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Abstract: The present study aims to investigate the structural and functional properties of oxidated
walnut protein isolates (WPI) by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). The oxi-
dation degree, changes in structural characteristics, processing properties, and protein modifications
of WPI were measured. The results showed that oxidation significantly induced structural changes,
mainly reflected by the increasing carbonyl content, and decreasing sulfhydryl and free amino groups.
Moreover, the secondary structure of WPI was altered in response to oxidation, and large aggregates
formed through disulfide cross-linking and hydrophobic interactions. Almost all the property indica-
tors were significantly decreased by oxidation except the foaming property and water/oil holding
capacity. Mass spectrometry analysis showed that 16 different modifications occurred in amino acid
side chains, and most of the protein groups with higher numbers of modifications were found to
be associated with allergies, which was further confirmed by the reduction in antigenicity of the
major allergen (Jug r 1) in WPI. Meanwhile, we used oxidation-related proteins for gene ontology
(GO) enrichment analyses, and the results indicated that 115, 204 and 59 GO terms were enriched in
terms of biological process, molecular function, and cellular component, respectively. In conclusion,
oxidation altered the groups and conformation of WPI, which in turn caused modification in the
functional properties correspondingly. These findings might provide a reference for processing and
storage of walnut protein foods.

Keywords: walnut protein isolates; oxidation; structural characteristics; functional properties;
proteomics

1. Introduction

Walnut (Juglans regia L.) is one of the common tree nuts widely grown worldwide.
The planted area and production of walnuts in China ranks first in the world [1]. It has
been reported that walnut kernels are rich in unsaturated oils, protein, vitamins, minerals
and some bioactive compounds which confer antioxidant, cholesterol reduction, arterial
improving, immunomodulatory and other biological activities [2,3]. Therefore, walnut
kernels are widely consumed in China (409,608 metric tons in 2019) and even worldwide
(914,383 metric tons in 2019) for their health promotion and delicious taste [4].

In view of the high-cholesterol and saturated fatty acids content in animal-derived
foods, plant proteins are gaining increasing interest for their specific advantages. Soy
protein, peanut protein and walnut protein, etc. have been studied for their nutritional,
processing and physiological properties. Among them, as one of the main by-products
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of the oil industry, walnut protein has great potential of high value utilization. Currently,
there have been gradually increasing studies on walnut protein due to its large amount of
consumption, such as classification and characterization [5], characteristics analysis and
functional properties modification [3,6–9].

Oxidation is one of the three major chemical reactions. In contrast to other forms
of modification, oxidation can occur during the harvesting, storage and processing of
foods [10]. It has been reported that radical-induced oxidation could change the properties,
conformation, digestibility and allergenicity of food proteins [11–14]. As we know, walnut
kernels contain high amounts of unsaturated fatty acids, which could generate radical inter-
mediates and secondary products through oxidative stress, and then induce the oxidized
walnut protein, in turn, to undergo corresponding changes.

Peroxy radical (ROO·) is an important radical during the lipid oxidation process.
However, the effect of peroxy radical on the properties and structure of walnut protein
remains unclear. Thus, in this study, walnut protein isolates (WPI) were prepared and
oxidized by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH), a water-soluble azo-
free radical initiator, and then, the effect of peroxy radical on the main groups, structure,
functional properties, and antigenicity of WPI were investigated. Meanwhile, the oxidation
site and modifications of WPI were analyzed by proteomics technology. This study hopes
to provide advice on quality control and utilization of walnut protein.

2. Materials and Methods
2.1. Materials and Reagents

Walnut kernels were purchased from the local market in Baoshan, China, 2,2′-azobis
(2-amidinopropane) dihydrochloride (AAPH), 2,4-dinitrophenylhydrazine (DNPH), 5,5’-
Dithiobis-(2-nitrobenzoic acid) (DTNB) and 8-Anilino-1-naphthalenesulfonic acid (ANS)
were bought from Sigma-Aldrich Co. LLC. (Shanghai, China), and double antibody sand-
wich ELISA Kits was bought from Shanghai Meilian Biotechnology Co., Ltd. (Shanghai,
China). All other reagents used were analytically pure, and water was distilled water in
this study.

2.2. Walnut Protein Isolates (WPI) Preparation

WPI was extracted by the alkali dissolution-acid precipitation method according to
Qin et al. [9] with slight modifications. Walnut kernels were pulverized and degreased
with six-fold volumes of hexane three times. After being dried in a fume hood at room
temperature, 25-fold volumes of sodium hydroxide solution (pH 8.7) were added to the
defatted walnut powder, stirring the extract for 1 h at 48 ◦C, followed by centrifugation at
10,000× g for 20 min. The supernatant was adjusted to pH 5, and centrifuged using the
same conditions as described above. WPI was obtained by washing the precipitate with
H2O until neutral and freeze-drying it at −80 ◦C for 24 h. The WPI samples were stored
frozen at −80 ◦C for spare use.

2.3. Oxidation of WPI

The oxidation of WPI was performed according to Duan et al. [15] with some modifi-
cations. Briefly, dried WPI was dispersed in phosphate buffer (PB, 0.01 mol/L, pH 7.4) to
prepare 25 mg/mL protein suspension, then mixed with various concentrations of AAPH
(0, 0.04, 0.20, 1.00, 3.00, 5.00 and 10.00 mmol/L), followed by incubation for 24 h at 37 ◦C
under light protection. The reaction solutions were centrifuged for 30 min at 1000× g and
4 ◦C. The supernatants were dialyzed (molecular weight cut-off 7 kDa) against distilled
water for 72 h at 4 ◦C. Next, the dialysates were freeze-dried at −80 ◦C for 24 h to obtain
AAPH oxidized WPI (APPH-WPI) and were stored frozen at −80 ◦C for spare use.
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2.4. Determination of Oxidation Degree of AAPH-Oxidized WPI (APPH-WPI)
2.4.1. Determination of Carbonyl Content

The carbonyl contents of WPI and APPH-WPI were measured by 2,4-
dinitrophenylhydrazine (DNPH) assay. Briefly, 1.5 mL protein dispersion (10 mg/mL) was
mixed with 1 mL DNPH solution (10 mmol/L, containing 2 mol/L HCl), after incubation
in the dark for 1 h at room temperature, then 1 mL of trichloroacetic acid (TCA, 20%) was
added and it was mixed well, followed by centrifugation at 8000× g for 15 min. The precipi-
tate was washed with 1 mL of ethyl acetate-ethanol (1:1, v/v) three times, and then dissolved
in 4 mL urea (6 mol/L) for 20 min at 37 ◦C. After centrifugation at 8000× g for 15 min,
absorbance of the supernate was read at 370 nm by a microplate reader (Biotek, Winooski,
VT, USA), and the carbonyl content of protein was expressed as nmol/mg protein using
the molar extinction coefficient of 22,000 L·mol−1·cm−1 [16]. Measurement was repeated at
least three times to calculate the carbonyl content of the samples.

2.4.2. Determination of Sulfhydryl Group Content

The sulfhydryl group content of WPI and APPH-WPI was measured in triplicate and
repeated three times by using the DTNB assay. A 4 mg/mL DTNB solution was first pre-
pared in 0.086 M Tris-Gly buffer (containing 5 mM EDTA, pH 8.0), followed by a suspension
of protein samples in Tris-Gly buffer (containing 2% (w/w) sodium dodecyl sulfate (SDS))
to obtain a concentration of 10 mg/mL. Then, 1 mL of the sample solution was reacted
with 10 µL of DTNB solution for 1 h at room temperature, followed by centrifugation at
10,000× g for 10 min, the absorbance of supernate was then measured at 412 nm against the
blank (without DTNB and sample). The free sulfhydryl group contents of protein samples
were calculated using the extinction coefficient of 13,600 L·mol−1·cm−1, while the total
sulfhydryl content was measured as a similar procedure, except that 8 M urea was added
to the sample buffer [17,18].

2.4.3. Determination of Free Amino Groups Content

The o-phthaldialdehyde (OPA) method was used to measure the free amino groups
content of proteins samples. OPA was first dissolved in methanol solution (0.4 g/mL),
followed by addition of 2.5 mL of SDS solution (200 g/L), 25 mL of boric acid solution
(0.1 mol/L), and 100 µL of β-mercaptoethanol. The mixture was diluted to a certain volume
with distilled water to obtain the OPA working solution for the subsequent analysis. Next,
an amount of 200 µL of protein solution was mixed with 4 mL of OPA working solution,
and then water bathed at 35 ◦C for 2 min. The absorbance at 340 nm was measured against
distilled water as control. This trial was repeated three times to calculate the free amino
group content [19].

2.5. Determination of Structural Characteristics of APPH-WPI
2.5.1. Particle Size Distributions

The particle size distribution of protein samples was determined by laser scattering
particle size distribution analyzer (Partica, LA-960, Kyoto, Japan) with the relative refractive
index and absorption set as 1.414 and 0.001, respectively. Briefly, the protein samples were
suspended in distilled water to obtain a 5 mg/mL solution, and then the particle size
distribution and the mean diameter of sample solutions were assessed and repeated at least
three times, and then made into graphs [20].

2.5.2. Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis

SDS-PAGE was performed under non-reducing and reducing conditions according
to the previous reports [21,22]. Briefly, an amount of 15 µL of sample solution (1 mg/mL)
was mixed with 5 µL of 4 × protein loading buffer, followed by heating in a 100 ◦C water
bath for 5 min, and then immediately placed in an ice bath. Next, the sample solutions
were centrifuged (10,000× g, 5 min) and a 10 µL portion of supernatant was taken for
electrophoresis (Bio-rad, Powerpac Basic, Hercules, CA, USA) using 12% separating gel
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and 5% stacking gel, with standards of known molecular weight ranging from 10 to
200 kDa. The gels were decolored and photographed for further analysis. This experiment
was repeated with three different batches of samples.

2.5.3. Intrinsic Fluorescence

The protein sample was dispersed in PB (0.01 mol/L, pH 7.9) to prepare a solution
at 2.5 µg/mL, followed by centrifugation for 10 min at 10,000× g, 4 ◦C. The fluorescence
intensity of supernate was scanned three times (Thermo Fisher Scientific, Lumina, Waltham,
MA, USA) from 290 to 500 nm with excitation at 283 nm [23].

2.5.4. Surface Hydrophobicity (H0)

The surface hydrophobicity (H0) of WPI was determined by the 1-anilino-8-
naphthalenesulfonic acid (ANS) fluorescence probe method [24]. Each protein sample
was diluted to 0.005, 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5 mg/mL in PB (10 mM), respectively,
then a 2 mL portion of the aforementioned solution was mixed well with 20 µL ANS solu-
tion (in 10 mM PB) and allowed to stand for 3 min at room temperature. The fluorescence
intensity was measured at 390 nm excitation wavelength and 470 nm emission wavelength.
Next, a linearity curve was drawn with the protein concentration as the abscissa and
fluorescence intensity as the vertical coordinate. The slope of the curve was calculated
as surface hydrophobicity of protein sample. This experiment was repeated with three
different batches of samples.

2.5.5. Fourier Transformed Infrared Spectroscopy (FT-IR)

Protein powder samples were mixed with potassium bromide and pressed into a thin
tablet, followed by full-band scanning from 4000 to 400 cm−1 using a Fourier transform
infrared spectrometer (Thermo Fisher Scientific, Nicolet IS50, Waltham, MA, USA), and
scans were averaged three times for each spectrum. The data were analyzed and fitted with
Peak fit 4.12 and OMNIC 8.2 software to obtain the proportions of the secondary structure
(α-helix, β-sheet, β-turn, and random coil), respectively [15].

2.6. Determination of Physicochemical Properties of APPH-WPI
2.6.1. Solubility

A protein sample was suspended in distilled water to obtain a final solution at
0.02 mg/mL and stirred for 1 h at room temperature, followed by centrifugation (6500× g,
4 ◦C) for 20 min. The protein content of supernate was measured by the micro-Kjeldahl
method, each replicate was determined three times, and the solubility was calculated as
the percentage of the soluble protein (g) compared to total protein sample (g) [5].

2.6.2. Foaming ability (FA) and Foaming Stability (FS)

FA and FS of protein samples were measured according to Qian and Sun [8] with slight
modification. A protein sample dispersion (1 mg/mL) was prepared by being suspended in
PB (0.05 mol/L, pH 7.0), and after stirring for 1 h at room temperature, a 40 mL portion of
the dispersion was homogenized at 10,000 rpm for 2 min. The volume of stirring solution at
the first moment (0 min) and 60 min were recorded and calculated according to the follow
equations to obtain FA and FS. This experiment was repeated with three different batches
of samples.

FA(%) = (V1 − V)/V (1)

FS(%) = (V2 − V)/(V1 − V) (2)

where V1 is the volume of sample solution homogenized at the first moment, V is the initial
volume of sample solution (40), and V2 is the volume of sample solution kept for 30 min
after being homogenized.
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2.6.3. Water/Oil Holding Capacity (WHC/OHC)

An amount of 200 mg protein powder was mixed well with 10 mL water or soybean
oil for 1 min in a weighted centrifuge tube using a vortex; afterward, the mixture was
centrifuged at 3000× g for 20 min and the supernate was discarded, while the pellet was
weighed. This trial was repeated three times and the WHC/OHC was expressed as the
amount of absorbed water/oil (g) per gram protein sample [25].

2.7. Mass Spectrometry Analysis

Mass spectrometry analysis was carried out by nano liquid chromatography-Q Exac-
tive (LC-QE) mass spectrum (Thermo Fisher Scientific, Q Exactive, Waltham, MA, USA).
The control and oxidized WPI (10 mmol/L AAPH) samples were prepared by reduction
and alkylation methods, followed by trypsin-hydrolyzed (1:50, w/w) at 37 ◦C for 20 h. The
hydrolysates were lyophilized and re-dissolved in formic acid solution (FA, 0.1%, w/w)
after desalting, and stored at −20 ◦C for further liquid chromatography (LC) separation.
The LC conditions were as follows: Solution A, aqueous solution of 0.1% FA, solution B,
84% acetonitrile containing 0.1% FA. The hydrolysate was loaded into the trap column by
automatic sampler after being balanced, then the full scan was performed and 20 fragment
profiles were collected to obtain the mass charge ratios of peptides and peptide fragments.
The mass spectrometry data were searched against the UniProtKB database by proteome
discoverer software (Thermo Fisher Scientific, Version 1.4, Waltham, MA, USA).

2.8. Double Antibody Sandwich Enzyme-Linked Immunosorbent Assay (ELISA)

The allergenicity of WPI was evaluated by determining the content of Jug r 1, the major
allergen of walnut, using double antibody sandwich ELISA Kits. WPI dispersions oxidized
with 0, 5, 10, 15, and 30 mmol/L AAPH were prepared (3 mg/mL) and centrifuged at
5000× g, 4 ◦C for 30 min, and the supernatants were saved as sample solutions. A 50 µL
portion of standard and mentioned sample solution were loaded onto the microplate wells,
respectively, followed by being closed and incubated at 37 ◦C for 30 min, then the liquid
was discarded and the microplates were washed 5 times by wash solution and patted
dry. Next, enzyme-labeled reagent (50 µL) was added to each well except the blank well,
after incubation and washing, and the chromogenic agents A (50 µL) and B (50 µL) were
added to each well, mixed well and incubated in the dark at 37 ◦C for 10 min. Finally, the
reaction was terminated by adding a stop solution (50 µL) to each well, and the absorbance
at 450 nm was read (TECAN, F50, Männedorf, Switzerland). A standard curve was drawn
with the standard concentration as abscissa and OD as the ordinate. This experiment was
repeated with three different batches of samples, and the Jug r 1 content was calculated by
the standard curve according to the corresponding OD.

2.9. Statistical Analysis

All experiments were repeated three times, and the results were expressed as
average ± standard deviation (SD). The significance was determined by one-way ANOVA,
and the graphs were drawn using origin 2021 software (Origin Lab, Northampton, MA, USA).

3. Results and Discussion
3.1. Oxidative Indicators Analysis
3.1.1. Carbonyl Groups

The process of peroxy radical oxidation of protein is complex and accompanied by
corresponding products generation, among which carbonyl group is the most widely used
indicator for preliminary evaluation of oxidation degree [10]. The effect of peroxy radi-
cal on carbonyl content of WPI is shown in Table 1. Carbonyl content of oxidized WPI
was significantly (p < 0.05) increased with the concentration of AAPH, and a maximum
(1.48 nmol/mg) at 10 mmol/L AAPH was observed. As reported by previous studies [26],
peroxy radicals were generated linearly with the decomposition of AAPH, in turn attacking
the main peptide chain or side chain of WPI, and thus carbonyl derivatives such as alde-
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hydes and ketones were formed accordingly. These results were similar to that of AAPH
oxidized casein [27] and ovalbumin [17].

Table 1. Carbonyl, free sulfhydryl, total sulfhydryl, and free amino groups of WPI oxidized with
different concentration of AAPH.

AAPH (mmol/L) Carbonyl (nmol/mg) Free Sulfhydryl (nmol/mg) Total Sulfhydryl (nmol/mg) Free Amino (nmol/mg)

0.0 0.61 ± 0.08 c 6.66 ± 0.10 a 172.43 ± 16.17 ab 0.67 ± 0.07 a
0.2 0.85 ± 0.05 b 6.03 ± 0.21 b 173.09 ± 11.10 a 0.65 ± 0.05 ab
0.5 0.90 ± 0.10 b 5.11 ± 0.04 c 165.66 ± 4.59 ab 0.60 ± 0.03 b
1.0 0.93 ± 0.05 b 4.18 ± 0.13 d 155.70 ± 4.76 bc 0.54 ± 0.04 c
3.0 1.30 ± 0.15 a 3.16 ± 0.04 e 148.00 ± 3.69 cd 0.48 ± 0.03 d
5.0 1.42 ± 0.01 a 2.34 ± 0.04 f 135.64 ± 2.17 d 0.43 ± 0.02 e
10.0 1.48 ± 0.12 a 1.25 ± 0.09 g 114.26 ± 4.35 e 0.31 ± 0.04 f

WPI = walnut protein isolates, AAPH = 2, 2′-azobis (2-amidinopropane) dihydrochloride. Different letters within
a column indicate significant differences (p < 0.05).

3.1.2. Sulfhydryl Groups

Cysteine residues are sensitive to oxidation, and are susceptible to corresponding
modification, therefore, the degree of protein oxidation can be reflected by the content of
sulfhydryl groups. As shown in Table 1, with the increase of AAPH concentration, the total
and free sulfhydryl groups of WPI decreased significantly (p < 0.05), and the minimums
were achieved (1.25 and 114.26 nmol/mg) respectively when AAPH concentration was
10 mmol/L. This result is similar to that of peroxyl radical oxidized chickpea protein
reported by Zhu et al. [23], the sulfhydryl groups were oxidized to both disulfide bonds
and irreversible sulfonic and sulfonic acid groups by radicals [28]; moreover, other covalent
cross-linking might have occurred during oxidation [18].

3.1.3. Free Amino Groups

As depicted in Table 1, the free amino groups of oxidized WPI decreased with the
AAPH concentration, and the minimum (0.31 nmol/mg) was discerned at a concentration of
10 mmol/L, which could be due to the oxidation of amino-containing side chain (threonine,
proline, arginine and lysine residues) in WPI [29], and the formation of Schiff base with
carbonyl groups by a covalent reaction [19]. This finding echoed that of the carbonyl
result mentioned above and a similar result was obtained with oxidized Coregonus peled
myofibrillar proteins [29].

3.2. Structural Characteristics Analysis
3.2.1. Endogenous Fluorescence

The endogenous fluorescence of proteins originates from the emission of tryptophan
residues, and the polarity of the micro-environment in which can be reflected by the changes
of fluorescence peak. Therefore, endogenous fluorescence was often used to indicate the
transformation of protein conformation. The effects of peroxy radical on the endogenous
fluorescence intensity and maximum fluorescence emission wavelength of WPI are shown
in Figure 1a. With increasing AAPH concentration, the fluorescence intensity of WPI
showed a downward trend. This might be attributed to the unfolding of the WPI tertiary
structure, and the tryptophan residue is oxidized to kynurenine, thus inducing a reduction
in the endogenous fluorescence intensity. In addition, a blue shift of maximum fluorescence
peak due to oxidation was also observed in Figure 1a, which is similar to the report by
Zhang et al. [18]; hence, it was concluded that the tryptophan residue of WPI was exposed
to hydrophobic environment which in turn made hydrophobic interactions by oxidation.
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Figure 1. Endogenous fluorescence spectra (a) and surface hydrophobicity (b) of WPI oxidized
with different concentration of AAPH. WPI = walnut protein isolates, AAPH = 2, 2′-azobis
(2-amidinopropane) dihydrochloride. Different letters indicate significant differences between
columns (p < 0.05).

3.2.2. Surface Hydrophobicity

Surface hydrophobicity reflects the distribution of hydrophobic amino acid residues on
the protein’s surface, and characterizes the changes of tertiary structure of protein [30]. The
surface hydrophobicity of oxidized WPI increased significantly (p < 0.05) with the AAPH
concentration, the maximum achieved at 10 mmol/L AAPH, which is 84% greater than
the control (Figure 1b), indicating that the peptide chains were moderately unfolded
and rearranged [16], and the surface hydrophobic groups were exposed to the polar
environment. This result corresponded to those of endogenous fluorescence; meanwhile,
oxidized myofibrillar proteins from Culter alburnus also showed similar trends [18].

3.2.3. Particle Size Distributions

Particle size is the common indicator to evaluate protein aggregation [31], and can
be monitored by dynamic light scattering. Particle size distributions and average particle
size of WPI oxidized with different concentrations of AAPH are shown in Figure 2. The
particle size of control WPI was mainly distributed between 1–10 µm, while a large peak at
100 µm was observed after oxidation, illustrating formation of large aggregates through
the interaction of protein peptides by oxidation [32]. Moreover, there is a rising trend on
average particle size with higher AAPH concentration, with maximum values (119.2 µm) at
10 mmol/L AAPH, which is similar to the result of Fu et al. [16]. Overall, the above results
suggested that the hydrophobic groups exposure (Figure 1b), as well as the disulfide and
secondary bonds cross-linking (Table 1) might be responsible for the formation of larger
protein aggregates.
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concentrations of AAPH. WPI = walnut protein isolates, AAPH = 2, 2′-azobis (2-amidinopropane)
dihydrochloride. Different letters indicate significant differences between columns (p < 0.05).

3.2.4. SDS-PAGE

SDS-PAGE has the advantages of being fast, of high resolution and high sensitivity,
and is especially suitable for the analysis and identification of oligomers and their subunits,
as well as molecular weight determination of protein. As shown in the non-reducing SDS-
PAGE pattern (Figure 3b), the intensity of 7 S conglycinin bands decreased with increasing
AAPH concentration; meanwhile, new large molecule weight bands were observed at the
top of the gel, indicating that large polymers may be formed by stronger oxidation [19].
Moreover, most of the degraded bands caused by oxidation were recovered in the reducing
SDS-PAGE pattern (Figure 3a), and thus we reasoned that disulfide bond polymerization
is the predominant manner for aggregates formation, which is similar to the study of Fu
et al. [16].
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Figure 3. Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) patterns of WPI
oxidized with different AAPH concentration (a) Reducing (b) Non-reducing. WPI = walnut protein
isolates, AAPH = 2, 2′-azobis (2-amidinopropane) dihydrochloride; MW= molecular weight.
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3.2.5. Fourier Transform Infrared (FT-IR) Spectroscopy

The secondary structure of WPI could be reflected by the FT-IR spectrum, specifically,
the amide 1 region was processed in de-convolution and second derivative, and the fea-
tured wavenumber of α-helix is 1648–1655 cm−1, β-sheet is 1610–1629 cm−1, β-turn is
1660–1681 cm−1, and random coil is 1638 cm−1 [24]. As shown in Figure 4, the percentage
of α-helix decreased whereas that of β-sheet and random coil increased with the AAPH
concentration. Studies have shown that α-helix is associated with the weak hydrogen-
bond interaction between amino groups and amidogen, whereas β-sheet is related to
the hydrogen-bond interaction between peptide chains [33]. Thus we deemed that the
hydrogen-bond interaction between amino bond of WPI was broken by oxidation, and the
unfolding peptide chains further re-associated to form a new construction (β-sheet and ran-
dom coil), which in turn decreased the flexibility of the protein structure [28]. This finding
is in accordance with the oxidized chickpea protein isolates reported by Zhu et al. [23].
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Figure 4. Secondary structure of WPI oxidized with different concentrations of AAPH. WPI = walnut
protein isolates, AAPH = 2, 2′-azobis (2-amidinopropane) dihydrochloride.

3.3. Physicochemical Properties Analysis
3.3.1. Solubility

Solubility is one of the critical characteristics of food proteins, and is often used to
represent the degree of cross-linking and aggregation to a certain extent. As shown in
Table 2, with the increasing AAPH concentration, the solubility of WPI shows a significant
downward trend (p < 0.05), and the lowest solubility (20.44%) was observed at 10 mmol/L
AAPH. This may be due to the unfolding and destruction of WPI conformation by peroxy
radical oxidation, then further polymerization occurs to form macromolecule insoluble
aggregates by covalent or non-covalent interactions [34]. The result of solubility is similar
to that of myofibrillar protein from Culter alburnus oxidized by hydroxyl radical [18], and
also echoes the result of particle size distribution in this study.
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Table 2. Solubility, WHC, OHC, and foaming property of WPI oxidized with different concentration
of AAPH.

AAPH (mmol/L) Solubility (%) WHC (g/g) OHC (g/g) FA (%) FS (%)

0.0 80.64 ± 3.41 a 3.34 ± 0.05 b 4.55 ± 0.07 d 22.66 ± 3.65 e 72.22 ± 6.80 c
0.2 69.25 ± 3.72 b 2.61 ± 0.03 d 4.63 ± 0.08 d 27.78 ± 2.72 cde 74.58 ± 8.72 cb
0.5 59.65 ± 2.96 c 2.98 ± 0.15 c 4.87 ± 0.07 bc 28.89 ± 3.44 bcd 78.50 ± 5.48 abc
1.0 46.87 ± 2.41 d 3.31 ± 0.12 bc 5.00 ± 0.04 b 36.67 ± 3.65 a 83.33 ± 3.65 a
3.0 39.71 ± 3.07 e 4.05 ± 0.17 a 5.84 ± 0.19 a 33.33 ± 4.22 ab 81.39 ± 5.00 ab
5.0 31.48 ± 3.79 g 3.86 ± 0.15 a 4.74 ± 0.03 cd 31.11 ± 3.44 bc 78.33 ± 2.58 abc
10.0 20.44 ± 2.49 h 3.35 ± 0.29 b 4.64 ± 0.07 d 25.33 ± 2.98 de 72.36 ± 6.46 c

WPI = walnut protein isolates, AAPH = 2, 2′-azobis (2-amidinopropane) dihydrochloride; WHC = water holding
capacity; OHC = oil holding capacity; FA = foaming ability; FS = foaming stability. Different letters within a
column indicate significant differences (p < 0.05).

3.3.2. Foaming Ability (FA) and Foaming Stability (FS)

Foaming property is an important interfacial property for protein processing, and
is impacted by solubility, hydrophobicity, and flexibility of peptide chain. As indicated
in Table 2, with the increase of AAPH concentration, the FA of WPI increased first and
then decreased, and reached the maximum (36.67%) when the concentration of AAPH
was 1 mmol/L. This is possibly because appropriate oxidation makes non-covalent bonds
of WPI unfold, thereby the flexibility of the peptide chain increases. Consequently, more
protein was adsorbed and formed a relatively stable gas–liquid interface. However, when
WPI was over oxidized, the internal structure of the protein was largely unfolded and
reconstructed, which led to the drop down of solubility markedly, and then a decline in FA.
Meanwhile, FS also showed a similar trend by oxidation, and the maximum (83.33%) was
identified at 1 mmol/L AAPH. The above research is similar to that on chickpea protein
and rice bran globulin [23,24].

3.3.3. Water Holding Capacity (WHC) and Oil Holding Capacity (OHC)

WHC and OHC are known to be linked to the water/oil binding ability of protein, and
can significantly affect the texture of protein foods. As presented in Table 2, the WHC and
OHC of oxidized WPI exhibited an initial increment followed by a decreasing tendency
with AAPH concentration, and both the WHC (4.05 g/g) and OHC (5.84 g/g) reached
maximum at 3 mmol/L AAPH. This is probably because, on the one hand, the hydrophobic
groups of WPI were partly unfolded by oxidation, and some charged amino acid exposed to
the surface, thus made the net charge of WPI increased [12]; and these mentioned changes
of protein would be an advantage for WHC. On the other hand, macromolecular protein
aggregation was formed by intermolecular disulfide bond crosslinking in oxidation [18],
which would be a disadvantage for WHC. Therefore, the positive effects appear to be
stronger than the negative effects in mild oxidation, and the water molecules entered the
internal protein with non-covalent bonds, that made the WHC increase correspondingly.
However, when the concentration was higher than 3 mmol/L AAPH, the negative effect
was stronger than positive effects, thus decreasing the WHC dramatically. To the OHC,
the oil adsorption capacity of WPI was enhanced with the hydrophobicity in certain
concentrations of AAPH (≤3 mmol/L), and the OHC increased accordingly. Nevertheless,
in strong oxidative conditions (>3 mmol/L), WPI was crosslinked and aggregated, which
reduced the OHC consequently.

3.4. Proteomic Analysis of Oxidative Modified WPI

In order to further investigate the impact of oxidation on the structure of WPI, a Nano
LC-MS/MS peptide sequencing analysis was performed, and the total ion chromatograms
(TIC) of unoxidized and oxidized protein were shown in Figure 5. Although the trend of the
TIC plot of both samples seemed to be very similar, the differences in protein abundance
still revealed changes.
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Figure 5. The total ion chromatogram (TIC) of WPI and oxidized WPI. WPI = walnut protein isolates.

By mass spectrometry analysis, a total of 3095 peptide spectra were detected, of which
646 protein groups were corresponding to 2396 unique peptide sequences
(Supporting Information File S1, Table S1). According to their respective peptide sequences,
the modifications in the functional group of the amino-acid side chains were analyzed and
are listed in Table 3, including acetyl, carbamidomethyl, carboxyethylation, γ-glutamic
semialdehydes (GGS), dehydrated, dehydroalanine, deoxidation, 4-hydroxy-2-nonenal
(HNE), hydroxykynurenine, kynurenin, lactyllysine, malondialdehyde (MDA), oxidation,
trioxidation, α-aminoadipic acid (AAA), and α-aminoadipic semialdehyde (AAS). For
the different amino acids, cysteine, methionine, and tryptophan had the greatest number
of side-chain modification types (5), followed by histidine, tyrosine and proline (4), and
phenylalanine (3), whereas methionine and arginine created two types of modification. The
above results are consistent with results previously reported on amino acids side-chains
most prone to oxidative modification [35]. These modifications by oxidation may induce
changes in the structure of the proteins, which in turn affected the function of proteins.
For example, cysteine has unique reactivity which is associated with sulfhydryl reactive
chemicals, hence, cysteine substitution has been a powerful tool to investigate the structure
and function of proteins [36]. Methionine oxidation may influence the peptide hydropho-
bicity [37], where histidine residues in proteins are major targets for reaction with the lipid
peroxidation product HNE [38], and so forth.

The UpSet plot and Venn diagram were constructed to further visualize the numbers
and intersections of the identified peptide from different modifications. From Figure 6,
the top five modifications ranked by modified number were carbamidomethyl, oxidation,
HNE, MDA, and deoxidation. They were 243, 169, 64, 61, and 61 times, respectively. Of
them, 124 times occurred alone for carbamidomethyl, and 119 times were the combination
of carbamidomethyl with other modifications. The Wayne diagram in the upper part of
the figure also showed the same results. It was generally believed that proteins from
an animal source were more susceptible to undergoing oxidative reactions than plant
proteins, while GGS and AAS were the significant protein oxidative indicators in meat
and dairy products [39]. The results of this study indicated that numerous modifications
also occurred in oxidized WPI, whereas carbamidomethyl and oxidation was the most
significant indicator.
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Table 3. The amino acid modified sites and types in the oxidation of WPI.

Amino Acid Peptide Sequence Modification Types

CAM OX DI DHA TRI HNE KYN 3-HK GGS CAE ACE AAS AAA

Cysteine CFDGSLFEYCAK
√

Cysteine GKLNFGRALECFFLSSCSSPCFCMNSMESQDEFETR
√

Cysteine CFDGSLFEYCAK
√

Cysteine GLHGAAIPGCPETFQSESSSQFR
√

Cysteine MCCWNAPPCGFFYLNVDGAIFFYIHKAGVGAVVR
√

Methionine CQDEMR
√

Methionine QCCQQLSQMDEQCQCEGLR
√

Proline CTNNAEKIPPGTVR
√

Proline CGDQVGCPCIGFDGLDVASECGPSCECGLECGNRSTQR
√

Phenylalanine FRPGTVALR
√

Phenylalanine NFYLAGNPDDEFRPQGQQEYEQHRR
√

Phenylalanine FMFWFACGVGGLEIICIFLVWCLLSR
√

Histidine HNLDTQTESDVFSR
√

Histidine ILRPVSVPGHFEAFHGSGGEDPESFYR
√

Histidine ILRPVSVPGHFEAFHGSGGEDPESFYR
√

Histidine QLHVILK
√

Lysine KEDIEMALTK
√

Lysine RVNALENVVKPR
√

Lysine KGSLGCIKYILK
√

Lysine VGESPSPATASSKPEQAR
√

Lysine EAAYNLHLIYK
√

Tyrosine CDGCVRSIFPPFYTCAQCGFFLHKSCVELSR
√

Tyrosine CLKLYCECFAAGIYCVGSCACETCFNKPEYEDLVLDTR
√

Tyrosine ACGTCCARCDCVPPGTSGNYDACPCYANMTTHGGR
√

Tyrosine VVQCTEGERSYHIFYQLCAGAPAALR
√

Tryptophan FVSVCYHNYEHVYCFWHRGMICVCCHTWPEILYYK
√

Tryptophan FLIGDDEHCWSENGVSNIEGGCYAK
√

Tryptophan FMLWFACGVGGFEIICIFLVWCLLSR
√

Tryptophan ANRMGWFQLQR
√

Tryptophan GALYSDALYVPHWNLNAHSVVYALRGR
√

Arginine RATGEGFEWVSFK
√

Arginine RQEEAEWEEEEAR
√

Proline ESFNLECGDVIRVPAGATVYVINQDSNERLEMVK
√

Proline ESFNLECGDVIRVPAGATVYVINQDSNERLEMVK �
√

� � � � � � � � � � �

Note: Tick mark represents the corresponding modification was detected, the lower line and bold font represent the corresponding modification
site. WPI = walnut protein isolates, CAM = carbamidomethyl; OX = oxidation; DI = dioxidation; TRI = trioxidation; DHA = dehydroalanine;
HNE = 4-hydroxy-2-nonenal; KYN = kynurenin; 3-HK = 3-hydroxykynurenine; GGS = γ-glutamic semialdehydes; CAE = carboxyethylation;
ACE = acetyl; AAS = α-aminoadipic semialdehyde; AAA = α-aminoadipic acid.
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To present the degree of modification on different protein groups more intuitively,
a heatmap (Figure 7) was drawn in log10-transformed modification numbers (only total
modification numbers equal to or greater than 5 are displayed). From Figure 7, oxidation,
carbamidomethyl, deoxidation, HNE, and trioxidation were, in order, the most modified
protein groups, and their modification numbers were greater than 5. This conclusion was
basically consistent with the conclusion above. For different protein groups, the top 10 pro-
tein groups with the most modification numbers were P93 198 (190 times), A0A2I4F6R4
(127 times), A0A2I4DYF1 or Q9SEW4 (117 times), A0A2I4EG83 (108 times), Q2TPW5
(94 times), A0A2I4E5L6 (90 times), A0A2I4GEH1 (82 times), A0A2I4DYF1 (81 times), and
Unknown (43 times). These proteins were mainly depicted as albumin seed storage pro-
tein, legumin-like protein, vicilin-like protein, and 11 S globulin seed storage protein.
Interestingly, most of these proteins were found to be associated with allergies [40,41].

Mass spectrometry of these peptides detected the presence of 519 proteins, and detailed
information of these proteins is presented in Supporting Information File S2: Table S2. To
further understand the functions of these proteins, gene ontology (GO) annotation was
performed (Supporting Information File S3: Table S3). Through analysis, 378 GO terms
were annotated, including 115 terms in biological process (BP), 204 in molecular function
(MF), and 59 in cellular component (CC), and the top 10 enriched GO terms of different
classifications are displayed in Figure 8. It can be seen clearly that “cell redox homeostasis”
was the most enriched (number = 31) in BP, while the most enriched (number = 46) in CC
was “integral component of membrane”. For MF, it was “ATP binding” with 33 enrichment
numbers. Taking into consideration that protein modifications, especially post-translational
modification, could regulate the structure and function of protein, including lifetime,
assembly, localization, function, and degradation, it was therefore of great interest to
further understand the main biological functions of these proteins [42].
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aldehyde.
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3.5. Antigenicity of Jug r 1

Jug r 1, which is 16.4 kD long and contains 139 amino acids, is the major allergen
protein in walnuts, and could reflect the allergenic properties of WPI. As hinted at by
Figure 9, the effect of oxidation on the antigenicity of Jug r 1 was assessed. It can be
observed that there was a gradual decrease of antigenicity with the AAPH concentration,
and the lowest value (13.91 ng/mL) was obtained at 30 mmol/L, indicating a significant
effect (p < 0.05) on antigenicity by radical oxidation. Combined with the mass spectrometry
results, changes in oxidative indicators and secondary structure (Table 1 and Figure 4), the
oxidative modification of WPI might be covalent, and the changes of protein side chains
led to the destruction of allergen epitopes, which consequently decreased the antigenicity
of Jug r 1 [43]. In addition, the unfolding of WPI blocked the epitopes and could not
be identified by an antibody. Similar results were exhibited in acrolein-oxidized shrimp
tropomyosin [44] and hydroxyl radical-treated β-conglycinin [45], whereas the specific
reason for the reduction of antigenicity should be further researched.
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4. Conclusions

This paper explored the influence of peroxy radicals on structural and functional
characters of WPI. The results showed that the carbonyl group of WPI was significantly
increased with the concentration of AAPH, whereas the free amino and sulfhydryl groups
decreased significantly (p < 0.05), which could be due to formation of disulfide bonds
and irreversible sulfonic, sulfonic acid groups by radical oxidization. The reduction of
fluorescence intensity and increasing of surface hydrophobicity illustrated the unfolding
and rearranging of protein tertiary structure; meanwhile, FT-IR analysis also demonstrated
alteration of the secondary structure. Besides, large aggregates were observed by particle
size distributions and SDS-PAGE analysis, and thus unfolding and cross-linking of WPI
were further confirmed. The aforementioned changes of conformation in turn affected
the functional properties of WPI, and thus we saw a significant reduction in solubility,
whereas different degrees of increase in foaming property and WHC/OHC were observed
by mild oxidation. Nevertheless, all of the measured property indicators in this study
were found to be significantly decreased after overoxidation. Mass spectrometry analysis
revealed numerous modifications of the amino acid side chains, and these modifications
are involved in many protein groups. Interestingly, these protein groups were found to
be associated with allergies, which implied that oxidative modification could have an
effect on the allergenic properties of WPI. The double antibody sandwich ELISA result
indicated the gradual reduction of Jug r 1, the major allergen of WPI, and this further
confirmed the mass spectrometry results. In conclusion, peroxy radical oxidation altered
the conformation of WPI, which in turn caused modification in functional properties
correspondingly, including allergenicity.

Proteins are one of the most important components of foods and are easily oxidized
during their harvesting, storage, and processing. Although it is well known that protein
structure strongly influences its functions, little is known about oxidative modifications and
how it affects food protein structure and function. Generally, the preliminary properties,
and secondary and tertiary structure of proteins can be investigated via multiple physical,
chemical, and biological means, including a chromogenic assay, protein electrophoresis,
spectroscopic studies, mass spectrometry, etc. However, they are often studied in isolation,
and the results are incoherent. In this study, an integrated approach was used to produce
results at multiple levels, seeking to provide a comprehensive understanding of the effect
of oxidation induced by peroxy radical on the functional properties of WPI. Our results
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suggest that oxidation can lead to the modification of amino acids in proteins, subsequently
altering their structure, which in turn changes their functional properties. Although the ex-
tent of protein modification is strongly increased with the increase of AAPH concentration,
and it appears to perform adversely for the functional properties of the protein, appropriate
oxidation is favorable for some properties, such as foaming property, WHC/OHC, and
allergenicity. In conclusion, a potential methodology to limit oxidation, including antioxi-
dants, should be taken into account. On the other hand, the above results also revealed the
possibility of oxidation as a means to regulate protein functional properties in the future.
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