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Abstract: Steak tartare is a raw, ready-to-eat meal popular in European countries, the safety of which
is often discussed due to the risk of foodborne illness. The aim of this study was to determine
the prevalence of Listeria monocytogenes in vacuum-packed steak tartare from retailers in the Czech
Republic, characterize the strains obtained by typing methods and to evaluate the efficacy of ListexTM

P100 against L. monocytogenes artificially inoculated into steak tartare samples. The prevalence of L.
monocytogenes was 55% and 17 isolates belonging mostly to serotype 1/2a were obtained. Altogether
11 sequence types and 11 clonal complexes were assigned based on the whole genome sequencing
(WGS) signifying the high diversity of L. monocytogenes isolates obtained. Core genome multi-locus
sequence typing (cgMLST) did not confirm an epidemiological connection with human cases of
listeriosis. The efficacy of ListexTM P100 treatment at concentrations of 108 and 109 PFU/g on
artificially inoculated beef steak tartare samples was not efficient. Based on the results of this study,
steak tartare from retailers can be considered as a source of L. monocytogenes that remains a challenge
to the food industry.
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1. Introduction

Steak tartare is a ready-to-eat (RTE) meal popular in the Czech Republic as well as in
other European countries. It is traditionally prepared from raw minced beef usually served
with numerous ingredients such as raw egg yolk, a selection of sauces, vegetables, and
spices. The fact that this meal is served raw poses a potential risk to consumers due to the
growth of bacteria to unacceptable levels and, therefore, a potential source of food-borne
infections such as listeriosis, salmonellosis, and campylobacteriosis [1].

Listeria monocytogenes is a ubiquitous, Gram-positive bacterium and important food-
borne pathogen causing listeriosis, an infectious disease of humans and different animal
species. It may cause slight flu-like symptoms in healthy people, however, listeriosis can
generate severe symptoms such as gastroenteritis, meningitis, abortions, and neonatal
infections in immunocompromised individuals [2]. Although the incidence of listeriosis is
low in the general population, the high death rate associated with the illness makes it a
significant public health problem [3]. The overall fatality rate for listeriosis in the European
Union (EU) was 17.6% in 2019 and increased compared to 2017 and 2018 (15.6% and 13.6%,
respectively). This makes listeriosis one of the most serious food-borne diseases under EU
surveillance [4].

The vast majority of human cases of listeriosis are caused by the consumption of
RTE products contaminated with L. monocytogenes and the outbreaks have been mostly
associated with RTE foods of animal origin such as meat products, seafood, and dairy
products [5]. L. monocytogenes is able to survive various stress conditions, which allows
it to colonize many different environments as well as to persist over months or years on
technological equipment in meat processing plants, which increases the risk of product
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contamination [6]. Raw meat as well as RTE meat products can be considered as an
important source of L. monocytogenes [7–9]. Raw meat fulfills the conditions required for the
growth and multiplication of L. monocytogenes and can be a source of cross-contamination
of clean areas and equipment in food production and thus contaminates RTE food. Meat-
processing facilities use cold storage (4 ◦C) to reduce the proliferation of bacteria on
meat. Although this process is effective against many bacteria, it supports the growth
of L. monocytogenes as this bacterium has the ability to survive at low temperature [2].
Additionally, it has been reported that L. monocytogenes can grow in vacuum packages as
well as in modified atmosphere packages which extend the shelf-life of foods, giving the
opportunity for L. monocytogenes to multiply to high numbers towards the end of shelf-life,
especially if the recommended temperature during storage is not maintained [10].

Although raw meat is usually sufficiently heat-treated before consumption, which
should eliminate L. monocytogenes, we can also encounter the consumption of insufficiently
heat-treated meat, for example steaks, roast beef, or steak tartare. According to the European
legislation (Reg. EC 2073/2005) [11], steak tartare must comply with the limit of 100 CFU/g
throughout the whole shelf-life, but this criterion can only be applied if the food business
operator is able to demonstrate, to the satisfaction of the competent authority, that the
product will not exceed this limit until the expiry date. Other countries (i.e., USA) apply
a zero-tolerance policy and require the complete absence of L. monocytogenes in 25 g of
foodstuff. This restrictive policy implies the need for improving hygiene procedures to
prevent contamination from this common bacterial agent [12].

A promising approach to prevent or decrease the occurrence and persistence of L.
monocytogenes is the use of a bacteriophage. A phage that is commonly used to combat
L. monocytogenes is P100 [13]. This phage was originally isolated from the wastewater of
a dairy plant and is not considered to pose a risk to human health because of the lack of
toxicity in rats and because it is strictly lytic to bacteria while being unable to transduce
bacterial DNA. It is commercially available as ListexTM P100 [14].

The aim of this study was (i) to determine the prevalence of L. monocytogenes in samples
of vacuum-packed steak tartare from retailers in the Czech Republic, (ii) to characterize
the strains obtained, and (iii) to perform a model experiment determining the efficacy of
ListexTM P100 against L. monocytogenes artificially inoculated into steak tartare samples.

2. Materials and Methods
2.1. Prevalence and Characteristics of L. monocytogenes from Steak Tartare Samples

Sample collection: A total of 20 samples of vacuum-packed beef steak tartare from
two producers in the Czech Republic (n = 9) and two producers in Poland (n = 11) were
obtained in the period 2017–2020 from Czech retailers. All samples were maintained at a
temperature not exceeding 4 ◦C during transport and storage and were analyzed at the
end of the expiry date. The samples of steak tartare were purchased according to current
availability to retail customers.

Isolation of L. monocytogenes: Enumeration of L. monocytogenes in the samples was
carried out according to the International Organization for Standardization (ISO) methods
EN ISO 11290–2:2017. Culture method of L. monocytogenes was performed according to
EN ISO 11290–1:2017 [15]. Briefly, 25 g of each sample was aseptically weighed and
homogenized with 225 mL of half-Fraser broth (Oxoid Ltd., Basingstoke, United Kingdom)
and incubated at 30 ◦C/24 h for primary enrichment. Thereafter, 0.1 mL of the culture
obtained was inoculated into 10 mL of Fraser broth (Oxoid Ltd., Basingstoke, United
Kingdom) and incubated for 24 h at 37 ◦C. After the enrichment, COMPASS Listeria Agar
(BIOKAR Diagnostics, Allonne, France) and Rapid´L.mono (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA) were used for selective plating. After incubation for 48 h at 37 ◦C the
colonies of L. monocytogenes were confirmed based on morphological properties.

Serotyping: The strains obtained were serotyped by multiplex polymerase chain reac-
tion (PCR) according to Doumith et al. [16] in combination with rapid slide agglutination
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using commercially available antisera (Denka Seiken Co. Ltd., Tokyo, Japan) according to
the manufacturer’s instructions.

Whole genome sequencing: Genomic DNA was extracted using the Blood and Tissue
kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany). Preparation of
DNA libraries by Nextera XT DNA Library Preparation Kit (Illumina, Inc., San Diego, CA,
USA) and sequencing on the Illumina platform were carried out externally using Illumina
NextSeq sequencers (LGC Genomics GmbH, Berlin, Germany).

Genome assembly and core genome multi-locus sequence typing (cgMLST): Genome
assembly, cgMLST, and data analysis was performed by using Ridom SeqSphere+ software
(version 7.2.0; Ridom GmbH, Münster, Germany). The resulting FASTQ files were first
quality trimmed and then de novo assembled using Velvet assembler integrated into Ridom
SeqSphere+ software. Isolates were compared in seven MLST and 1701 cgMLST targets [17].
To compare the relationship between isolates from steak tartare and human isolates using
cgMLST, the sequences of human isolates of the same sequence types (ST) were selected
from the Veterinary Research Institute collection from the period 2017–2021.

2.2. Model Experiment Using ListexTM P100

Sensitivity testing of L. monocytogenes strains to ListexTM P100: The ListexTM P100
stock solution (Micreos Food Safety, Wageningen, Netherlands) at a concentration of
1011 PFU/mL was used. Serial dilutions from 1011 to 105 PFU/mL were used to assess
susceptibility of a total 58 L. monocytogenes strains (data not shown). Based on the results,
isolates showing the highest level of sensitivity (LV1242) and resistance (LV830) to ListexTM

P100 were selected for further analysis.
Efficacy of ListexTM P100 on reduction of L. monocytogenes: The efficacy of ListexTM

P100 against L. monocytogenes was tested in two independent experiments with two concen-
trations of ListexTM P100 bacteriophage. In each experiment, 24 samples of steak tartare,
10 grams each were prepared. Half of the samples (n = 12) were artificially inoculated
with a sensitive isolate of L. monocytogenes LV1242, and the remaining half of the samples
were inoculated with a resistant isolate of L. monocytogenes LV830 to a final concentration
of 103 CFU/g. Samples were divided and subsequently, ListexTM P100 was added to six
samples inoculated with the LV1242 sensitive strain and/or LV830 resistant strain. The
remaining samples without ListexTM P100 controlled for the growth potential of L. monocy-
togenes in steak tartare samples. In the first experiment, 10 µL ListexTM P100 was added
to achieve a final concentration of 108 PFU/g. In the second experiment, 100 µL ListexTM

P100 was added to achieve a final concentration of 109 PFU/g. The samples were kept
at 4 ◦C. Immediately after inoculation and 1, 5, 24, 48, and 72 h after inoculation, 90 mL
peptone water was added to 10 g of steak tartare, then homogenized and the counts of L.
monocytogenes were established, as described above. Simultaneously, experiments with the
same arrangements were performed in TSB (Tryptone Soya Broth, Oxoid Ltd., Basingstoke,
United Kingdom) for comparison.

3. Results and Discussion
3.1. Prevalence and Characteristics of L. monocytogenes from Steak Tartare Samples

A total of 20 samples of vacuum-packed beef steak tartare from four producers (Czech
Republic and Poland) were analyzed. L. monocytogenes was detected in 11 samples out
of 20 from all tested producers, which indicates a prevalence of 55%. Altogether, 17 L.
monocytogenes isolates were obtained since more than one isolate of L. monocytogenes was
detected in five samples of steak tartare based on the results of molecular typing. The
prevalence of L. monocytogenes reported in raw meat products is often higher than that of
RTE meat products [2,18,19]. Due to the fact that steak tartare is raw minced beef meat and
RTE food at the same time, the prevalence of both commodities was compared. In previous
studies, L. monocytogenes was found in raw minced beef with a prevalence from 7.2% to
52% [18–20]. According to European Food Safety Authority (EFSA) and European Centre for
Disease Prevention and Control (ECDC), 26 member states (MS) of the European Union (EU)
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and three non-MS reported data from RTE meat products over the 2016–2019 period with
the overall prevalence of L. monocytogenes at 2.9% (1634 positives out of 56,070). Specifically,
RTE products from beef meat analyzed in 2019 were positive for L. monocytogenes in 2.8% of
the 2038 units tested in the EU [4]. L. monocytogenes prevalence found in our study showed
higher contamination percentages compared to the EU prevalence in RTE meat product as
well as in raw minced beef meat. However, enumeration of L. monocytogenes in steak tartare
resulted in no product exceeding the limit of 100 CFU/g at the end of shelf-life and was in
compliance with the EU food safety criterion. In comparison, 0.65% out of 2295 RTE meat
product tested samples from 12 MS of the EU in 2019 were found to exceed the criterion of
100 CFU/g [4]. For a healthy human population, food products with levels below the limit
of 100 CFU/g limit are considered to pose a very low or negligible risk [10]. Nevertheless,
even a product with a low-level of L. monocytogenes contamination could represent a risk of
severe illness for immunocompromised individuals [21].

Molecular serotyping performed by PCR in combination with rapid slide agglutination
revealed that the majority of isolates obtained from steak tartare samples belonged to 1/2a
serotype (12/17; 71%), followed by 1/2b (2/17; 12%), 1/2c (2/17; 12%), and 4b (1/17;
6%). In one sample of steak tartare from a Czech producer, isolates belonging to three
different serotypes (4b, 1/2b, 1/2c) were confirmed. The dominance of serotype 1/2a
in RTE meat products and raw meat was reported also in previous studies [22,23]. For
example, in Estonia, 51% and 47% of strains belonged to serotype 1/2a originating from
RTE meat products and raw meat, respectively [24]. Several studies showed that most
human listeriosis outbreaks have been associated with L. monocytogenes serotype 4b. The
largest documented outbreak of listeriosis in South Africa occurred between 2017 and 2018
and was associated with the consumption of polony, which is a RTE meat product, and
was of L. monocytogenes of serotype 4b [2]. However, serotype 1/2a was the most frequent
serotype associated with human cases of listeriosis in the Czech Republic between 2013
and 2020 [25].

Using whole genome data, isolates were assigned to 11 sequence types and 11 clonal
complexes (Figure 1) suggesting a high variability of isolates. Sequence types ST29 (CC29,
n = 3), ST37 (CC37, n = 3), and ST451 (CC11, n = 2; CC451, n = 1) were found to be the most
frequent. The appearance of ST29, ST37, and ST451 was recently described in connection
with cattle abortion cases in Latvia during 2013–2018 as well as in a study on the genetic
diversity of L. monocytogenes from dairy production in the United States [26,27]. This may
suggest that these particular STs are often associated with cattle. In the Czech Republic,
ST451 has also been described in association with rabbit meat, with all isolates obtained
in 2013–2016 belonging to serotype 1/2a ST451, which may indicate the presence of a
potentially persistent strain in a rabbit meat processing plant [28]. The ability to persist has
been described especially in L. monocytogenes ST121 strains [29]. Only one isolate of ST121
was detected in our study. Since 2017, 19 cases of listeriosis in the Czech Republic have been
caused by strains of L. monocytogenes belonging to the same STs (ST451, ST37, ST29, ST87,
ST9, ST121) as those identified for isolates from steak tartare samples [25]. Therefore, the
genomes of human and steak tartare isolates were compared based on cgMLST (Figure 2).

Core genome MLST analysis revealed only one cluster with between-isolate distance
less than 10 alleles, which is a standard cutoff for L. monocytogenes cgMLST-based epidemi-
ological analysis. Two isolates of L. monocytogenes ST29 from two different batches of steak
tartare samples from one producer differed in only two alleles. These two samples were
produced one year apart, which may indicate a potential persistent strain in the production
plant environment or reintroduction of a strain, e.g., from raw beef meat from the same sup-
plier. As can be seen in the MST, most of the strains originating from steak tartare samples
and human cases of listeriosis were not closely related to each other (>10 alleles). However,
in the ST451 group, the allelic difference between isolates originating from steak tartare and
humans closely exceed the above-mentioned limit of 10 alleles. This may indicate a high
genetic relatedness in ST451 strains, but it cannot be considered as a source of infection
in this case. In this study, we demonstrated a relatively high diversity of L. monocytogenes
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isolates obtained from packed steak tartare from retailers and these isolates do not appear
to be epidemiologically connected with human isolates.
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3.2. Model Experiment Using ListexTM P100

The use of biological solutions such as ListexTM P100 appears to be a promising choice
to further reduce the load of undesirable bacteria including L. monocytogenes in food prod-
ucts. Therefore, we were interested in the efficacy of ListexTM P100 treatment against L.
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monocytogenes in beef steak tartare samples during storage at 4 ◦C. L. monocytogenes sensitive
isolate LV1242 and resistant isolate LV830 were artificially inoculated at initial concentra-
tions of 103 CFU/g into steak tartare samples and to TSB medium. Two concentrations of
ListexTM P100 were used for evaluation. In parallel, the samples without ListexTM P100
addition served as a positive control for LV1242 and LV830 survival/growth in the samples.

In steak tartare, ListexTM P100 at 108 PFU/g was not effective against sensitive isolate
LV1242 and resistant isolate LV830 at all (Figure 3A). By using 109 PFU/g, a slight reduction
in counts of LV1242 sensitive isolate was observed after 1 h of treatment, however, this
reduction did not affect the total counts of LV1242 at the end of the experiment. No effect
after application of 109 PFU/g was seen on numbers of LV830 resistant isolate. Compared
to the control, TSB medium (Figure 3B), the complete reduction of L. monocytogenes sensitive
isolate LV1242 was achieved immediately at the time of application by both concentrations
of ListexTM P100. One logarithmic order reduction of LV830 resistant isolate was observed
after 24 h by using 108 PFU/mL. However, at the end of the experiment, the numbers of
LV830 almost reached the level at inoculation. By using 109 PFU/mL of ListexTM P100, a
complete removal of LV830 isolate was achieved after 24 h.
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The effectiveness of ListexTM P100 against L. monocytogenes in different RTE products
such as raw salmon fillets, channel catfish fillets, or surface-ripened soft cheese were already
described [13,30,31] and subsequently in 2016, the use of ListexTM P100 was approved by
EFSA [14]. According to EFSA, treatment with ListexTM P100 should only be considered
as an additional tool following the application of Good Hygienic Practices (GHP) and
Good Manufacturing Practices (GMP). Although ListexTM P100 is unable to completely
eliminate L. monocytogenes present in a product at levels 100–10,000 CFU/g, it is expected
to prevent bacterial counts from exceeding the legislative limit of 100 CFU/g [14]. Even
though we were aware of this limitation, the inoculation levels of L. monocytogenes in
model experiments were 1,000 CFU/g because lower levels of L. monocytogenes would be
difficult to determine exactly. However, in control medium such a level of bacteria was
evaluated to be eradicable. The study by EFSA also indicated that a proportion of naturally
occurring L. monocytogenes strains exhibited resistance to bacteriophage P100. According to
our preliminary results, resistant strains exist and, as has been seen, their elimination (in a
suitable medium) requires more time and a higher concentration of phage.

As a method of application, surface treatment by spraying or dipping the RTE food
into the bacteriophage solution is recommended [14]. The efficacy of ListexTM P100 in
steak tartare samples was insufficient in our model experiment. This could be explained
by several factors, such as by the fact that bacterial contamination of steak tartare from
minced meat can occur throughout the product, not just on its surface and thus can be
less accessible for sufficient eradication. Furthermore, the possible influence of various
ingredients used in the product must be taken into account. Therefore, it is obvious that L.
monocytogenes remains a challenge to food safety of this particular item.

4. Conclusions

Although the number of L. monocytogenes in the steak tartare samples complied with
the EU food safety criterion, steak tartare at the retail level can be considered as a source of
Listeria monocytogenes and should be approached with caution. This study showed rather
high diversity of L. monocytogenes isolated from packed steak tartare from retailers and did
not confirm the epidemiological connection with human cases of listeriosis in the Czech
Republic. Based on our results, ListexTM P100 does not appear to be suitable for preventing
bacterial contamination of L. monocytogenes strains in steak tartare.
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