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Abstract: Wide applications of cannabidiol (CBD) in the food and pharmaceutical industries are
limited due to its low bioavailability, sensitivity to environmental pressures and low water solubility.
Zein nanoparticles were stabilized by whey protein (WP) for the delivery of cannabidiol (CBD)
using a modified anti-solvent approach. Particle size, surface charge, encapsulation efficiency, and
re-dispersibility of nanoparticles were influenced by the zein to WP ratio. Under optimized conditions
at 1:4, zein–WP nanoparticles were fabricated with CBD (200 µg/mL) and further characterized. WP
absorbed on zein surface via hydrogen bond, hydrophobic forces, and electrostatic attraction. The
zein–WP nanoparticles showed excellent storage stability (4 ◦C, dark) and effectively protected CBD
degradation against heat and UV light. In vivo pharmacokinetic study demonstrated that CBD in
zein–WP nanoparticles displayed 2-times and 1.75-fold enhancement in maximum concentration
(C max) and the area under curve (AUC) as compared to free-form CBD. The data indicated the
feasibility of developing zein–WP based nanoparticles for the encapsulation, protection, and delivery
of CBD.

Keywords: cannabidiol; zein; whey protein; nanoparticle

1. Introduction

Cannabidiol (CBD), a major non-psychotropic constituent of the Cannabis sativa plant,
has biological activities such as anti-convulsive, anti-anxiety, anti-psychotic activity [1].
However, wide applications of CBD in food and pharmaceutical industries are hindered
by variable pharmacokinetic profiles caused by its inherent attributes, such as low water
solubility, sensitivity to environmental pressures, and low bioavailability [2]. CBD is highly
lipophilic (log P = 6.3) and, thus, it is commonly incorporated in alcohol-based formulations
or oil [2,3]. CBD may experience isomerization, polymerization, or degradation when
exposed to harsh environments, e.g., heating, light, and oxygen [2]. Oral administration of
CBD is challenging, with a bioavailability of approximately 6% in humans [4] due to poor
solubility in the gastrointestinal system [5]. It has been comprehensively understood that
the fabrication of delivery systems may conquer these hindrances.

In recent years, a few delivery systems have been constructed to encapsulate CBD,
including nano-emulsions [4,6], Pickering emulsions [7], and inclusion complexes [8].
However, emulsions have some disadvantages. First, emulsifiers are required for producing
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stable emulsions, and some chemically synthetic surfactants are usually toxic and harmful to
humans. Second, high-energy input emulsifying devices such as ultrasonic or high-pressure
homogenization equipment are usually needed to reduce the droplet size. Third, the
emulsification process is usually complicated, containing several steps. Inclusion complexes
usually result in weak binding of ligands with vectors. Hereby, we focused on developing
a natural biopolymer-based nanoparticle delivery systems using a simple method.

Zein is a byproduct of producing corn starch and exhibits strong hydrophobic char-
acteristics. The exceptional self-assembly capability of zein to create nanoparticles makes
it an advantageous delivery carrier for nutraceuticals [9]. Entrapment in zein nanoparti-
cles could substantially enhance the stability and bioavailability of guest compounds [9].
However, the constructed particles still bear high hydrophobicity and readily aggregate
via hydrophobic interaction. Whey protein (WP), isolated from bovine milk, is mainly
composed of β-lactoglobulin (70%) along with other proteins (α-lactalbumin, lactoferrin,
bovine serum albumin). WP was capable of absorbing on zein nanoparticles via generating
an interpolymer complex as a result of its amphiphilic and charged nature, and could pre-
vent colloid aggregation [9]. The consequent zein–whey protein core–shell nanoparticles
were documented to remarkably enhance the solubility, re-dispersibility, stability, and oral
bioavailability of encapsulated active substances in comparison with pure zein [10–12].

The most employed technique to fabricate zein-based nanoparticles is anti-solvent
precipitation (ASP) [11]. Traditionally, ASP is used to introduce organic zein solution drop
by drop into an antisolvent, which is time-consuming and difficult to scale up in practical
application. To solve this problem, a modified easy-operating anti-solvent procedure was
developed by directly pouring the aqueous solution into an organic zein solution [13,14]
which can also encapsulate bioactive ingredients into the core. Herein, a CBD loaded
zein–whey protein composite delivery system was fabricated using the modified ASP and
characterized for its physicochemical properties, stability, and bioavailability.

2. Materials and Methods
2.1. Materials

Zein (purity of 92%) was purchased from Yuanye Bio-Technology Co., Ltd. (Shanghai,
China). Whey protein with a purity of 93.14% was obtained from Fonterra Co-operative
Group (Auckland, New Zealand). Cannabidiol (CBD, purity of 99%) was purchased from
Macklin Biochemical Co., Ltd. (Shanghai, China). Potassium bromide was purchased from
Sigma-Aldrich (St. Louis, MO, USA).

2.2. Fabrication of CBD-Loaded Composite Nanoparticles

CBD-loaded zein–WP composite nanoparticles were fabricated based on a modified
ASP described in a previous study [13], and the process was as depicted in Figure 1.
Briefly, CBD powder was dissolved in zein solution (25 mg/mL, 90% ethanol) at a final
concentration of 1 mg/mL. WP solutions (pH 7) at various concentrations were rapidly
poured into CBD-containing zein solution within 1 s under continuous stirring (1000 rpm)
using a magnetic stirrer (IKA, Staufen, Germany). Ethanol in nanoparticle suspension was
removed by vacuum rotatory evaporator at a 40 ◦C water bath, and distilled water at a
volume equal to that of the lost ethanol was added. Final nanoparticle suspensions were
obtained by centrifuging at 2000 rpm for 10 min to remove large precipitates. The final
mass ratios of zein to WP were 1:0, 1:2, 1:3, 1:4, and 1:5.

2.3. Particle Size and Zeta-Potential

The size distribution by intensity and zeta-potential of samples were estimated us-
ing dynamic light scattering and phase analysis light scattering techniques with a Nano
Zetasizer (Malvern Instruments Ltd., Worcestershire, UK) equipped with a He-NE laser
(633 nm). Zein–WP composite nanoparticle dispersions were diluted by 10 folds with
Milli-Q water before measurement.
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Figure 1. Synthesis of CBD-loaded zein–WP nanoparticles.

2.4. High Performance Liquid Chromatography (HPLC)

HPLC analysis of CBD was conducted using a Waters system equipped with a C18
column (5 µm, 4.6 mm × 150 mm) (Waters Corporation, Milford, DE, USA), according to a
previous study [15], with some modifications. CBD was separated using a mobile phase of
water (A) and acetonitrile (B) at a flow rate of 0.5 mL/min. The gradient was as follows:
0–13 min, 70–85% B; 13–13.1 min, 85–95% B; 13.1–14 min, isocratic elution with 95% B;
14–14.1 min, 95–85% B; 14.1–17 min, 85–70% B; 17–19 min, isocratic elution with 70% B.
The injection volume was 10 µL, and the column temperature was 25 ◦C. Samples were
detected at a wavelength of 228 nm and the CBD was quantified based on an established
standard curve (R2 > 0.999).

2.5. Encapsulation Efficiency (EE) and Loading Capacity (LC)

The nanoparticle suspension was mixed with acetonitrile at 9-folds volume, vortexed
for 2 min, and then centrifuged at 14,000× g for 20 min. The supernatant was determined
for CBD content (Ctotal) which contained encapsulated and free CBD. For determination of
free CBD, the nanoparticle suspension was first centrifuged at 14,000× g for 20 min twice
to precipitate the nanoparticles, and then the supernatant was mixed with acetonitrile. The
supernatant was assayed for CBD content (Cfree). EE and LC were calculated using the
following equations:

EE (%) =
Ctotal − Cfree

Cinitial
× 100 (1)

LC (%) =
Ctotal − Cfree

weight of zein and WP input
× 100 (2)

where Cinitial is the initial concentration of CBD added into the system, and Ctotal and Cfree
are the concentration of total and free CBD in the colloid system, respectively.

2.6. Water Solubility

The water solubility of CBD in the nanoparticle suspensions was determined and
compared to that of CBD alone. Pure CBD powder at the equivalent amount to that in
nanoparticles was dissolved in 10 mL distilled water and magnetically stirred at 100 rpm
for 2 h. The sample was filtered by a 0.22 µm Millipore filter to remove insoluble CBD.
CBD in the nanodispersion was extracted following the method described for obtaining
total CBD in Section 2.5, and the concentration was determined by HPLC as described in
Section 2.4. The water solubility of CBD was calculated using the following formula:

Water solubility (µg/mL) =
Ctotal

solvent volume
(3)

2.7. Re-Dispersibility of Freeze-Dried Nanoparticles

CBD-loaded nanoparticle suspensions were frozen at −20 ◦C overnight and then
lyophilized using a freeze drier (ALPHA 1–2, CHRIST, Osterode, Germany). Lyophilized
CBD-loaded nanoparticles were re-dispersed in Milli-Q deionized water to original volumes
and then stirred for at least 1 h. Redissolved samples were observed for appearance by
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taking pictures and assessed for physical properties including particle size, PDI, zeta-
potential, and CBD re-dispersibility rate. CBD in nanodispersion was extracted following
the method described for obtaining total CBD in Section 2.5 and the concentration was
determined by HPLC as described in Section 2.4.

Re − dispersibility of CBD (%) =
Cre−dispersed

Cfresh
× 100 (4)

where Cre-dispersed is the concentration of CBD in the re-dispersed system and Cfresh is the
concentration of CBD in the fresh colloid system.

2.8. X-ray Diffraction (XRD)

X-ray diffractograms of CBD, zein, WP, the physical mixture of two biopolymers with
CBD, and freeze-dried CBD-loaded nanoparticles were recorded using an XRD diffrac-
tometer (MM007HF/R-AXIS RAPID II, Rigaku Industrial Corporation, Osaka, Japan). Data
were acquired in the angular range of 2θ = 5–60◦ and scanning steps of 0.02◦.

2.9. Fourier Transform Infrared Spectrometry (FT-IR)

FT-IR spectra of CBD, zein, WP, the physical mixture of two biopolymers with CBD,
and freeze-dried CBD-loaded nanoparticles were obtained using an IRPRESTIGE-2 FT-IR
spectrometer (Shimadzu, Tokyo, Japan). Samples (2 mg) were mixed with pre-dried KBr
(200 mg) and then pressed into tablets. FT-IR spectra data were collected in the range of
500–4000 cm−1 at a resolution of 4 cm−1.

2.10. Transmission Electron Microscopy (TEM)

The morphology of CBD-loaded nanoparticles at zein to WP ratio of 1:4 was imaged
using a Transmission Electron Microscope (H-7650, HITACHI, Tokyo, Japan) at 100 kV,
with a magnification of 7000. Fresh dispersions were diluted using distilled water and
stained with uranyl acetate. Representative TEM images were reported.

2.11. Stability

The physicochemical stability and storage stability of nanoparticle dispersions were
evaluated. For thermal stability testing, fresh nanoparticle suspensions were heated at
80 ◦C for 10, 30, 60, and 90 min in a water bath, and then cooled down to 25 ◦C quickly.
Samples were assayed for particle size and CBD retention rate. Fresh CBD nanoparticles
and pure CBD solution (20% ethanol) were irradiated by UV light for 15, 30, 45, 60, 75, and
90 min. The CBD retention rate in each sample was calculated. For storage stability, fresh
CBD nanoparticles were stored at 4 ◦C in the dark for 21 days, followed by measurement for
CBD retention rate and particle size. CBD in the nanodispersion was extracted following
the method described for obtaining total CBD in Section 2.5, and the concentration was
determined by HPLC as described in Section 2.4.

Retention rate of CBD (%) =
Cresidual
Cinitial

× 100 (5)

where Cresidual is the concentration of CBD in the system after exposure to environmental
stresses, and Cinitial is the initial concentration of CBD added into the system.

2.12. In Vivo Bioavailability Study

Male Sprague Dawley rats (mean weight of 300 ± 15 g) at the Specific Pathogen Free
grade were provided by Beijing HFK Bioscience Co., Ltd. (Beijing, China). All animals
were housed in plastic animal cages in a ventilated room, where they were maintained at
20–26 ◦C and 40–60% relative humidity with a 12-h light/dark cycle. Water and commercial
laboratory complete food were available ad libitum, and animals were acclimated to
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environment for 7 days before the experiment. The animal studies complied with the
guidelines of Jilin University on animal care (Number of permit: SY202110009).

Rats were randomized into two groups and fasted overnight before oral administration.
Zein–WP nanoparticle and pure CBD with an equal CBD amount at 40 mg/kg were orally
administered to rats. After administration, blood was collected in heparin tubes at designed
timepoints of 0, 0.5, 1, 1.5, 2, 4, 8, and 12 h by orbital puncture. Plasma was collected by
centrifuging blood at 6000 rpm for 10 min and then stored at −20 ◦C until analysis.

For extracting CBD, plasma samples were mixed with methanol at 3-fold volume
and 5-times n-hexane, and then vortexed for 5 min. The organic layer was then obtained
by centrifugation at 9000× g for 10 min and dried by nitrogen stream. The residue was
redissolved using acetonitrile and then subjected to HPLC analysis. Pharmacokinetic
parameters including maximum concentration (Cmax), time to maximum concentration
(Tmax), area under the concentration-time curve (AUC), and mean residence time (MRT)
were estimated by DAS 2.0 (BioGuider Co., Shanghai, China).

2.13. Statistical Analysis

Data are the average value of triplicates of at least three batches and expressed as
mean ± SD. Statistical analysis of data was conducted using SPSS version 21 (SPSS Inc.,
Chicago, IL, USA). One-way analysis of variance followed by a Least Squared Differences
(LSD) model were used to compare groups at significance level of 0.05.

3. Results and Discussion
3.1. Particle Size and Zeta-Potential

The mean particle size and polydispersity index (PDI) of nanoparticles fabricated
at different zein:WP ratios are exhibited in Figure 2A. CBD-loaded zein nanoparticles
(CBD/zein) displayed an average particle size of 78 nm. The particle size was significantly
increased in CBD/zein–WP by comparison with CBD/zein (p < 0.05), attributed to the fact
that WP was absorbed in the core due to the hydrophobic effect and electrostatic interaction.
In addition, a larger core of zein may be formed when directly added into WP solution.
With increasing WP concentration, the particle size of composite nanoparticles significantly
decreased with changing zein:WP ratios from 1:2 to 1:3, and then increased (1:4 and 1:5),
p < 0.05. The decrease may be due to electrostatic repulsion and steric hindrance [16], while
the increase was due to the more involved interference of WP with particle formation and
a heavy coating of WP on the surface of zein nanoparticles [17].

Notably, the size of composite nanoparticles was still small, in the range of 140–160 nm,
even though they are increased compared with the that of zein particle. The small particle
size may be due to the fact that directly pouring WP solution into the zein ethanol/water
binary solvent resulted in immediate access of sufficient WP on the surface of zein nanopar-
ticles after it began to aggregate, avoiding the occurrence of larger particles due to steric
hindrance and the interface disturbance effect [13]. More importantly, small particle size is
a key factor for improving the oral performance of drugs when incorporated into nanopar-
ticles. Small particle size means large surface area and saturation solubility, which in turn
improve the release rate of the drug and provides a high concentration in the gastrointesti-
nal tract [18].

As demonstrated in Figure 2A, the PDI of a nanoparticle with sole zein as an encap-
sulating material was approximately 0.18, and the magnitude was significantly reduced
to 0.06–0.1 upon introduction into the WP solution (p < 0.05), revealing that nanoparticles
were uniform colloidal systems [19]. This result may have been because adequate WP
molecules can approach the surface of zein aggregates promptly and become well allocated
on particles throughout the anti-solvent procedure [13]. Specifically, when quickly mixing
anti-solvent with CBD-containing zein ethanol aqueous solution, one brief outburst of nu-
clei and a high nucleus concentration would occur. Subsequently, the resulting nuclei will
develop evenly by capturing dissolved zein molecules [20], producing narrowly distributed
small particles.
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Figure 2. Mean particle diameter, polydispersity index (PDI) (A), and zeta-potential (B) of nanoparti-
cles at zein:WP ratios of 1:0 to 1:5. Encapsulation efficiency (EE), loading capacity (LC) (C), and water
solubility (D) of CBD in nanoparticles at zein:WP ratios of 1:2 to 1:5. Note: Different lowercase letters
indicate the significant difference (p < 0.05) between samples at different biopolymer ratios.

Figure 2B illustrates that zein nanoparticles were positively charged (36.70 ± 1.76 mV),
while the combination with WP led to nanoparticle zeta-potential conversion, implying
that negatively charged WP molecules were attached on the exterior of the zein. The
data also testified to the occurrence of electrostatic interaction between zein and WP. Our
findings also demonstrated that the zeta-potential of samples with changing zein:WP
proportions climbed significantly (p < 0.05), and then remained at a permanently elevated
level. The constant surface charge of composite nanoparticles may have been associated
with the progressively saturated interaction between zein and WP when the ratio reached
1:3 [21]. Concurrently, it should be noticed that great zeta-potential values (about −40 mV)
of all samples revealed that nanoparticles could be stabilized via powerful electrostatic
repulsion [10] which may be provided by negatively charged amino acids such as aspartic
acid and glutamic acid.

3.2. Encapsulation Efficiency (EE), Loading Capacity (LC) and Water Solubility

Encapsulation efficiency (EE) and loading capacity (LC) are frequently used to assess
whether the nanoparticle is an applicable delivery system [21]. Figure 2C demonstrates that
zein nanoparticles displayed EE values at around 75% due to the intrinsic hydrophobicity
of CBD, similar to a previous study showing that the EE for lutein encapsulated by zein-
based nanoparticles can be up to 80% at a 25:1 mass ratio of zein to lutein [22]. In our
case, the EE of fabricated composite nanoparticles was significantly increased to about 89%
(p < 0.05) with nanoparticles at zein:WP ratios of 1:4 and 1:5 reaching the highest value. The
remarkedly higher EE may be due to two reasons. First, the possible larger cavity of the
zein core nanoparticles in the composite system could accommodate more CBD molecules.
Additionally, free CBD may be embedded between the zein core and the WP shell and
captured by redundant WP due to its amphiphilicity. These results denoted that there
existed a synergistic effect between zein and WP in promoting the embedding ability of
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colloidal complex nanoparticles [23]. In terms of LC, nanoparticles at polymer ratio of 1:0
showed the significantly highest value (p < 0.05), due to the lower mass of polymers.

The solubility of pure CBD in water was measured to be around 0.39 µg/mL, which was
higher than rate reported in previous studies, being 0.06 µg/mL [24] and 0.02 µg/mL [25].
Figure 2D indicates that CBD in zein nanoparticle had a solubility of 167 µg/mL, and
the value was significantly improved to 184–200 µg/mL following encapsulation into
composite nanoparticles (p < 0.05) due to their enhanced encapsulation efficiency. Clearly, a
significant improvement (p < 0.05) of about 465, 481, 496, and 505 folds for water solubility
of CBD was observed after encapsulation in zein–WP nanoparticles as the polymer ratio
grew from 1:2 to 1:5, as compared with free CBD. The enhancement of the water solubility
of phytochemicals is beneficial to incorporate phytochemicals into water-soluble foods and
improve their bioavailability in vivo [26].

3.3. Re-Dispersibility of Freeze-Dried Composite Nanoparticles

The dehydration and rehydration properties of particles are of great importance and
can be investigated by evaluating their dispersibility in water after drying [27]. As dis-
played in Figure 3A, after freeze-drying, CBD/zein was no longer re-dispersible resulted
from irreversible aggregation due to the strong hydrophobicity [28]. This unwanted phe-
nomenon was alleviated in CBD/zein–WP, indicating that water solubility was enhanced
by hydrophilic/amphiphilic WP shell coated on zein outer surface [28], which boosted the
water-binding capacity of nanoparticles and provided electrostatic repulsion and steric
stabilization [24]. Nevertheless, insoluble aggregates were still observed for dispersible
lyophilized nanoparticles at zein:WP ratios of 1:2 and 1:3, denoting that WP molecules may
be not enough to fully cover all zein particles.

Figure 3. Re-dispersibility of freeze-dried CBD-loaded nanoparticles as demonstrated by nanoparticle
appearance (A), mean particle diameter, PDI, zeta-potential (B), and re-dispersibility of CBD (C).
Note: different lowercase letters indicate the significant difference (p < 0.05) between samples at
different biopolymer ratio.

The re-dispersed nanoparticles showed obviously increased average particle sizes
compared with fresh nanoparticles (Figures 2A and 3B). Nanoparticles at a zein:WP ratio of
1:2 had a larger particle size than samples at ratios of 1:3 and 1:4. This may be attributed to
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the partially exposed zein nanoparticle surface which aggregated during the lyophilization-
rehydration process. In terms of PDI (Figure 3B), the most homogeneous suspension of
nanoparticles was achieved when the ratio of zein to WP was 1:4. Additionally, the highest
values of zeta-potential and re-dispersibility of CBD in nanoparticles were also achieved at
a mass ratio of 1:4. Considering particle size, surface charge, EE, and re-dispersibility of
nanoparticles, an optimized zein:WP ratio at 1:4 was chosen for further characterization.

3.4. XRD Diffractogram

CBD encapsulated in nanoparticles at a zein:WP ratio of 1:4 was confirmed by XRD
spectra (Figure 4A). Pure crystalline CBD exhibited characteristic peaks between 5◦ and
40◦ (2θ = 9.66◦, 10.24◦, 11.78◦, 12.53◦, 13.08◦, 15.34◦, 19.85◦, 19.03◦, 21.66◦, 22.73◦, 23.79◦,
25.29◦, 26.42◦, 29.19◦, 32.98◦), similar to those found in a previous study [8]. Zein and WP
were of amorphous form, and no sharp peaks were observed in the XRD diffractogram [29].
Physical mixtures containing the same ingredients at equivalent amounts showed similar
peaks with individual CBD at smaller intensity (as labeled by arrows). Upon embedding
in nanoparticles, the main typical peaks of CBD between 5◦ and 40◦ disappeared. The
disappearance of the peaks for CBD after encapsulation may be due to the low amount
incorporated. Additionally, by binding with protein molecules, the crystallization tendency
of CBD was inhibited, forming amorphous complexes [30]. The amorphous state is favor-
able for CBD application in oral administration due to its higher oral bioavailability than
its crystalline counterpart [28].

Figure 4. X-ray diffraction (XRD) patterns (A) and Fourier transform infrared (FT-IR) spectra (B) of
WP, zein, CBD, a physical mixture (CBD, WP and zein), CBD-loaded zein nanoparticles (CBD/zein),
and CBD-loaded zein–WP nanoparticles (CBD/zein–WP).

3.5. FT-IR Spectra

As depicted in Figure 4B, individual CBD exhibited two significant characteristic bands
at 3520 cm−1 and 3410 cm−1 corresponding to the stretching vibration of -OH, a peak at
3073 cm−1 assigned to the C-H stretching vibration of the benzene ring, peaks at 2963 cm−1,
2924 cm−1, 2855 cm−1, and 2830 cm−1 denoted for the stretching vibration of -CH3 and
-CH2-, peaks at 1626 cm−1, 1582 cm−1, 1512 cm−1, and 1441 cm−1 corresponding to the
benzene skeleton vibration, a peak at 1373 cm−1 denoted for the bending vibration of -CH3,
and one at 1215 cm−1 for the C-O stretching vibration [25]. The FT-IR spectra of physical
mixtures were presented as a simple superposition of CBD, WP, and zein, suggesting no
interaction occurred when they were mixed physically [25]. However, characteristic peaks
of CBD disappeared or merged in the spectra of the nanoparticles due to the limitation
of stretching and bending of vibrations in the CBD molecule when bound to protein [31].
Similar results were reported for resveratrol after incorporation into composite particles [28].
Additionally, the low CBD concentration may also affect its FT-IR signal.

Zein showed three main typical peaks at 3306, 1661, and 1537 cm−1, which were
ascribed to the stretching vibration of hydroxy groups, C=O stretching (amide I), and
stretching of C-N coupled with the bending of N-H (amide II), respectively. Compared
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with zein, the peak of -OH groups in nanoparticles (CBD/zein) shifted to 3308 cm−1 and
3312 cm−1, revealing that hydrogen bonding occurred between zein and CBD. The presence
of CBD also changed two major characteristic peaks of zein to 1659 cm−1, 1659 cm−1

(amide I), and 1535 cm−1, 1533 cm−1 (amide II), respectively, and their peak intensity was
significantly increased. The findings demonstrated that electrostatic and hydrophobic
interactions might exist between zein and CBD, which were ascribed to amide groups of
glutamines in zein and hydroxyl and carbonyl groups in CBD [32].

When zein formed composite nanoparticles with WP, stretching vibration peak in-
tensity of -OH increased and a blue shift (3294 cm−1) occurred. This suggested that
intermolecular forces between zein and WP included not only electrostatic attraction due
to their opposite charges but also hydrogen bonding. Similarly, a previous study reported
that hydrogen bonding was one of the dominant driving forces in the formation of zein and
WP nanoparticles [10]. Compared with the spectrum of CBD/zein, little change of peak in
amide II was observed in CBD/zein–WP, while amide I was significantly shifted. Changes
in the amide I band possibly resulted from the electrostatic and hydrophobic interaction
between zein and WP in the particles [33]. Therefore, WP molecules may bind to the surface
of zein particles by electrostatic force, hydrophobic force, and hydrogen bond, forming a
core–shell structure.

3.6. Microstructure Observed by TEM

The microstructure of nanoparticles is shown in Figure 5. The size distribution in TEM
photographs was in accordance with the results from dynamic light scattering (Figure 2A),
where the mean particle size of zein nanoparticles was smaller than that of zein–WP
nanoparticles. Uniformly smoothly spherical shaped nanoparticles were observed for
both samples. When anti-solvent was rapidly mixed with zein dispersion, a 20% ethanol-
water binary solvent system was formed immediately, which may have led to stable zein
nanoparticles with an ordered structure.

Figure 5. TEM images of CBD-loaded zein nanoparticle (A) and CBD-loaded zein–WP nanoparticle (B).

3.7. Physicochemical Stability

The particle size and CBD retention rate of nanoparticles with heating at 80 ◦C were
shown in Figure 6. The particle size of zein nanoparticles was relatively constant in the
first 30 min, and then significantly increased up to 60 min (p < 0.05). The results showed
that CBD/zein exhibited a great thermostability when exposed to the thermal process for
short time since, the thermal denaturation of zein was about 100 ◦C [34]. On the other
hand, CBD/zein–WP exhibited a significantly increasing trend in 30 min (p < 0.05) and
kept steady from 60 to 90 min. WP is heat-sensitive, and polymerization occurred under
thermal treatment, thus promoting particle size [28]. After heating at 80 ◦C, the whey
protein denatured and aggregated because the denature temperature of whey protein is
about 70 ◦C [35]. This was responsible for the increased particle size in the first 30 min and
the unchanged size in the following 60 min, probably because most proteins had already
been involved in the unfolding and aggregation [35]. As demonstrated in Figure 6B, the
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retention rate of CBD in composite nanoparticles was considerably higher than that in
zein nanoparticles after thermal treatment at 80 ◦C for 90 min, suggesting that composite
nanoparticles had the remarkable advantage of preventing CBD from thermal-induced
degradation. These results may be explained by the fact that the thick core–shell layer of
nanoparticle could act as a physical barrier that protected CBD inside [22] which prevented
its leakage into water.

Figure 6. Effects of environmental stress on properties of nano-dispersions. (A,B) The mean particle
diameter and CBD retention rate of nano-dispersions after heating at 80 ◦C for 0–90 min; and (C) the
retention rate of CBD in ano-dispersions and pure CBD under UV light irradiation for 90 min. Note:
different lowercase letters indicate a significant difference (p < 0.05) between samples s at different
biopolymer ratios.

Light is a major factor causing the oxidation, isomerization, and oligomerization of
CBD [36], which is one of the reasons for its loss of biological activity [37]. Our preliminary
study showed that free CBD declined dramatically to 0.44% after UV light treatment for
90 min. This result confirmed that CBD was extremely susceptible to light exposure due
to the UV absorption capacity of the aromatic ring in CBD. However, after entrapment in
zein–WP composite nanoparticles, the retention rate of CBD was remarkedly enhanced
to over 90% and remained relatively stable with small fluctuations during the 90-min
irradiation period (Figure 6C). The results testified that encapsulation was effective in
preventing the photochemical degradation of CBD. Protein molecules may absorb or block
light to delay the photodegradation of bioactive ingredients due to the light absorption
of aromatic side groups and double bonds in molecules [38]. Moreover, the formation of
the WP layer provided a stronger physical barrier, which hindered the transmission of UV
light and the exposure of CBD.

3.8. Storage Stability

Evaluation of the storage stability of CBD-loaded composite nanoparticles could
predict their shelf life in functional foods. Figure 7A showed that the particle size of
CBD/zein significantly (p < 0.05) increased from 77.90 ± 0.86 to 85.24 ± 2.15 nm, indicating
that aggregation happened with time due to the decreased repulsion between particles.
The storage period in 4 ◦C/dark conditions had a slight impact on the particle size of
CBD/zein–WP, indicating that strong electrostatic repulsion and steric hindrance may keep
the particles maintained a certain distance from each other to prevent the unwanted severe
aggregation [27].

The CBD retention rate was also measured and the results are shown in Figure 7B.
Free CBD in 20% ethanol was no longer detectable after 21 days of storage, which verified
its instability towards harsh environmental circumstances during preservation [37]. After
entrapment, 79% and 86% of CBD remained at the end of storage for zein and zein–WP
nanoparticles, respectively. CBD/zein–WP fabricated by modified ASP could effectively
prevent the degradation of CBD during storage and it indicated a practical contribution to
the food industry.
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Figure 7. Influence of storage period on mean the particle diameter (A) and retention rate of CBD
(B) of the composite nanoparticles. Note: different lowercase letters indicate the significant difference
(p < 0.05) between samples s at different biopolymer ratios.

3.9. Bioavailability Analysis of CBD

Pharmaceutical kinetic curves of CBD concentration in blood plasma (Figure 8) dis-
played that CBD concentrations in nanoparticles were remarkably higher than those of pure
CBD. The maximum concentration (Cmax) and area under curve (AUC) were 0.232 µg/mL
and 1.657 µg/mL/h for pure CBD, respectively, confirming the poor absorption of CBD
in vivo [39,40]. However, after encapsulation in zein–WP nanoparticles, the Cmax and
AUC0–∞ were increased to 0.466 µg/mL and 2.912 µg/mL·h with about 2-fold and 1.75-fold
enhancements, respectively. The results indicated that a high degree of CBD was absorbed
into blood circulation in rats after administration. In addition, a lower time to maximum
concentration (Tmax) (2 h) occurred with the CBD/zein–WP nanoparticles in comparison
to free CBD (4 h), indicating less time was required to reach the maximum concentration
after administration with an extensively enhanced intestinal absorption rate [4], which
would be preferable for the treatment of seizures associated with Dravet syndrome and
Lennox–Gastaut syndrome [41]. CBD in nanoparticles was still detectable in plasma at 12 h,
indicating a considerable enhancement in oral bioavailability [42].

Figure 8. Means of plasma concentration–time profiles and in vivo pharmacokinetic parameters of
pure CBD and CBD-loaded zein–WP nanoparticles.

The enhancement of the bioavailability of CBD in zein–WP nanoparticles may be
attributed to the following reasons. First, encapsulation in nanoparticles makes insoluble
CBD well dispersed in water, which increases its concentration gradient in the gastrointesti-
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nal tract and improves the passive transport of CBD across the epithelium [26,43]. Second,
zein and WP are biomaterials with mucoadhesive properties. The loading of CBD in such
materials improved its adhesion in the gastrointestinal tract, which further facilitated its
absorption in vivo [12]. Third, WP has been reported to be stable in presence of pepsin
but is degraded rapidly by pancreatin [44]. The adsorption of WP on the zein core limited
enzyme access and protected CBD through to the gastric environment. Fourth, nanoparti-
cles can be taken up by epithelial cells through endocytosis and particle size is the most
important physical property in determining the endocytic pathways [12]. The fabricated
nanoparticles in this study were at a small size scale of 140–160 nm and were more easily
endocytosed [45].

4. Conclusions

CBD-loaded zein–whey protein composite nanoparticles were successfully fabricated
by a modified anti-solvent approach. The size, surface charge, particle size distribution,
solubility, encapsulation efficiency, and re-dispersibility of nanoparticles were influenced by
the zein to whey protein ratio. A relatively small stable nanoparticle with good dispersity
was constructed at ratio of 1:4. The stability of CBD towards harsh environments and
storage was remarkably enhanced after entrapment. Pharmacokinetic study showed that
CBD in whey protein-coated zein nanoparticles had 2-times and 1.75-fold improvement in
maximum concentration (Cmax) and area under curve (AUC) in comparison with free-form
CBD. The work would be helpful for improving the application of hydrophobic functional
substances in the functional foods and pharmaceutical fields.
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