
comparison to the same cases at 210 and 240 ◦C. This was also noticeable in the raw data. In
addition, the heat transmission between the two temperature elements was higher, which
led to the passive temperature element heating up.

The application of the calorimetric gas sensor in the multi-sensing platform enabled the
online detection of the temperature and concentration of the gaseous H2O2. The response
time (t90) of the temperature elements was evaluated to be <30 s, which allowed for online
reporting. The continuous control of the temperature and concentration of the gas inside
the aseptic chamber is a key step toward maintaining the best conditions to guarantee the
highest spore kill rate in the sterilization process.

3.2. Humidity Detection

The relative humidity inside the aseptic chamber was monitored during the steriliza-
tion process using a SHT31-D humidity sensor. The results from the humidity measure-
ments under the different conditions are presented in Figure 4.
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7.7% v/v.

Here, several concentrations of H2O2 were chosen (see scenarios in Table 1). The
applied H2O2 was 35% w/w, meaning that the H2O2 was diluted by water to 35%. Yet, to
adjust the water content of the volume, more information was required. The evaporated
H2O2 is carried by air, hence, the output flow was a mixture of H2O2, water and air. For
instance, when an output H2O2 concentration of 2.2% v/v was set, 2.2% of one volume
unit of the gas (which flowed with the velocity of 8 m3/h) was pure H2O2. The rest was
made of air and water. On the one hand, H2O2 of 35% w/w was used, so the remaining
weight content was water. On the other hand, air was the carrier of H2O2 and as such, the
remaining volume content (in 1 L) was air. This information allowed us to consider the
different concentrations of H2O2, keeping in mind the volume of water in the gas flow.
Table 2 shows some examples of the relative water content of different H2O2 concentrations
in the gas stream when using H2O2 of 35% w/w. The higher the H2O2 concentration, the
higher the water content of the gas mixture became, as more water–H2O2 mixture was
used to obtain the set concentration. Obviously, concentrations other than 35% w/w H2O2
were also used, so those values differed accordingly.
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Table 2. An example of the relative water content in different gaseous H2O2 concentrations.

H2O2 (% v/v) H2O (% v/v) Air (% v/v) Sum (%)

2.24 6.11 91.64 100
4.14 11.28 84.57 100
5.77 15.71 78.51 100
7.18 19.54 73.26 100
7.7 20.94 71.35 100

It is visible in Figure 4a,b that the increase in H2O2 concentration led to an increase in
humidity up to the stage of saturation. At the gas flow velocity of 8 m3/h, the overall rate of
humidity decreased with the increase in the gas temperature (Figure 4a). A similar situation
occurred for a gas flow of 12 m3/h (Figure 4b). It can be observed that, with a H2O2 concen-
tration of 5.7% v/v at a gas temperature of 210 ◦C and a gas flow of 12 m3/h, the humidity
was lower (~55% RH) in comparison to the same gas temperature at 8 m3/h (~99% RH).
Additionally, for the gas temperatures of 240 and 270 ◦C, the humidity decreased further to
80% RH and 30% RH for 8 m3/h and 35% RH and 30% RH for 12 m3/h, respectively. The
humidity sensor was implemented in the multi-sensing platform to monitor the moisture
content inside the aseptic chamber, since humidity also has an influence on the quality of
sterilization [32,37]. According to the above-mentioned study, a higher content of water
inside the aseptic chamber could lead to the condensation of water droplets, which could
result in a lower logarithmic kill rate of the spores [32]. In this regime, the online monitoring
of the relative humidity inside the sterilization chamber could help to maintain the relative
humidity at the most efficient level for achieving the highest spore kill rate throughout
the sterilization.

3.3. Gas Flow Direction

The determination of the gas flow direction during the sterilization experiments using
gaseous H2O2 was investigated with a configuration of four Pt100 elements on the PCB;
namely, IC 1–4, Figure 5. The arrangement of these Pt100 temperature sensors enabled the
measurement of a rise or fall in temperature when the gas flow increased or decreased.
The flow direction was calculated from the temperature profiles of the Pt elements. For
instance, as the H2O2 nozzle directed a flow between IC 2 and IC 3 (see the red arrow in
Figure 5), the temperature profile between IC 1 and IC 4 would be different from that being
streamed (between IC 2 and IC 3). As a result, the flow direction could be obtained from
the discrepancy between the different temperature profile configurations.
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In the sterilization experiments using H2O2, the PCB was mounted under the gaseous
H2O2 nozzle in the aseptic chamber. Figure 6 shows the evaluation of flow direction
during the sterilization process using gaseous H2O2. In the upper part of the diagram, the
temperature values of the four temperature sensors (IC 1–IC 4 with colors shown in the
legend) with regards to their respective H2O2 dosage (the blue dashed curve) at a gas flow
rate of 8 m3/h are plotted for a selected gas temperature of 270 ◦C. IC 1 and IC 4 were
placed in the opposite direction of the gas flow (which was toward IC 2 and IC 3). As a
consequence, the signals in the diagram are very similar and are difficult to distinguish
from each other.
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Figure 6. Assessing the change of gas flow direction under a H2O2 flow rate of 8 m3/h at 270 ◦C.

It is noticeable that the temperature curves are slightly different, which illustrates the
direction dependence of the flow. A similar behavior was found for a flow rate of 12 m3/h
(data not shown). When the flow was directed from IC 1 and IC 4 toward IC 2 and IC 3,
the former elements were colder (as can be seen in Figure 6) than the latter elements. This
indicates that the direction of flow was between IC 2 and IC 3. In addition, the angles of
the flow direction are shown (in the lower part of Figure 6) by the red measurement curve
that was calculated and recorded in the LabVIEW software during the measurement.

It should be noted that an angle of 200◦ (also shown schematically in Figure 6) did
not mean a large deflection of flow from the outlet (positioned at 0◦), but the schematic
view indicates very precisely (using the detected temperature differences of the Pt100
elements) that the gas flow was slightly away from a straight line at 180◦ in the polar axis.
However, it is also important to appreciate that the flow direction did not fluctuate during
the aseptic process in the test rig. The change of the flow direction in the aseptic processes
induced a change in the gas temperature, which consequently affected the outcome of
spore sterilization. Therefore, in this regime, it was helpful to also monitor the gas flow
direction in the aseptic chamber online to ensure a valid kill rate of the spores.

3.4. Spore Sterilization/Viability

For the count reduction tests that were used as a microbiological reference method,
spores of B. atrophaeus DSM 675 were immobilized onto glass substrates with a spore
count of 106 per chip. The spores were exposed to various concentrations of hydrogen
peroxide under the same conditions and scenarios as the multi-sensing platform (see Table 1,
Figure 7).
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Figure 7. Spore viability validated by count reduction testing. The spores were sterilized in different
scenarios. The H2O2 sterilization of B. atrophaeus DSM 675 with a gas flow rate of 8 m3/h (a–c)
and with a gas flow rate of 12 m3/h (d–f), with varying exposure times of 0.2, 0.4 and 0.6 s at gas
temperatures of 210, 240 and 270 ◦C with H2O2 concentrations of between 0 and 7.7 or 6.6% v/v.

The experiments were carried out at three gas temperatures (210 ◦C, 240 ◦C and
270 ◦C), while H2O2 concentrations were applied from 0 to 7.7% v/v for the 8 m3/h gas
flow and up to 6.6% v/v for the 12 m3/h gas flow. The logarithmic kill rates for the count
reduction tests were calculated after the sterilization.

Figure 7a–f presents the results of the sterilization process (i.e., the logarithmic kill
rate of the spores) at the gas flow rates of 8 and 12 m3/h and with the exposure times
of 0.2, 0.4 and 0.6 s. Figure 7a–c shows that at a temperature of 210 ◦C, the spores could
survive for an exposure time of 0.2 s, even at the highest applied H2O2 concentration of
7.7%. A reliable sterilization and complete killing of the spores in 0.2 s could be achieved at
gas temperatures of 240 ◦C and 270 ◦C with the corresponding minimum required H2O2
concentrations of 7.1 and 5.7% v/v, respectively (Figure 7a). In the case of the 8 m3/h gas
flow, longer exposure times of 0.4 and 0.6 s presented better results for the sterilization of
the spores (Figure 7b,c).

In Figure 7d–f, the results from a gas flow rate of 12 m3/h are presented. Figure 7d
indicates that even the lowest applied H2O2 concentration of 2.2% v/v and the shortest
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exposure time of 0.2 s were sufficient to sterilize all spores at all three gas temperatures
(210, 240 and 270 ◦C). Similar results were achieved for the exposure times of 0.4 and 0.6 s
(Figure 7e,f).

The microbiological experiments served as a reference method for the validation of the
sterilization. The results of these measurements were compared to the outcomes derived
from the multi-sensing platform to correlate the physical and microbiological data and
conclude the successful sterilization conditions. The correlation of these parameters is
discussed in the next section to elaborate on the qualitative model used to predict the
sterilization status.

3.5. Correlation between Process Parameters

Various parameters of the sterilization process, such as H2O2 concentration and tem-
perature, exposure time, humidity and gas flow direction, have distinct impacts on the
optimization of the sterilization conditions [19,32,36]. In this study, these critical parameters
were investigated simultaneously, in parallel with microbiological reference experiments.
Specific relationships between the individual process parameters could be identified. These
correlations enabled a (qualitative) predictive “modelling” between the parameters and
various H2O2 concentrations that were used, which are schematically presented in Figure 8.

First, and most important, was the relationship between the spore kill rate and the
H2O2 concentration, which is shown in Figure 8a,b for a H2O2 gas flow of 8 and 12 m3/h,
respectively. It was found that with a H2O2 gas flow of 8 m3/h, higher gas temperatures
(among 210, 240 and 270 ◦C) were more effective. While, at a H2O2 gas flow of 12 m3/h,
the efficient killing of B. atrophaeus DSM 675 spores under H2O2 concentrations took place,
regardless of the selected gas temperature (i.e., 210, 240 and 270 ◦C) (see also Figure 7d–f).
In addition, it was also possible to define a correlation between the spore kill rate and the
exposure time (0.2, 0.4 or 0.6 s) of the spores to the gaseous H2O2 (Figure 8c,d). For a gas
flow of 8 m3/h, a longer exposure time led to a higher kill rate, whereas for a gas flow of
12 m3/h, the optimal kill rate was achieved within the shortest exposure time of 0.2 s.

As a conclusion, when choosing the lower gas flow of 8 m3/h, higher gas temperatures
and exposure times need to be applied. When utilizing the higher H2O2 gas flow of
12 m3/h, any of the indicated gas temperatures and exposure times can be applied and
yet still obtain the efficient sterilization of the spores. One reason for this could be the
less humid atmosphere inside the sterilization chamber, as humidity decreases the efficacy
of sterilization when higher H2O2 concentrations are applied due to the condensation
effect [32,37].

The calorimetric gas sensor detected an increase in the sensor signal due to the increase
in H2O2 concentration and the exothermal decomposition of the H2O2 on the MnO2
sensor surface (Figure 8e,f). With the H2O2 gas flow of 8 m3/h, a higher signal from the
calorimetric sensor was also recorded with the increasing gas temperatures (Figure 8e).
With the increased H2O2 gas flow of 12 m3/h, the opposite sensor signal behavior was
recorded at 270 ◦C (Figure 8f). As described previously, the passive temperature element
also heated up due to the higher gas flow, which led to a reduced sensor signal. However,
this decrease in sensor signal did not negatively influence the spore sterilization, as a
successful kill rate was confirmed at 270 ◦C and with a 12 m3/h gas flow (indicated in
Figures 7d–f and 8b).

Figure 8g,h indicates a humidity increase due to the increase in H2O2 concentration
since the water content of the gaseous H2O2 increased as well, as explained previously
(see also Table 2). However, at a gas flow of 8 m3/h, the humidity decreased with the
increasing gas temperature (210, 240 and 270 ◦C). A similar situation also occurred for a
gas flow of 12 m3/h. The drier conditions in the sterilization chamber were beneficial for
achieving a valid sterilization, as the humidity in higher H2O2 concentrations could result
in condensation forming as water droplets and affecting the efficacy of the sterilization of
the spores, as discussed above [32].
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To conclude, lower humidity, which results from a higher temperature and gas flow, is
beneficial for a successful sterilization. Apart from the benefit of the lower humidity in the
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aseptic process, it is also helpful in removing the H2O2 residue from the surfaces after the
sterilization process has ended [5].

As expected, the gas flow direction remained unchanged when increasing the H2O2
concentration (Figure 8i,j). A constant flow direction was maintained as soon as a H2O2
concentration of above 4.1% v/v was applied, regardless of the gas temperature or gas flow
rate used. The uniformity of the gas flow direction is important for spore sterilization, as a
change in the direction could lead to a change in the gas temperature, H2O2 concentration
or humidity; as a result, the potency of the aseptic process would be compromised.

Generally, by using the higher gas flow rate of 12 m3/h, the gas flow direction was
more stable, which had a direct influence on the more effective sterilization of the spores.
For a gas flow of 8 m3/h, it was beneficial to apply a longer exposure time; in that way, ef-
fective conditions for achieving the highest kill rate of spores can be obtained. A qualitative
assessment of these correlations is summarized in Table 3.

Table 3. A qualitative assessment of the correlations between the sterilization process parameters.

Sterilization
of Spores

H2O2
Concentration

(% v/v)

Gas Flow
(m3/h)

Exposure Time
(s)

Gas
Temperature

(◦C)

Chamber
Humidity (%) Flow Direction

Successful 2.2–6.6 12 ≥0.2 210, 240, 270 ≤55 Constant

Successful 4.1–7.7 8 ≥0.4 210, 240, 270 ≤90 Constant

All of the above-mentioned sterilization process parameters were evaluated simultane-
ously using the presented multi-sensing platform. The sensor results were correlated with
the data from the time-consuming and laborious count reduction tests (using B. atrophaeus
DSM 675 resistant spores), which showed a high conformity. Once the results from the
microbiological tests were established, the necessary settings could be applied to the ster-
ilization chamber, which could then be continuously monitored using the multi-sensing
platform without any further repetition of the microbiological tests. For example, with
a constant flow of gaseous H2O2, the suitable corresponding temperature and exposure
time could be set and controlled online. The flow direction could be constantly evaluated
and the chamber humidity could be monitored in order to achieve all necessary conditions
and maintain them on-site for a successful sterilization process. Subsequently, this novel
multi-sensing platform is applicable in the sterilization process to monitor and control
the critical process both online and on-site and, at the same time, to avoid additional
time-consuming and costly microbiological experiments.

4. Conclusions

A novel platform for the online monitoring of food package sterilization conditions
was introduced to validate various parameters. This enabled us to control and record
variations of the most effective parameters to obtain the highest kill rate of B. atrophaeus
spores. One single board integrating multiple sensor setups was fabricated and mounted
to a test rig for the sterilization process, including the necessary measurement electronics
as well as software tools.

Calorimetric gas sensors were used because of their reliability in detecting the gas
temperature and H2O2 concentration. The SHT31-D humidity sensor assessed the relative
humidity inside the sterilization chamber and the Pt100 element arrangement was mounted
on the board as well to monitor the gas flow direction. Multiple parameters within the
sterilization process were successfully detected and measured using the fabricated multi-
sensing platform. In addition, one round of microbiological experiments was performed
under the same sterilization conditions, utilizing the resistant spores of B. atrophaeus DSM
675, in order to confirm the validity of the sterilization process. The data acquisition of this
unique setup was provided by dedicated electronics to read out and evaluate the data from
the various sensors on the board.
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This cooperation of sensor designs on one single multi-sensing platform allowed the
more specific detection of manifold input parameters in aseptic filling machines compared
to the traditional microbiological methods. The new setup is, therefore, input-related
and it avoids large time delays, which are known for output-related methods (e.g., count
reduction testing). The new multi-sensing platform provides several benefits, which
could solve the present challenges in industry: it offers online and on-site monitoring, the
problem with sample preparation could be solved and there would be no need for cell
culture testing. Consequently, the food package industry would save valuable time and
resources compared to the traditional microbiological tests. In that way, the high costs of the
maintenance and laborious work of the traditional aseptic controls in the companies would
be avoided because, as our results confirm, this platform can monitor aseptic conditions
both online and on-site. Furthermore, the new setup enables a permanent logging of the
aseptic parameters for the first time. This supports the industry’s need for continuous
monitoring and verification and high-quality assurance.
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