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Abstract: The effects of modified atmosphere packaging (MAP) with various CO2 concentrations
on the bacterial community and shelf-life of smoked chicken legs during 25 d of storage at 4 ◦C
were evaluated herein. Four treatments were stored in pallets (PAL) and MAP under 20% (M20),
60% (M60), and 100% (M100) CO2, respectively. The results indicated that the MAP treatments
provided the legs with higher redness and hardness and lower yellowness, luminance, and lipid
oxidation, compared with the PAL treatment. In addition, the MAP treatments effectively inhibited the
growth of viable bacteria, delayed bacterial spoilage, and extended the shelf-life of the samples. The
M60 and M100 treatments had a better inhibition effect on bacteria. In terms of bacterial community,
Carnobacterium, Pseudomonas, Brochothrix, and Lactococcus were the most predominant genera in the
25 d-stored MAP samples, with Carnobacterium maltaromaticum, Pseudomonas fragi, Shewanella baltica,
and Lactococcus piscium being the dominant species. However, while the inhibition effects of the M60
and M100 treatments on the bacterial community at Day 25 were similar, the outer package of the
M100 treatment collapsed. Overall, the M60 treatment may be a promising approach to improving
the quality and extending the shelf-life of smoked chicken legs.

Keywords: smoked chicken leg; modified atmosphere packaging; CO2 concentration; bacterial
community; single-molecule real-time sequencing

1. Introduction

Smoked chicken leg is a very popular ready-to-eat smoked poultry product in China.
As a smoked meat product, it is favored by consumers because of its attractive sugar-
smoked flavor and color [1]. However, while the smoking process provides the chicken
legs with a certain anti-corrosion ability, the high nutritional value and moisture content of
the smoked chicken legs are easily compromised. Moreover, such products are often sold
in pallets or unpackaged, thus facilitating the growth and reproduction of microorganisms,
which lead to the loss of quality, e.g., slime formation, compromised texture, and an off
flavor [2,3].

Modified atmosphere packaging (MAP) is a proven preservation technology for main-
taining the quality and extending the shelf-life of high-grade meat and ready-to-eat meat
products [4] and is widely used in the marketplace [5]. The most commonly used packaging
gases for cooked meat products are carbon dioxide (CO2) and nitrogen (N2), where the CO2
is used to inhibit microorganisms and the N2 is used as the filling gas. MAP with 100% N2
can slow down the oxidative deterioration of food, but it has no obvious effect on inhibiting
the growth of microorganisms [6], so N2 is generally used in combination with CO2. Studies
have demonstrated that MAP has the ability to inhibit the growth of microorganisms when
the CO2 concentration exceeds 20% [7]. However, while many studies have focused on
the presence of spoilage microorganisms in MAP-treated meat and meat products such

Foods 2022, 11, 559. https://doi.org/10.3390/foods11040559 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11040559
https://doi.org/10.3390/foods11040559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-6417-6836
https://doi.org/10.3390/foods11040559
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11040559?type=check_update&version=1


Foods 2022, 11, 559 2 of 15

as sliced cooked ham [8], raw poultry sausage [9], roasted chicken [10], and precooked
chicken breast slices [11], few of these have examined the effect of MAP on the structure
of the microbiological community in these products. Bassey et al. [12] evaluated the ef-
fects of the gas composition on the quality characteristics and bacterial diversity in MAP
fresh pork loins in chilled storage. Chen et al. [6] evaluated the effect of modified atmo-
sphere packaging on the shelf-life and bacterial community of roasted duck legs. Moreover,
second-generation sequencing technology revealed that Pseudomonas, Acinetobacter, and
Vibrio were the main spoilage bacteria in roasted chicken [13], and Pseudomonas, Weissella,
Brochothrix, Lactococcus, Acinetobacter, Psychrobacter, and Kurthia were the main spoilage
bacteria in braised chicken [14]. To the best of our knowledge, there are no reports of
applying third-generation sequencing technology to monitor the bacterial communities in
meat products with MAP.

Third-generation sequencing (also known as single-molecule real-time (SMRT) se-
quencing) is an improved method for tapping into richer strains of bacteria. It has been
shown to be more efficient and reliable than culture-dependent microbiological analy-
sis, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and
second-generation sequencing, for the monitoring of changes in food microbiology [15].
Compared with the other sequencing technologies, SMRT sequencing has four main ad-
vantages, namely: long read, high consistency, low deviation, and the ability to detect
epigenetic characteristics. In particular, long-read SMRT sequencing enables the coverage of
more repeated and missing bases and can save time by automatically eliminating gaps [16].
The SMRT sequencing technology covers both hypervariable regions V1–V9 and conserved
regions, avoids primer bias, and can accurately identify the species level, which cannot be
achieved by the second-generation sequencing [17].

In view of the above considerations, SMRT sequencing was used in the present study
to explore the bacterial community of smoked chicken legs after MAP storage for up
to 25 d at 4 ◦C under various concentrations of CO2. Meanwhile, the physicochemical
properties and quality characteristics were evaluated. The identification of an optimum
CO2 concentration is expected to provide a basis for extending the shelf-life and improving
the quality of smoked meat products via MAP, and the application of SMRT sequencing will
provide valuable information for the screening and targeted inhibition of spoilage bacteria.

2. Materials and Methods
2.1. Preparation of Smoked Chicken Legs

Chicken legs (thigh and drumstick) were used in this experiment. The fresh chicken
legs (285 ± 10 g) and additives were purchased from Carrefour (Harbin, China). First, the
fresh chicken legs were soaked in water and cleaned three times in order to remove the
surface blood. The chicken legs were marinated for 12 h at 4 ◦C, then boiled for 50 min
at 90–95 ◦C in a brine containing the following additives (g/L water): salt (50), ginger
(2.5), garlic (1.5), onion (1.5), monosodium glutamate (1.0), liqueur (5.0), and a dry spices
bag (11.5). The dry spices bag contained aniseed (2.5), pepper (2.5), orange peel (1.0), radix
angelicae (1.0), cinnamon (0.5), fructus amomi (0.5), cardamom (0.5), kaempferiae galanga
(1.5), and clove (1.5). After cooling to room temperature, the cooked chicken legs were
smoked in the sugar smoking device described previously [1]. For this process, cooked
chicken legs were placed on a stainless-steel tray with small holes. When the temperature
of the iron pot bottom reached 200–210 ◦C, 50.0 g of sucrose was placed in the bottom of the
iron pot. Then, the tray with chicken legs was placed on the pot, the lid was immediately
positioned, and the smoking was performed for 4 min. The smoked chicken legs were then
cooled to room temperature (20 ± 5 ◦C) and subjected to MAP once the color was stable.

2.2. Packaging and Storage

Four distinct packaging treatments were applied, including palletization (PAL) and
MAP under 20% (M20), 60% (M60), and 100% (M100) CO2. In the PAL treatment, each
smoked chicken leg was individually placed in a polypropylene tray (TQBC-0775, Sealed
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Air Corp., Danbury, CT, USA) and then covered with an oxygen-permeable polyethylene
film (8 µm in thickness and 18,500 cm3 m−2 per 24 h of oxygen permeability; Weiguang
Plastic Co., Ltd., Shanghai, China). In the MAP treatments, for the M20 and M60 samples,
the CO2 was mixed with N2. Each smoked chicken leg was individually placed in a
polypropylene tray (TQBC-0775, Sealed Air Corp., Danbury, CT, USA), which was then
flushed with the desired gas mixture and sealed with an oxygen-barrier film (Lid 1050,
Sealed Air Corp., Danbury, CT, USA) using a DT-6D packaging machine (Dajiang Machinery
Equipment Co., Ltd., Wenzhou, China). According to the supplier specifications, the
polypropylene trays have an oxygen transmission rate of 10 cm3 m−2 per 24 h at 23 ◦C
and 0% relative humidity (RH) and a water vapor transmission rate of 15 g m−2 per 24 h
at 38 ◦C and 90% RH, while the oxygen-barrier film has an oxygen transmission rate of
25 cm3 m−2 per 24 h at 23 ◦C and 0% RH and a water vapor transmission rate of 10 g m−2

per 24 h at 4 ◦C and 100% RH. After packaging, all legs (100 packaged and 5 unpackaged)
were stored at 4 ◦C. After 2 h, the 5 unpackaged legs were used as the Day 0 samples.
There were 105 chicken legs used for each batch production. Five of them were used at 0 d
and the other one-hundred packaged samples were used for the storage experiment. Each
treatment had 25 samples. Samples were stored for 0 d, 5 d, 10 d, 15 d, 20 d, and 25 d. For
each treatment at each storage time (5 d, 10 d, 15 d, 20 d, and 25 d), five smoked chicken
legs were used for the analysis. Therefore, in total, there were 315 chicken legs used for
3 production batches. The thighs were used to analyze the physicochemical properties, and
the drumsticks were used to evaluate the total viable counts (TVC) and for DNA extraction
and sequencing. For the physicochemical properties, first, the hardness was measured,
then the surface skin color was analyzed, and finally, the pH value, moisture content, and
lipid oxidation were determined. However, the PAL-packaged legs were spoiled after 15 d
of storage and were not examined thereafter. In addition, for bacterial community analysis,
the legs were sampled at 0 d and the MAP legs at 25 d.

2.3. Determination of the pH Value and Moisture Content

The smoked chicken sample (10.0 g) was mixed with 90.0 mL of 0.1 mol/L KCl and
homogenized at 10,000 rpm for 60 s. The pH of the mixture was then determined using a
pH meter (Mettler Toledo Instruments Co., Ltd., Shanghai, China) in accordance with the
procedure of Lv et al. [18]. In addition, the moisture content was measured according to the
Association of Official Analytical Chemists (AOAC) standard procedure [19]. Two grams
of minced chicken was evenly spread on the bottom of the aluminum dish, then dried in
an oven (101-3S air oven Lichen Science and Technology Co., Ltd., Shanghai, China) at
102 ◦C for 16 h. The moisture content was calculated as the weight of the lost moisture as a
percentage of the weight of the sample.

2.4. Determination of Lipid Oxidation

Based on the method of Chen et al. [20], the content of lipid oxidation was evaluated
according to the thiobarbituric acid reactive substance (TBARS) value:

TBARS (mg/kg) = (A532/W) × 9.48 (1)

where A532 is the absorbance of the assay solution at 532 nm, W is the weight of the
sample (g), and 9.48 is a constant derived from the dilution factor and the molar extinction
coefficient (152,000 M−1 cm−1) of the thiobarbituric acid reaction product.

2.5. Determination of Hardness

A TA-XT plus texture analyzer (Stable Micro Systems, Godalming, UK) with a Meullenet–
Owens razor shear (MORS) probe was used to determine the texture profile of the smoked
chicken legs. The hardness was determined using the textural profile analysis (TPA) mode,
with a pre-test speed of 2 mm/s, a triggering force of 20 g, and a compression distance of
10 mm [21]. The thighs with bones were placed on the center of the console and cut six
times for the hardness measurement. The values are expressed as newton (N) units.



Foods 2022, 11, 559 4 of 15

2.6. Determination of Color

The color on the skin of the chicken leg was measured using a ZE-6000 colorimeter
(Juki Corp., Tokyo, Japan) with a D65 light source and a 10◦ observer. The values were
expressed as the L*-value (lightness), a*-value (redness), and b*-value (yellowness). A white
standard plate (L* = 95.26, a* = −0.89, b* = 1.18) was used for calibration.

2.7. Determination of Total Viable Counts

According to GB 2726-2016 [22], the packages containing the smoked chicken legs
were aseptically opened, the chicken legs (minus the bones) were chopped, then 25.0 g
samples were homogenized in sterilized 0.85% NaCl (225 mL) solution, followed by a series
of dilutions with sterilized 0.85% NaCl (9.0 mL) solution. Each dilution was then inoculated
into plate count agar (PCA, Hope Bio-Tech, Qingdao, China) and incubated at 37 ± 1 ◦C
for 48 h to determine the TVC. The results are expressed as log CFU/g chicken legs.

2.8. DNA Extraction and Sequencing
2.8.1. Extraction of Bacterial DNA

The bacterial DNA was extracted from the smoked chicken legs (0.2 g) using the
cetyl trimethyl ammonium bromide/sodium dodecyl sulphate (CTAB/SDS) method [23].
The DNA purity was determined using 1% (w/v) agarose gel, and the DNA concentra-
tion was diluted to 1 ng/µL using sterile water. The DNA concentration and purity
were determined using Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA)
to ensure the OD260/280 was between 1.8 and 2.0. The cetyl trimethyl ammonium bro-
mide/sodium dodecyl sulphate and agarose gel were obtained from Solarbio Technology
Co. Ltd. (Beijing, China).

2.8.2. Amplification and Sequencing of 16S rRNA

The bacterial 16S rRNA was amplified via the polymerase chain reaction (PCR) ac-
cording to previously reported conditions and methods [23]. The V1–V9 region of the
bacterial 16S rRNA gene was amplified using the specific primers with barcodes (forward:
5′-AGAGTTTGATCCTGGCTCAG-3′; reverse: 5′-GNTACCTTGTTACGACTT-3′). The PCR
was performed using TransStart® FastPfu DNA Polymerase (TransGen Biotech, Beijing,
China) according to the following protocol: (i) initial denaturation at 98 ◦C for 5 min,
(ii) 35 cycles of denaturation at 95 ◦C for 30 s, (iii) annealing at 60 ◦C for 45 s, (iv) extension
at 72 ◦C for 9 s, and (v) extension at 72 ◦C for 10 min. The PCR products were detected
via 2% agarose gel electrophoresis and purified using a QIAquick@ gel extraction kit (QI-
AGEN, Hilden, Germany). The sequencing libraries were generated using the SMRTbell
TM Template Prep Kit (Pacific Biosciences, Menlo Park, CA, USA). The library quality was
assessed on the Qubit@ 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA)
and the FEMTO Pulse system. Lastly, the library preparation and sequencing were con-
ducted with the help of Novogene Company (Beijing, China, https://www.novogene.com/
(6 May 2021)).

2.8.3. Bioinformatics Analysis

The raw reads were filtered and analyzed using the QIIME software package (Version
1.9.1). During this process, the UCHIME algorithm (http://www.drive5.com/usearch/
manual/uchime_algo.html (20 May 2021)) was used to eliminate any ambiguous and
chimeric sequences, and the clean reads were validated by comparison with the Gold
database (http://drive5.com/uchime/uchime_download.html (23 May 2021)). The se-
quence analysis was performed using the Uparse software (Uparse v7.0.1001, http://
drive5.com/uparse/ (23 May 2021)). Sequences with ≥97% similarity were assigned
to the same operational taxonomic unit (OTU), and representative sequences were then
screened for each OTU. For each representative sequence, the Silva SSUrRNA database
(https://www.arb-silva.de/ (28 May 2021)) was used based on the Mothur algorithm for
annotating the taxonomic information. The alpha-diversity (Shannon, Simpson, abundance-
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based coverage estimator (ACE), Chao1, Good’s coverage) and beta diversity indices on
the weighted and unweighted UniFrac distances were calculated using the QIIME software
(Version 1.7.0). To assess the differences between the bacterial communities of the MAP
smoked chicken legs with various concentrations of CO2, a principal co-ordinates analysis
(PCoA) was performed on the identified OTU, and the results were displayed using the R
software (Version 2.15.3). Then, the 30 most abundant bacterial species were selected as the
core bacteria for correlation by distance-based redundancy analysis (db-RDA).

2.9. Statistical Analysis

Three independent batches (replicates) of the smoked chicken legs were prepared, and
all measurements were conducted in triplicate for each batch. The data were analyzed
via the General Linear Models procedure of the Statistix 8.1 software package (Analytical
Software, St. Paul, MN, USA), and the results are expressed as the mean ± standard error
(SE). The normality and homogeneity of variance were analyzed via the Shapiro–Wilk and
Levene procedure of the Statistix 8.1 software package (Analytical Software, St Paul, MN,
USA), p > 0.05. The significance of each treatment effect (p < 0.05) was evaluated via an
analysis of variance (ANOVA) and Tukey’s multiple comparison test, and the data were
plotted using the Origin 2019 software package (Analytical Software, Systat, Hampton,
MA, USA). In addition, the db-RDA correlation was performed and plotted using the R
software (Version 2.15.3) package.

3. Results and Discussion
3.1. pH Value and Moisture Content

The changes in the pH and moisture content of the variously packaged smoked
chicken legs during storage for up to 25 d at 4 ◦C are presented in Figure 1A,B, respectively.
For all treatments, the pH was seen to initially increase, then decrease, within the range
of 6.44 to 6.84 (Figure 1A). It is generally believed that the antibacterial effect of CO2
is mainly dependent on its dissolution in water to form H2CO3, which dissociates into
H+ and HCO3

− ions, thus reducing the pH. The observed, and contrary-to-expected,
increase in the initial pH of the various samples may be attributed to the following two
factors: (i) the anaerobic environment with a high concentration of CO2 promoted the
expression of arginine deiminase, alanine dehydrogenase, and tyrosine dehydrogenase
in microorganisms such as Carnobacterium, which catalyze the production of ammonia
and biogenic amines, thus maintaining the pH stability and weakening the antibacterial
effect of the CO2 [24]; (ii) the accumulation of ammonia from the decomposition of nucleic
bases and amino acid during the whole stages of the storage can lead to an increase in
pH [11]. During the later stages of storage, the decrease in the pH values may be related to
a significantly increased relative abundance of acid-producing microorganisms. Notably,
the highest pH values were observed on Days 5, 10, 15, and 20 for the PAL, M20, M60,
and M100 samples, respectively (p < 0.05). Thus, the increase in CO2 concentration during
packaging was seen to delay the decrease in pH. This, in turn, can potentially decrease the
rate of spoilage by inhibiting the expression of metabolic proteins in lactic acid bacteria,
thus reducing the production of lactic acid [11].

No significant change in the moisture content was observed for the PAL, M20, and
M60 samples during storage (p > 0.05), thus indicating that MAP with medium and low
concentrations of CO2 does not affect the moisture content (Figure 1B). By contrast, the
moisture content of the M100 sample was seen to significantly decrease from 65.43% on
Day 15 to 62.35% on Day 25 (p < 0.05), at which time the outer package was seen to
be seriously collapsed and deformed. This may be because some of the CO2 content
became dissolved in the fat and water [12], thus generating negative pressure and causing
the package to dent noticeably. In addition, the spoilage process is accompanied by the
reproduction of microorganisms and the oxidation of fat and protein [6], which may lead
to the quality deterioration of smoked chicken legs. Under negative pressure, the moisture
content of the smoked chicken legs could flow out and be seen in the package. Such a
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collapse and deformation of the outer package can seriously affect product sales. Indeed,
similar results were previously reported by Sun et al. [25], who observed high drip loss,
serious collapse, and a low overall acceptability of swimming crab packaged in 100% CO2.
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Figure 1. The changes in pH (A), moisture content (B), thiobarbituric acid reactive substances
(TBARS) (C), and hardness (D) of the variously packaged smoked chicken legs during storage for up to
25 d at 4 ◦C. PAL: the palletized smoked chicken legs; M20, M60, and M100: the modified atmosphere
packaged smoked chicken legs with CO2 concentrations of 20%, 60%, and 100%, respectively. The
different uppercase letters (A–D) indicate significant differences between the variously packaged
samples after the same storage time (p < 0.05), while the different lowercase letters (a–f) indicate
significant differences in the same packaged sample after different storage times (p < 0.05).

3.2. Lipid Oxidation

The changes in the content of TBARS of the variously packaged smoked chicken legs
during storage for up to 25 d at 4 ◦C are presented in Figure 1C. Here, the TBARS value of
the PAL sample was seen to increase significantly from 0.24 on Day 0 to 1.18 on Day 15,
while that of the M20, M60, and M100 samples reached 0.94, 0.88, and 0.93, respectively, on
Day 25 (p < 0.05). Thus, the TBARS value of the PAL sample was significantly higher than
that of the MAP samples during storage (p < 0.05). This may be because lipid oxidation
was promoted by the presence of O2 in the PAL treatment, but inhibited by the presence of
CO2 in the MAP treatments. Similar results were obtained by Guo et al. [7], who found
that an anaerobic environment can inhibit the lipid oxidation of roasted chicken. Moreover,
Del Olmo et al. [26] found that the combination of CO2 and N2 can minimize the oxidative
deterioration of cured/cooked pork meat products.
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3.3. Hardness

Hardness is a very important quality indicator of cooked meat products. As shown
in Figure 1D, the hardness of the fresh smoked chicken legs on Day 0 was the highest
(at 4.02 N) and decreased to 2.85 N for the PAL sample on Day 15 and to 2.63, 3.34, and
3.73 N for the M20, M60, and M100 samples, respectively, on Day 25 (p < 0.05). This
may be attributed to the deterioration of the product structure due to the reproduction
of microorganisms and oxidation of the product [27]. It can also be noted that, on day
15, the hardness of the M60 and M100 samples was higher than that of the M20 sample,
and the hardness of the M20 sample was significantly higher than that of the PAL sample
(p < 0.05). Furthermore, on Day 25, the hardness of the M60 and M100 samples was
significantly higher than that of the M20 sample (p < 0.05). These results indicate that the
MAP treatments with higher concentrations of CO2 provided better protection to the texture
of the chicken legs. Notably, the hardness of the M100 sample did not increase during
storage, even though its moisture content decreased significantly from 65.43% to 62.35%.

3.4. Color

The color of the skin is a key factor in the customers’ decision to purchase the product
and is an important indicator of freshness. The changes in the skin color of the smoked
chicken legs during storage for up to 25 d at 4 ◦C are indicated in Table 1. Here, the
yellowness (b*-value) of each sample was seen to increase from 39.22 at Day 0 to 41.74 for
the PAL sample on Day 15 and to 42.34–42.55 for the various MAP samples on Day 25
(p < 0.05). This may be due to the generation of a yellow pigment by the reaction of the lipid
oxidation products with amines in the phospholipid head groups or in the proteins [18].

Table 1. The changes in color of the variously packaged smoked chicken legs during storage at 4 ◦C.

Storage Time
Treatment

PAL M20 M60 M100

L*-value
Day 0 38.54 ± 0.96 Ab 38.54 ± 0.96 Aa 38.54 ± 0.96 Aa 38.54 ± 0.96 Aa

Day 5 40.62 ± 0.93 Aab 40.79 ± 1.08 Aa 40.45 ± 0.98 Aa 40.16 ± 1.14 Aa

Day 10 40.74 ± 0.66 Aab 40.59 ± 0.88 Aa 39.66 ± 0.91 Aa 40.36 ± 0.43 Aa

Day 15 42.06 ± 0.90 Aa 40.27 ± 0.64 Ba 40.36 ± 0.75 Ba 39.75 ± 0.27 Ba

Day 20 39.82 ± 0.75 Aa 40.59 ± 0.63 Aa 40.50 ± 0.63 Aa

Day 25 40.60 ± 0.61 Aa 39.70 ± 0.40 Aa 40.41 ± 0.91 Aa

a*-value
Day 0 18.06 ± 0.56 Aa 18.06 ± 0.56 Aa 18.06 ± 0.56 Aa 18.06 ± 0.56 Aa

Day 5 16.39 ± 0.44 Ab 16.27 ± 0.55 Ab 16.53 ± 0.51 Ab 16.20 ± 0.87 Ab

Day 10 15.63 ± 0.51 Abc 16.19 ± 0.55 Ab 16.23 ± 0.52 Ab 16.00 ± 0.74 Ab

Day 15 14.90 ± 0.62 Ac 15.88 ± 0.45 Ab 16.05 ± 0.63 Ab 15.75 ± 0.35 Ab

Day 20 15.71 ± 0.72 Ab 15.84 ± 0.41 Ab 15.55 ± 0.40 Ab

Day 25 15.39 ± 0.50 Ab 15.78 ± 0.43 Ab 15.55 ± 0.34 Ab

b*-value
Day 0 39.22 ± 0.66 Ab 39.22 ± 0.66 Ac 39.22 ± 0.66 Ac 39.22 ± 0.66 Ac

Day 5 38.82 ± 1.17 Ab 38.76 ± 0.70 Ac 38.99 ± 0.75 Ac 38.92 ± 0.53 Ac

Day 10 40.00 ± 0.51 Aab 39.41 ± 0.58 Ac 39.42 ± 0.43 Ac 39.52 ± 0.83 Ac

Day 15 41.74 ± 0.57 Aa 40.29 ± 0.53 Bbc 39.84 ± 0.41 Bbc 40.20 ± 0.57 Bbc

Day 20 41.64 ± 0.38 Aab 41.20 ± 0.46 Aab 41.55 ± 0.47 Aab

Day 25 42.55 ± 0.49 Aa 42.34 ± 0.93 Aa 42.42 ± 0.36 Aa

A,B These values indicate significant differences between the various packaging treatments after the same storage
time (p < 0.05). a–c These values indicate significant differences for the same packaging treatment after various
storage times (p < 0.05). PAL: the palletized smoked chicken legs; M20, M60, and M100: the modified atmosphere
packaged smoked chicken legs with CO2 concentration of 20%, 60%, and 100%, respectively.
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Meanwhile, the redness (a*-value) was seen to decrease from 18.06 on Day 0 to 14.9 on
Day 15 for the PAL sample and to 15.39–15.78 on Day 25 for the MAP samples (p < 0.05).
The decrease in redness may be due to the interaction between the pigment and the lipid
oxidation products [28]. Similar results were reported by Chen et al. [6], who demonstrated
that lipid oxidation can lead to the decrease of the a*-value of the skin surface of roasted
duck legs with MAP. Moreover, the MAP samples each showed a relatively stable redness
after Day 5. Similarly, Chen et al. [6] demonstrated that the a*-value of roasted duck legs
with MAP (100% N2, 30% CO2/70% N2, 50% CO2/50% N2, and 0.4% CO/30% CO2/69.6%
N2) was significantly higher than that of the air package.

Finally, the lightness (L*-value) of the PAL sample was seen to increase from 38.54
on Day 0 to 40.62 on Day 5 and to 42.06 on Day 15. The initial increase may be due to
the presence of moisture on the skin of the legs caused by the low temperature and high
humidity [10]. Meanwhile, the MAP samples each exhibited a relatively stable L*-value,
with a slight increase from 38.54 on Day 0 to 39.70–40.60 on Day 25. Notably, on Day 15,
the L*-value of the PAL sample (i.e., 42.06) was higher than that of the MAP samples
(39.75–40.36; p < 0.05), which may be due to the more intense oxidative cleavage of pigment
in the PAL sample [29], which is consistent with the changing trend of the a*-value. These
results indicate that MAP is an efficient method for maintaining the skin color of smoked
chicken and are consistent with the results of Chen et al. [6] and Guo et al. [7] for the
benefits of MAP for roasted chicken and duck.

3.5. Total Viable Counts

The changes in the TVC of the variously packaged smoked chicken leg samples during
storage for up to 25 d at 4 ◦C are presented in Figure 2. For the PAL sample, the TVC was
seen to increase significantly from 2.24 log CFU/g on Day 0 to 6.99 log CFU/g on Day 15,
at which time, the storage was terminated due to evident spoilage. Even on Day 10, the
TVC of the PAL sample (i.e., 5.94 log CFU/g) was significantly higher than that of the MAP
samples (3.21–4.05 log CFU/g; p < 0.05). Thereafter, the TVC values of the M20, M60, and
M100 samples continued to increase up to 7.13 log CFU/g, 6.00 log CFU/g, and 5.87 log
CFU/g, respectively, on Day 25 (p < 0.05). These results indicate that MAP provides a better
inhibitory effect on bacterial growth and that this effect increases with the increase in CO2
concentration. According to GB 2726-2016 [22], the safety limit value of TVC is ≤5 log
CFU/g for cooked meat products. During storage, the TVC values of the PAL, M20, M60,
and M100 samples were more than 5 log CFU/g on Days 10, 15, 20, and 25, respectively.
Except for the PAL sample on Day 15, the TBARS values of all the samples were lower
than 1.0 mg MDA/kg (a threshold value for perceiving undesirable rancid flavor and
odor) during storage (Figure 1C), indicating that such a degree of lipid oxidation has no
negative effect on the sensory quality of the products [21]. The hardness of the PAL samples
decreased obviously on Day 10, which may be due to the breakdown of the muscle tissue
structure caused by microbial growth. In addition, the changes in the moisture content,
pH, and color of all samples during storage were within an acceptable range. Although
the M100 samples had the lowest TVC and least quality deterioration during storage, the
serious collapse of the outer packaging induced by the high CO2 concentration may cause a
decrease in the acceptability of the product. In general, the shelf-life of products is affected
by many factors, and the shelf-life of the MAP samples was significantly longer than that
of the PAL samples. The shelf-life of the MAP treatments in this study was shorter than
that reported by Guo et al. [7], which may be due to the higher initial TVC level and the
different cooking methods.
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Figure 2. The changes in the total viable counts of the variously packaged smoked chicken legs
during storage for up to 25 d at 4 ◦C. PAL: the palletized smoked chicken legs; M20, M60, and M100:
the modified atmosphere packaged smoked chicken legs with CO2 concentration of 20%, 60%, and
100%, respectively. The different uppercase letters (A–D) indicate significant differences between
the variously packaged samples after the same storage time (p < 0.05), while the different lowercase
letters (a–f) indicate significant differences in the same packaged sample after different storage times
(p < 0.05).

3.6. Bacterial Community Diversity Analysis
3.6.1. Bacterial Diversity and Richness

The bacterial diversities of the variously packaged smoked chicken legs after 25 d
of storage at 4 ◦C are indicated in Table 2. For comparison, the bacterial diversity of a
control sample (the fresh, unpacked chicken legs on Day 0) is also indicated. Here, the
number of high-quality clean reads obtained for each sample ranged from 7207 to 9584,
with an average of 8682.5. The richness (ACE and Chao1) indices and observed operational
taxonomic units (OTUs) of the control sample were higher than those of the variously
packaged samples at Day 25. Furthermore, the diversity (Shannon and Simpson) indices
of the M20 sample were lower than those of the M60 and M100 samples. Finally, the
Good’s coverage was above 99.3% for all samples, thus indicating that most of the bacterial
phylotypes were detected.

Table 2. Number of total reads, observed operational taxonomic units (OTUs), diversity indices
(Shannon and Simpson), and diversity richness (Chao1 and ACE) for the 16S rRNA amplicons of the
control sample (fresh smoked chicken legs, Day 0) and the variously packaged samples at Day 25.

Storage
Time Treatment Total

Reads
Observed

OTUs Shannon Simpson Chao1 ACE Good’s
Coverage

Day 0 Control 7207 133 3.44 0.68 138.46 140.09 0.996

Day 25
M20 8744 74 1.89 0.45 86.83 96.99 0.994
M60 9195 91 3.84 0.85 91.03 91.76 0.999

M100 9584 75 3.70 0.86 82.09 84.64 0.996

M20, M60, and M100: the modified atmosphere packaged smoked chicken legs with CO2 concentration of 20%,
60%, and 100%, respectively.



Foods 2022, 11, 559 10 of 15

3.6.2. Bacterial Community

The SMRT sequencing analyzed the bacterial community in the smoked chicken legs
well and realized the species-level identification. Moreover, such an extended read length
enabled higher confidence in the phylogenetic classifications and offered additional OTU
for clusterin improvement, effectively reducing the underestimation or overestimation of
the taxonomic diversity occasionally caused by second-generation sequencing [17]. The
relative bacterial abundances in the smoked chicken leg samples at Day 0 and Day 25 are
presented at the phylum, genus, and species levels, along with a principal co-ordinates
analysis, in Figure 3. Here, a total of 12 phyla were identified in the sequencing analysis
(Figure 3A), with Firmicutes and Proteobacteria predominating at the beginning and end of
storage. This is comparable to the results obtained by Zhang et al. [30] for cooked meat.
In the present study, the relative abundance of Proteobacteria (81.71%) was higher than
that of Firmicutes (9.46%) in the fresh smoked chicken legs (control, Day 0), followed by
Acidobacteria (3.14%) and Actinobacteria (2.21%). By contrast, the relative abundance of
Firmicutes dramatically increased in the MAP samples on Day 25, when the relative abun-
dance of Firmicutes was 88.14%, 63.33%, and 50.01% in the M20, M60, and M100 samples,
respectively. Conversely, the relative abundance of Proteobacteria was seen to decrease to
10.23%, 34.81%, and 46.54% in the M20, M60, and M100 samples, respectively. Thus, the
relative abundance of Firmicutes was negatively correlated with the concentration of CO2
in the packaging treatment, whereas the relative abundance of Proteobacteria was positively
correlated with the concentration of CO2. In other words, these results demonstrate that
an increased CO2 concentration can inhibit Firmicutes and promote Proteobacteria. Similar
trends in Firmicutes and Proteobacteria were previously observed by Chen et al. [6] in fresh
roasted duck meat and in MAP roasted duck meat with various CO2 concentrations, after
storage for 7 d and 14 d.
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Figure 3. The relative bacterial abundances at (A) the phylum level, (B) the genus level, and (C) the
species level for the control sample (fresh smoked chicken legs, Day 0) and the variously packaged
samples at Day 25 and (D) the corresponding principal co-ordinates analysis. M20, M60, and M100:
the modified atmosphere packaged smoked chicken legs with CO2 concentration of 20%, 60%, and
100%, respectively.
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At the genus level, 103 genera were identified, with Carnobacterium, Methylobacterium,
Pseudomonas, Brochothrix, Shewanella, and Lactococcus being the most prevalent in all samples
(Figure 3B). In the fresh smoked chicken legs, Methylobacterium was the predominant genus
(55.59%), followed by Klebsiella (6.98%), and Psychrobacter (6.57%). Methylobacterium is
ubiquitous in nature and exists in various environments (such as soil, dust, fresh water, and
laboratory environment) [31]. Klebsiella is a conditional pathogen that can cause pneumonia
and widely exists in chickens, sheep, pigs, and other animals [32]. Psychrobacter is an
aerobic bacterium that can grow readily under chilled conditions and has been identified
as the main genus in roasted chicken that has been packaged in air [13].

For the three MAP treatments, significant differences were observed in the bacte-
rial community at the genus level on Day 25, thus revealing the influence of the atmo-
spheric composition used in the MAP. Overall, Carnobacterium, Pseudomonas, Brochothrix,
Shewanella, and Lactococcus were the predominant genera. This is consistent with other
recent studies, where the predominance of Lactobacillus, Brochothrix, Pseudomonas, and
Carnobacterium has been associated with the spoilage of MAP meats [16,33]. In detail,
the main genera in the M20 sample on Day 25 were Carnobacterium (74.15%), Brochothrix
(5.85%), Pseudomonas (4.86%), and Lactococcus (4.28%), while the main genera in the M60
sample were Carnobacterium (32.28%) and Shewanella (15.59%), followed by Lactococcus
(10.48%), Vagococcus (6.01%), Lactobacillus (5.91%), Pseudomonas (5.16%), and Brochothrix
(3.70%). Further, relatively high abundances of 27.01%, 20.19%, 11.37%, and 8.63% were
observed for Pseudomonas, Brochothrix, Lactococcus, and Carnobacterium, respectively, in the
M100 sample on Day 25.

The results in Figure 3B reveal that the relative abundance of Carnobacterium was
negatively correlated with the concentration of CO2 in the packaging treatment, thus
indicating that CO2 has a significant inhibitory effect on Carnobacterium. This is consistent
with the results of Zhang et al. [30], who reported that Carnobacterium was the dominant
genus on chilled beef primal cuts collected from three Canadian abattoirs at the end of
storage. However, while the growth of Carnobacterium has a minor impact on the sensory
properties of meat and meat products, the presence of Brochothrix can produce an off odor
and slime [34].

In the present study, the abundance of Pseudomonas and Lactococcus was positively
correlated with the CO2 concentration in the packaging treatment. This result was unex-
pected for Pseudomonas because it is sensitive to CO2; nevertheless, Chen et al. [6] also
identified high levels of Pseudomonas in roasted chicken that were stored in MAP under
a high concentration of CO2 (50%), thus indicating incomplete inhibition of this genus.
Previous studies have also identified Lactococcus as a dominant bacterium and a cause of
reduced shelf-life in various MAP meat products, including chicken, pork, and beef [35].

In Figure 3B, the 25 d-stored M100 samples exhibited the highest abundance of
Brochothrix out of all the MAP samples. As a facultatively anaerobic bacterium, Brochothrix
is commonly found at high levels in meat and meat products under various packaging
conditions and is the dominant spoilage species in roasted duck meat [6]. Meanwhile,
the 25 d-stored M60 sample exhibited the highest abundance of Shewanella. This is a
group of Gram-negative, facultative anaerobic, H2S-producing rod-shaped bacteria that are
responsible for spoilage by producing a “fishy” off odor [36].

At the species level, a total of 62 species were identified in all the samples, with
Pseudomonas fragi, Shewanella baltica, Lactococcus piscium, Klebsiella pneumoniae, and
Lactobacillus sakei predominating (Figure 3C). In the fresh smoked chicken legs, K. pneumoniae
is the predominant species (6.98%), followed by Lactobacillus plantarum (2.48%), and
Alcaligenes faecalis (1.30%). In the 25 d-stored M20 sample, however, the main species
were P. fragi (4.74%), L. piscium (4.11%), and Enterococcus faecium (1.68%). For the M60
sample, S. baltica (15.59%) and L. piscium (10.32%) were the main species at the end of
storage, followed by L. sakei (5.43%), P. fragi (5.16%), and Serratia proteamaculans (1.38%).
Finally, for the M100 sample, the predominant species were P. fragi (26.62%), L. piscium
(11.31%), Weissella ghanensis (5.41%), S. baltica (4.99%), and Photobacterium phosphoreum
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(4.99%). These results reveal an increase in the relative abundances of P. fragi and L. piscium
with increased CO2 concentration in the MAP treatments. Among the psychrotrophic
spoilage Pseudomonas species, P. fragi is the most frequently encountered on meats such
as beef, chicken, pork, and lamb [37]. Although CO2 increases the permeability of the
P. fragi cell membrane and may alter the ability of the cell to absorb ions by inhibiting
the expression of certain transporters, it does not destroy the cell integrity [38]. P. fragi
readily forms a surface biofilm that can combine with the meat exudate to generate slime,
which is a key quality defect that can influence consumer acceptability [39]. In addi-
tion, P. fragi can promote the release of amines and increase the pH [40]. Meanwhile, the
growth of L. piscium can lead to meat spoilage and decreased shelf-life [35]. In addition,
S. baltica is a major spoilage bacterium in seafood and produces volatile compounds with
a spoilage smell [41]. By contrast, L. sakei and L. plantarum can produce lactic acid, hy-
drogen peroxide, bacteriocin, and other bacteriostatic metabolites in the later stages of
low-oxygen MAP storage, thus inhibiting the growth of other bacteria and prolonging
the shelf-life [42]. Notably, just as Carnobacterium exhibited the highest abundance at the
genus level, Carnobacterium divergens and Carnobacterium maltaromaticum were identified at
the species level. These two species can maintain their homeostasis and structural stability
by regulating their protein expression and metabolic activities so as to adapt to conditions
of 20–40% CO2 [24,43]. Furthermore, they can promote the expression of arginine deimi-
nase, alanine dehydrogenase, and tyrosine dehydrogenase and can catalyze the production
of alkaline products such as ammonia and biogenic amines to maintain the stability of
their internal environment. Moreover, C. maltaromaticum also promotes the expression of
acetyl-CoA carboxylase, S-malonyl transferase, and 3-keto acyl ACP reductase related to
fatty acid synthesis of the cell membrane and regulates the fluidity of the cell membrane in
order to maintain its structural stability in conditions of 20–40% CO2 [24].

3.6.3. Differences in the Bacterial Composition

The results of the PCoA analysis are presented in Figure 3D; two principal components
(labelled PC1 and PC2) accounted for 96.34% of the total variance. Further, the 25 d-
stored M20, M60, and M100 samples exhibited relatively similar PC1 values that differed
significantly from that of the fresh smoked chicken leg sample on Day 0. Moreover, the PC1
value of the M60 sample was much more similar to that of the M100 sample than to the
M20 sample, thus indicating similar bacterial communities in the M60 and M100 samples
in the later stages of storage. It seems that the MAP with various concentrations of CO2
would significantly influence the bacterial communities [6].

3.7. The Correlations between Bacterial Community and Environmental Indicators

The CO2 concentration and pH are important environmental indicators that affect
bacterial communities. Hence, the db-RDA correlations between the 30 most dominant
bacteria and the environmental factors (CO2 and pH) of the variously packaged smoked
chicken legs are presented in Figure 4. Here, the relative abundance of each bacterium
(B1–B30) is indicated by its distance from the origin, and the correlation between the
bacterial abundance and each environmental factor is indicated by the relative orientation
of the point representing the bacterium with respect to the arrowed line representing the
specific environmental indicator. Thus, P. fragi, S. baltica, L. piscium, W. ghanensis, and
P. phosphoreum (B1, B2, B3, B6, and B7, respectively) were significantly positively correlated
with CO2 and pH (appearing in the same quadrant of the plot), thereby indicating that these
strains can survive in high concentrations of CO2 [6,13]. Furthermore, the point B1 was
closest to the red pentagon representing the M100 treatment, thereby indicating that P. fragi
was the most abundant species in the M100 sample on Day 25. In addition, the closeness
of points B2 and B3 to the blue quadrangle representing the M60 treatment indicates that
S. baltica (B2) and L. piscium (B3) were abundant in the M60 treatment on Day 25. These
results are consistent with the above-mentioned relative abundance analysis and with the
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OTU-based PCoA, thus confirming that similar bacterial communities developed in the
chicken legs stored under 60% CO2 (M60) and 100% CO2 (M100).
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Figure 4. A distance-based redundancy analysis (db-RDA) of the correlations between the 30 most
dominant bacteria and the environmental factors (pH and CO2 concentration) for the control sample
(fresh smoked chicken legs, Day 0) and the variously packaged samples at Day 25. M20, M60, and
M100: the modified atmosphere packaged smoked chicken legs with CO2 concentration of 20%, 60%,
and 100%, respectively.

4. Conclusions

The present study examined the effects of MAP under various CO2 concentrations
on the bacterial community and shelf-life of smoked chicken legs. The MAP treatments
provided better color, hardness, and pH stability during storage, along with lower lipid
oxidation and total viable counts, than did the PAL treatment. In addition, the MAP
treatment effectively delayed the onset of bacterial spoilage and extended the shelf-life
of the smoked chicken legs. The MAP treatments with 60% and 100% CO2 had similar
inhibitory effects on the bacterial community and similar effects on the total viable counts
after storage at 4 ◦C for 25 d. However, the MAP treatment with 100% CO2 resulted in
severe denting of the package and a decreased moisture content of the smoked chicken
legs at the later stages of storage. In conclusion, the MAP treatment with 60% CO2 is
recommended as a promising packaging method for improving the quality of smoked
chicken legs.
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