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Abstract: Modern computational techniques offer new perspectives for the personalisation of food
properties through the optimisation of their production process. This paper addresses the person-
alisation of beer properties in the specific case of craft beers where the production process is more
flexible. Furthermore, this work presents a solution discovery method that could be suitable for more
complex, industrial setups. An evolutionary computation technique was used to map brewers’
desired organoleptic properties to their constrained ingredients to design novel recipes tailored for
specific brews. While there exist several mathematical tools, using the original mathematical and
chemistry formulas, or machine learning models that deal with the process of determining beer
properties based on the predetermined quantities of ingredients, this work investigates an automated
quantitative ingredient-selection approach. The process, which was applied to this problem for the first
time, was investigated in a number of simulations by “cloning” several commercial brands with
diverse properties. Additional experiments were conducted, demonstrating the system’s ability to
deal with on-the-fly changes to users’ preferences during the optimisation process. The results of
the experiments pave the way for the discovery of new recipes under varying preferences, therefore
facilitating the personalisation and alternative high-fidelity reproduction of existing and new products.

Keywords: food personalisation; beer optimisation; recipe discovery; dispersive flies optimisation

1. Introduction

While there is much interest in the optimisation of food production processes, the po-
tential of optimisation techniques to generate recipe diversity through multiple solutions
has not been fully explored. Taking the brewing process as a test case, we wish to investigate
how optimisation techniques can target specific organoleptic properties in a way which also
supports the production of novel variants, with the potential of extending product range
on a principled basis. The complexity of the brewing process often necessitates a strict
adherence to existing recipes and the associated instructions with the aim of reducing inci-
dents and avoiding costly guessworks [1]; this is especially the case when the primary goal
is the production of a beer with specific and predetermined organoleptic characteristics.

Given the presence of several viable solutions when optimising food processes, this
real-world problem poses itself as a challenging task with an inherently underdetermined
characteristic [2,3]. This work proposes an evolutionary computation technique as the
mean to identify diverse solutions, each meeting quality constraints. We resort to a swarm
intelligence algorithm, dispersive flies optimisation (DFO) [4], to optimise beer recipes
based on predetermined organoleptic properties. Such an approach enables the use of an
automated quantitative ingredients selection, which as of today, constitutes one of the primary
experimental aspects of brewing. Figure 1 presents a high-level schematic view of the
brewing process optimisation.
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 ABV:                5.1 %
 IBU:                  40
 Colour:            40
 OG:                 1.070
 FG:                  1.034

 User-defined properties:

 No of ingredients: 16                      

HOPS:            Existing Amounts

Chinook                            100 g

Magnum                             40 g Magnum                               3 g

FERMENTABLES:

Pale Malt                            7 Kg

YEAST:

Safale S-04                       11 mL

Cara-Pils/Dextrine              1 Kg

Wheat Malt                        2 Kg

Munich Mal                        3 Kg

Roasted Barley               0.5 Kg

Amounts to use

Chinook                              11 g

Pale Malt                       2.94 Kg

Cara-Pils/Dextrine         0.03 Kg

Wheat Malt                   0.30 Kg

Munich Mal                   0.26 Kg

Roasted Barley              0.25 Kg

Safale S-04                         3 mL

Northern Brewer               100 g Northern Brewer                 10 g

Fuggles                               50 g Fuggles                                 3 g

Cascade                          100 g Cascade                              5 g

Caramel/Crystal Malt      1  Kg Caramel/Crystal Malt  0.74 Kg

Biscuit Malt                      0.5 Kg Biscuit Malt                    0.29 Kg

Chocolate Malt              0.5 Kg Chocolate Malt            0.33 Kg

Pilsner                                  5 Kg Pilsner                             0.40 Kg

Barley Flaked                  0.5 Kg Barley Flaked                0.34 Kg

 Identified properties:

 Error:                     0.02680 

 ABV:                5.1 %
 IBU:                  39.99
 Colour:            40.02
 OG:                 1.0701
 FG:                  1.034

Figure 1. Brewing process optimisation: a schematic view. Users’ desired values are provided to the
system using the control panel on the top-left corner. The corresponding optimal values, found based
on the ingredients in the inventory, are reflected in the top-right panel. The dashed lines represent
each of the in-stock ingredients, and the circles indicate the suggested quantities to use by the system.

Our method rests on uncovering an appropriate mapping of brewing elements and
target properties: such mapping is initially explored via the “reverse engineering” of some
major labels produced with known properties, which also allows us to characterise consis-
tent and validated recipes as a prerequisite to implement a generative approach. Learning
these mappings provides a strong foundation and consistent internal principles for the gen-
eration of novel and alternative solutions. We then explore our systems’ ability to adapt to
various on-the-fly changes to users preferences, affecting organoleptic properties, or ingre-
dients’ consumption level (while staying as close as possible to the predefined organoleptic
properties). Our motivation is to demonstrate our proposed method’s flexibility which
can be seen as bringing benefits not just to the design phase but also potentially to the
production phase where it can be used for added customisation, or mitigating unforeseen
issues arising during the deployment of the method into production.

Related Work

Beer brewing has attracted several attempts at optimising or automating various
elements of the process. These have however, most often, considered specific or causal
relationships between ingredients and isolated properties known to play a significant
role in consumers’ preferences (e.g., foamability, flavour profile, temperature, aroma,
and processing time). One such research by Ermi et al. [5] explores two deep learning
architectures to model the nonlinear relationship between beer in these two domains with
the aim of classifying coarse- and fine-grained beer types and predicting ranges for original
gravity (OG), final gravity (FG), alcohol by volume (ABV), international bitterness units
(IBU), and colour.

Viejo et al. [6] researched beer foamability where robotics and computer vision tech-
niques were combined with noninvasive consumer biometrics to assess quality traits from
beer foamability. It is known that foam-related parameters are associated with beer quality
and dependent on the protein content. A recent study explores the development of a
machine learning model to predict the pattern and presence of 54 proteins [7].

Furthermore, in another study, an objective predictive model is developed to investi-
gate the intensity levels of sensory descriptors in beer using the physical measurements of
colour and foam-related parameters, where a robotic pourer was used to obtain some colour
and foam-related parameters from a number of different commercial beer samples [8]. It is
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claimed that this method could be useful as a rapid screening procedure to evaluate beer
quality at the end of the production line. Developing techniques to assess quality traits
and sensory analysis of beers through virtual simulations before the brewing process can
play an important role in product development, lowering costs while maintaining specific
quality traits and sensory profiles. Our own approach falls into this category, some of the
grounding for our simulation being derived from reverse engineering of brand crafts. A
recent work [9] investigates this by using sonication and traditional brewing techniques,
with results demonstrating that the models developed using supervised machine learning
based on near-infrared spectroscopy can accurately estimate physicochemical parameters.

Optimising the aroma profile has been another areas of interest. For instance, Tre-
lea et al. [10] obtained various desired final aroma profiles while reducing the total pro-
cessing time using the dynamic optimisation of three control variables: temperature, top
pressure, and initial yeast concentration in the fermentation tank; the optimisation is based
on a sequential quadratic programming algorithm on top of a dynamic model of alco-
holic fermentation and on an aroma production model. Another recent work assesses
the final aromatic profiles and physicochemical characteristics of beers [11]. This work
presents artificial intelligence models based on aroma profiles, chemometrics, and chemical
fingerprinting obtained from 20 commercial beers used as targets.

On a related topic, mash separation is known to be a critical preprocessing step in beer
production where a high-quality stream of solubilised grain carbohydrates and nutrients is
fed to the fermentors. Recent work by Shen et al. performed a sensitivity analysis towards
mash separation improvements [12]. It concluded that strong wort volume and incoming
feed quality to the mash filter have the strongest effect on filtration time, which it sees as a
key performance metric for process optimisation.

In another beer optimisation-related task by Charry-Parra et al. [13], a technique was
developed for the identification and quantification of volatile compounds of beer. This
validation methodology enables its use as a quality control procedure for beer flavour
analysis. A computational implementation of a kinetic model has also been proposed to
rapidly generate temperature manipulations, simulating the operation of each candidate
profile [14]. In related research by Rodman et al. [15], the aim has been to gain insight into
the brewing process and provide an investigation into the influence of byproduct (diacetyl
and ethyl acetate) threshold levels on obtainable fermentation performance by comput-
ing optimal operating temperature profiles for a range of constraint levels on byproduct
concentrations in the final product. Some recent research has also been exploring faults
detection in beers using artificial intelligence methods, as well as using strain development
methodology to breed industrial brewing yeast [16,17].

In summary, previous studies have used various artificial intelligence techniques,
sometimes combined with modelling approaches, targetting fermentation, foam, aroma
profile, predicting beer flavours, , and controlling of beer fermentation process. Despite
the previous use of deep learning (DL) techniques, the majority of approaches can still
be categorised as traditional optimisation models, some based on process (e.g., kinetic)
modelling, and others on specific relationship between limited number of key variables.
To some extent, even the previous use of DL was more focussed on establishing direct
relationships between parameters than uncovering global behaviour.

To address the novel challenge of reverse brewing, our work proposes to use a gradient-
free, evolutionary approach to facilitate the discovery of diverse, yet high fidelity and novel
recipes, while taking into account both users’ preferences and their constraints. Our
approach takes advantage of some unique properties of evolutionary approaches in terms
of optimisation dynamics and the exploration of the solution space not directly covered by
previous methods. We design a unified framework for optimisation without incorporating
formulaic knowledge of some of the underlying processes (i.e. Process knowledge is only
used for the calculation of optimisation fitness functions), taking advantage of the ability of
evolutionary processes to perform both optimisation and process modelling, potentially
improving solution coverage over previous work.
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In this paper, Section 2 presents the system architecture, followed by an introduc-
tion to the evolutionary method underpinning the optimisation and solution generation.
Subsequently, the experiments are described along with the overall methodology and
performance measures to evaluate the system with real-world input. Section 3 reports on
the experiments results and provides discussion on the algorithm’s performance when
optimising more than twenty products with a diverse set of properties. Finally, in Section 4,
the paper is concluded by presenting ongoing and future work.

2. Material and Methods

This section first proposes the system architecture in Section 2.1 and the evolution-
ary method in Section 2.2. Then, a set of experiments are presented in Section 2.3 where
organoleptic properties of a selection of beers are used along with a real-world in-stock
inventory to evaluate the proposed approach by “reverse manufacturing” these commercial
beers from their target organoleptic properties which are obtained from publicly avail-
able data.

2.1. System Architecture

In the first instance, evolutionary modelling is able to accommodate a complex set
of variables and optimisation parameters. Our population-based algorithm takes an in-
ventory of existing ingredients and their weights (see Table 1) along with a desired set of
organoleptic properties for a number of brands (see Table 2) and returns optimal ingredient
lists and their associated amounts which facilitate the production of the target product.

Table 1. Real-world list of in-stock inventory.

Type Name Amount

1 Hop Cascade 100 g
2 Chinook 100 g
3 Northern Brewer 100 g
4 Magnum 40 g
5 Fuggles 50 g

6 Fermentable Pale Malt (UK) 7 kg

7 Caramel/Crystal
Malt 1 kg

8 Cara-Pils/Dextrine 1 kg
9 Biscuit Malt 0.5 kg
10 Wheat Malt (Belgium) 2 kg
11 Chocolate Malt (UK) 0.5 kg
12 Munich Malt 3 kg
13 Pilsner (German) 5 kg
14 Roasted Barley 0.5 kg
15 Barley Flaked 0.5 kg

16 Yeast Safale S-04 11 mL

Figure 1 provides a schematic view of the brewing process optimisation where the
list of ingredients are provided on the left, along with their weights in the inventory.
The organoleptic properties are provided by the user (in the top-left corner), reflecting
their preferences. The system output, recommending the recipe of the best matching users’
preferences, is shown on the right along with their corresponding organoleptic properties.
The underlying processes guiding the system are illustrated in Figure 2, along with pointers
to various experiments in the paper which evaluates different proposed features.

The formulas which allow the simulation of the fermentation process are provided in
Appendix A.1. As previously mentioned, this process modelling component is primarily
used to determine fitness functions rather than to directly guide optimisation itself.
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Table 2. Beer characteristics in a diverse set of products.

No. Product Name ABV IBU SRM OG FG

1 Imperial Black IPA 12.2 150 35 1.098 1.013
2 Guinness Extra Stout 5.1 40 40 1.070 1.034
3 Atlantic IPA Ale 8.4 80 13 1.074 1.013
4 Tokyo Rising Sun 15.4 85 71 1.125 1.023
5 Punk Monk 6.2 60 8.5 1.056 1.010
6 Santa Paws 4.7 35 22 1.048 1.013
7 Sunmaid Stout 11.1 50 100 1.102 1.026
8 Vice Bier 4.4 25 15 1.043 1.010
9 Blitz Berliner Weisse 4.3 8 4.5 1.040 1.007
10 Jasmine IPA 6.3 40 17.5 1.060 1.014
11 No Label 4.5 25 5 1.043 1.009
12 Monk Hammer 7.5 250 7.5 1.065 1.010
13 Science IPA 5.2 45 47 1.050 1.011
14 Tropic Thunder 7.5 25 86.36 1.074 1.020
15 Blonde Export Stout 7.7 55 8 1.075 1.020
16 Indie Pale Ale 4.8 30 8 1.044 1.008
17 Paradox Islay 14.2 40 127 1.112 1.015
18 Funk X Punk 7.2 42 12 1.058 1.004
19 Atlantic IPA Ale 8.4 80 28 1.074 1.013
20 Libertine Porter 6.5 45 109.5 1.067 1.020
21 Kozel Dark 4.6 35.09 21.87 1.042 1.007
22 Punk IPA 5.6 40 7.6 1.053 1.011

Range: [4.3,15.4] [8,250] [4.5,127] [1.040,1.125] [1.004,1.034]

Start

Input1: Inventory (see Table 1)

Input2: Organoleptic Properties (see Table 2)

Ingredient Recommender
(see Figure 3 and Section 3.1)

Personalise
Organoleptic

Properties

Personalise
Ingredient
Selection

Save Recipe

Customise Organoleptic Properties (Section 3.3)

Customise Ingredient Consumption (Section 3.4)

Brewing process

End

Yes

No

No

Yes

Figure 2. System architecture (please see Tables 1 and 2, Figure 3, Section 3.1, 3.3 and 3.4).
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2.2. Population-Based Optimiser

The algorithm used in this work is a population-based optimiser, dispersive flies opti-
misation (DFO) [4], which unlike many other evolutionary algorithms, uses a minimalist set
of vector/parameters [18,19]. In a preliminary study conducted recently [20], DFO has been
used alongside other well-known population-based optimisers, including: particle swarm
optimisation (PSO) [21], as one of the most well-known population-based algorithms,
and differential evolution (DE) [22], a well-known and efficient evolutionary computation
method. It has been demonstrated that DFO has outperformed these algorithms and is
used as the optimiser in this work. This algorithm belongs to the broad family of swarm
intelligence and evolutionary computation techniques and has been applied to a diverse
set of problems including: medical imaging [23], solving diophantine equations [24], PID
speed control of DC motor [25], optimising machine learning algorithms [26,27], training
deep neural networks for false alarm detection in intensive care units [28], computer vision
and quantifying symmetrical complexities [29], identifying animation key points from
medialness maps [30], and the analysis of autopoiesis in computational creativity [31].

In this algorithm, the position vector (candidate solution (each solution is a vector
whose length is equal to the number of existing ingredients, and each value in the vector
represents the amount used from each ingredient.)) of each member of the population (the
collection of candidate solutions) is defined as:

~xt
i =

[
xt

i0, xt
i1, ..., xt

i,D−1
]
, i ∈ {0, 1, 2, ..., N − 1} (1)

where i represents the i’th individual (i.e., i’th solution), t is the current time step, D is the
problem dimensionality (i.e., the number of ingredients), and N is the population size (i.e.,
the number of candidate solutions used for information exchange and communication, as is
explained). For continuous problems, xid ∈ R (or a subset of R, which is the case of this
problem, where xid is between 0 and the existing amount of the d’th ingredient).

In the first iteration, where t = 0, the d’th component (or ingredient) of the i’th
candidate solution is initialised as:

xt=0
id = U(xmin,d, xmax,d) (2)

where xmin,d = 0 and xmax,d is the maximum amount available to use for the d’th ingredient
(see Table 1).

Components of the solution vectors are independently updated in each iteration,
taking into account: current individual’s solution; current individual’s best neighbouring
solution (consider ring topology, where individuals have left and right neighbours, each
holding a solution vector); and the best solution vector in the swarm.

The update equation is

xt+1
id = xt

ind + u(xt
sd − xt

id) (3)

where

• xt
id: d’th ingredient of the i’th solution at time step t;

• xt
ind: d’th ingredient of the solution vector held by ~xt

i ’s best neighbouring individual (in
ring topology) in at time step t;

• xt
sd: d’th ingredient of the swarm’s best solution vector at time step t;

• u ∼ U(0, 1): generated afresh for each ingredient and for each solution update.

The optimisation process avoids local minima through a sampling-based restart mech-
anism. As a sampling mechanism, the individual ingredients’ amounts of the solution
vectors are reset if a random number generated from a uniform distribution on the unit
interval U(0, 1) is less than the disturbance or restart threshold, ∆ = 0.001.

Elitism is used for DFO, which essentially keeps the best found solution in each itera-
tion intact, while updating other solutions in the population. In this work, if the updated
amount of an ingredient is outside the feasible boundaries, its value is clamped to the edges
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(i.e., to either 0 or the maximum existing amount of that particular ingredient). Algorithm 1
provides an overview of the process in which the algorithm performs the optimisation task,
and Figure 3 illustrates the steps taken as part of the ingredient recommendation process.
The algorithm’s source code is available on: http://github.com/mohmaj/DFO (accessed
on 6 January 2022).

Algorithm 1 Dispersive Flies Optimisation (DFO)

1: procedure DFO (N, D,~xmin,~xmax, f )*
2: for i = 0→ N− 1 do . Initialise solutions

3: for d = 0→ D− 1 do . Going through each ingredient

4: x0
id ← U(xmin,d, xmax,d) . Initialise ingredient d of solution i

5: end for
6: end for
7: while ! termination criteria do . Main DFO loop

8: for i = 0→ N− 1 do . Evaluation: Going through each solution

9: ~xi.fitness← f (~xi)
10: end for
11: ~xs = arg min [ f (~xi)], i ∈ {0, 1, 2, . . . , N − 1} . Find the best solution

12: for i = 0→ N− 1 and i 6= s do . Update solutions except the best

13: ~xin = arg min [ f (~x(i−1)%N), f (~x(i+1)%N)] . Find i’s best neighbour

14: for d = 0→ D− 1 do . Go through each ingredient to update amount needed

15: if U(0, 1) < ∆ then . Restart mechanism when triggered

16: xt+1
id ← U(xmin,d, xmax,d) . Restart within bounds

17: else
18: u← U(0, 1)
19: xt+1

id ← xt
ind + u(xt

sd − xt
id) . Update ingredient’s amount

20: if xt+1
id < xmin,d or xt+1

id > xmax,d then . Bounds check

21: xt+1
id ← Clamp to the closest bound

22: end if
23: end if
24: end for
25: end for
26: end while
27: return ~xs
28: end procedure

* INPUT: N : population size; D: dimensions; ~xmin,max: lower/upper bounds; f : fitness function.

2.3. Experiment Setup

The first set of experiments gives an indication on the overall performance of the
system on each product when generating solutions (whose diversity and distinctness are
demonstrated in subsequent sections). This is then followed by analysing the behaviour
of the algorithm in terms of improvements throughout the process. Then, the next set
of experiments evaluates some practical features of the system, showing in particular its
adaptability towards: (1) drastic, on-the-fly changes in organoleptic properties, (2) gradual
changes in organoleptic properties during the optimisation process, and (3) system’s ability
to accept real-time user-preference on the balance of ingredients’ consumption while
preserving the user-defined organoleptic properties.

In order to set up the simulation experiments, we first adopted an inventory of ingre-
dients, along with organoleptic properties of twenty-two existing commercial beers which
were used as benchmarks. In these experiments, the population size for the DFO algorithm
was set to 50, and the termination criterion was set to reaching 50,000 function evaluation
or FEs (a counter which is incremented when a solution vector’s quality is evaluated) or
reaching the error ≤ 0.05, which is defined next. There were 50 independent runs for each
experiment, and the results are summarised over these independent simulations.

http://github.com/mohmaj/DFO
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Start

Input1: Inventory

Input2: Organoleptic Properties

Initialise population/solutions, ~x, based on Input1

Calculate each solution fitness/error, based on Input2

Find best solution vector, ~xsIs solution satisfactory?

End Update each solution, ~xi

Is any solution’s
ingredient, xid, out-

side the bound
(based on Input1)?

if xid < 0, xid = 0;
if xid > Input1d, xid = Input1d

No

Yes

Yes

No

Figure 3. Ingredient recommender.

2.4. Performance Measures

The performance measures used in this paper are (a) error: representing the proximity
to optimal solutions (this metric is used to steer the optimisation process); (b) efficiency: the
speed of convergence to optimal solutions; (c) reliability: the consistency of the algorithm
over a number of trials in reaching the optimal solutions; and (d) diversity: novelty of
solutions and their uniqueness measured by their distance from each other.

Error is defined by the quality of the solution in terms of its closeness to the optimum
position (i.e., minimisation).

Error = f (~x) =
Np

∑
i=1

√
( fpi (~x)− p∗i )

2 (4)

where~x is the list of ingredients and Np = 5 is the number of properties, with p1: ABV, p2: IBU,
p3: Colour, p4: OG, and p5: FG (where the relevant equations are provided in Appendix A.1).
p∗i represents the desired value provided by the brewers (in this case from Table 2), whose
distance is measured against the value of the solution generated by the system.

Efficiency is defined as the number of function evaluations before reaching a specified
error, and reliability is the percentage of trials where the specified error of ≤ 0.05 is reached.

Efficiency =
1
n

n

∑
i=1

FEs, (5)

Reliability =
n
′

n
× 100 (6)
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where n is the number of trials in the experiment and n
′

is the number of successful
trials. Additionally, diversity is used to measure the ability to explore the solution space
towards producing multiple solutions. There are various approaches to measure diversity.
The average distance around the population centre is shown to be a robust measure in the
presence of outliers [32]:

Diversity =
1
N

N

∑
i=1

√√√√ D

∑
d=1

(xid − x̄d)
2, x̄d =

1
N

N

∑
i=1

xid (7)

where N is the population size and x̄d is the average value of ingredient (or dimension) d
over all solutions in the population. The experiment setup for this proof of principle work
is based on simulating a realistic small-scale brewery, where the brewer’s efficiency is set
to 58% (This refers to the efficiency of equipment in extracting sugars from malts during
the mashing stage. Efficiency is higher for larger-scale industrial setups.), boil size of 24 L,
batch size of 20 L, and boil time are set to 60 min.

3. Results and Discussion

To demonstrate the process, Figure 4 illustrates 50 normalised solution vectors for
the first six products generated by the system. These vectors visualise various viable
ingredients combinations and the uptake of each of the input ingredients when reaching
the termination point. In addition to the evident solution diversity illustrated in the
visualisations, we later discuss the presence of some visible inclination (e.g., product 4)
towards specific ingredients.
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Figure 4. Ingredients combinations generated by the optimising system for the first six products. This
illustrates recommended ingredients uptake proportion, as well as independent solutions’ diversity
for each of the products. The complete set of ingredients combinations is provided in Appendix A.2
in Figure A1.

3.1. Accuracy, Efficiency, Reliability, and Diversity

Table 3 presents the results which demonstrate the system’s ability in finding solutions
for 77% of the products to the required level of accuracy (error ≤ 0.05). The remaining
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23% of the products (i.e., products 4, 7, 14, 17, and 20) share a common trait for which no
acceptable solutions can be found considering the overall constraints on ingredients’ use;
this common characteristic is the stronger colour or the SRM > 70 (see Table 2). Achieving
these strong colours requires more quantities of certain ingredients such as roasted barley
which allows for the desired colours to be acquired. This limitation by ingredients quantities
and distribution can however be circumvented by the optimisation algorithm by suggesting
potentially acceptable substitutions still resulting in the satisfaction of target properties.
The system illustrates its approach to compromise for the lack of sufficient ingredients
in the inventory by trying others which could assist with, in this case, colour strength;
looking at the fourth product and the level of fermentable consumption in Figure 4 (the
product in the first column and the second row), it can be observed that 8 out of 10 existing
fermentables (see Table 1) are used in order to approach the desired colour.

Table 3. Performance results in error and diversity.

Error (Equation (4)) Diversity (Equation (7))
Product No. Best Worst Median Mean StDev Successful Failed

1 0.0202 0.0499 0.0406 0.0394 0.0083 0.8401 –
2 0.0301 0.0500 0.0435 0.0420 0.0055 0.9113 –
3 0.0115 1.1399 0.0398 0.0602 0.1561 0.9421 0.4770
4 12.6852 12.7703 12.6852 12.6908 0.0175 – 0.5770
5 0.0147 0.4489 0.0449 0.0543 0.0638 1.0140 0.1350
6 0.0094 0.0539 0.0386 0.0361 0.0119 1.0760 0.0296
7 41.9895 41.9923 41.9895 41.9896 0.0004 – 0.7550
8 0.0051 0.0494 0.0360 0.0352 0.0091 1.1087 –
9 0.0188 0.0500 0.0394 0.0368 0.0094 0.9120 –

10 0.0126 0.1253 0.0406 0.0439 0.0260 1.0135 0.5090
11 0.0112 0.1976 0.0402 0.0414 0.0262 0.8911 0.0295
12 0.0175 1.1881 0.0475 0.1240 0.2348 0.7943 0.3480
13 0.0077 0.0495 0.0368 0.0362 0.0090 0.8648 –
14 28.9527 28.9527 28.9527 28.9527 0 – 0.7050
15 0.0175 0.1936 0.0408 0.0474 0.0344 0.9778 0.4130
16 0.0178 1.4823 0.0403 0.0770 0.2100 0.9306 0.4740
17 68.4574 68.4574 68.4574 68.4574 0 – 0.7390
18 0.0229 0.0499 0.0409 0.0396 0.0073 1.3104 –
19 0.0147 0.0500 0.0382 0.0370 0.0085 0.789 –
20 51.9948 51.9948 51.9948 51.9948 0 – 1.3700
21 0.0086 0.1128 0.0406 0.0389 0.0144 1.0997 0.0553
22 0.0075 0.0496 0.0364 0.0361 0.0095 0.8024 –

In other words, in more than three quarter of the products, where the required ingre-
dients are available, the system finds an optimal solution. In addition, there are several
indications of the consistency of system performance. One such indicator is derived from
the internal behaviour of the evolutionary algorithm and can be expressed in terms of
population diversity values for both successful and failed trials (see Table 3). This measure
illustrates the presence of diversity irrespective of finding the solutions.

Furthermore, Table 4 reports on the efficiency measure which is the speed of the
optimiser at reaching an optimal solution (i.e., the number of function evaluations, FEs,
as shown in Equation (5)). To reach the optimal solution, the median FEs range between
950 and 5675, with the median of overall efficiency over the entire set of optimised products
being 1150 FEs (out of the allowed 50,000 FEs). In terms of reliability, which measures the
frequency of ‘performing optimally’ (and excluding the “impossible” cases), the optimiser
exhibits a reliability above 84% for all the products (see Table 4).

3.2. Solution Vectors Diversity

Another objective we assigned to our approach, besides providing near-optimal solu-
tions, is to diversify the set of potential solutions as a way to support more personalised or
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inventive formulations. To evaluate the uniqueness of the solution vectors, the distances
between each pair of solutions (generated independently for each product) are studied.
These values are presented as distance matrices in Figure 5.

Table 4. Optimisation performance: efficiency and reliability.

Efficiency (Equation (5)) Reliability (Equation (6))
Product No. Best Worst Median Cases Percentage

1 600 18,050 1150 50 100
2 700 35,150 1150 50 100
3 600 – 1100 49 98
4 – – – 0 0
5 550 – 1250 43 86
6 700 – 950 49 98
7 – – – 0 0
8 500 30,300 1075 50 100
9 550 37,600 4125 50 100
10 600 – 1050 46 92
11 550 – 5675 47 94
12 650 – 3050 42 84
13 600 36,500 1000 50 100
14 – – – 0 0
15 600 – 1550 45 90
16 600 – 2400 47 94
17 – – – 0 0
18 700 8300 975 50 100
19 750 2200 1050 50 100
20 – – – 0 0
21 650 39,550 1150 49 98
22 600 49,100 2200 50 100
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Figure 5. Solution vector distances. Visualising the distance matrices of the solution vectors in the
first six optimised products (i.e., products 1, 2, 3, 5, 6, and 8). Note that, over the entire set of products,
products 4, 7, and 14 have not been optimised. As for the rest of the products, only the valid solutions
are considered (e.g., while Imperial Black IPA has 50 valid solutions, Punk Monk has 43). Table 5
presents the numerical summary of solution distance matrices, and the complete set of matrices is
provided in Appendix A.2 in Figure A2.
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One of the practical implications of having ‘distant’ solutions is their potentially
different ingredient-combinations. In other words, in some extreme cases, some ingredients
might be consumed entirely in one solution while remaining untouched in another, making
‘unique’ solutions/recipes available to users, thereby allowing them to choose based on
their target properties and processing constraints. A practical illustration of the latter
phenomenon is provided towards the end of this section.

To numerically analyse the solution diversity, Table 5 demonstrates that the products’
average solution diversity ranges consistently between 2.964 and 4.713. The distances
among solutions can be further scrutinised by looking at the distance range in the most
farther apart pairs when optimising the ingredients for each product.

Table 5. Solutions diversity: statistics.

Product No. Mean Min Distance Max Distance StDev Farthest Pair

1 3.910 0.494 8.921 1.527 (47, 49)
2 3.887 0.033 7.226 1.630 (37, 42)
3 4.554 0.354 9.302 1.992 (3, 46)
5 4.376 0.026 8.666 2.030 (24, 30)
6 3.546 0.071 7.213 1.402 (47, 48)
8 3.700 0.044 6.852 1.478 (38, 45)
9 2.964 0.012 5.727 1.638 (4, 17)

10 3.992 0.028 8.693 1.568 (38, 44)
11 3.289 0.018 6.451 1.613 (36, 45)
12 4.139 0.117 8.855 2.093 (0, 40)
13 3.652 0.010 7.230 1.486 (47, 48)
15 4.713 0.032 8.885 2.636 (33, 43)
16 3.946 0.037 7.376 1.757 (31, 44)
18 4.678 0.222 8.879 2.189 (47, 48)
19 4.123 0.592 8.778 1.732 (33, 37)
21 3.987 0.007 7.094 1.705 (43, 48)
22 4.437 0.023 8.207 2.249 (21, 49)

Given the presence of diversity in the solution vectors, an essential task is to identify
the most diverse solutions in a way that can support exploration and choice. This can be
achieved by clustering solutions in a distinct set of ‘classes’ based on their propinquity. This
process would grant users the freedom to choose distinct solutions by picking a solution
from each independent cluster. Once the unique solutions are identified, users choose
the most suitable based on their production priorities. To identify distinct clusters when
utilising K-means [33] and to find the best number of clusters for each of the products (and
avoid relying solely on one method), twenty indices [34] (e.g., [35–41]) are used; then, the
‘majority rule’ is applied to find the best number of clusters.

Figure 6 and Table 6 demonstrates that 65% of the products have at least 3 or more
clusters of solutions. In 20% of the products, the best number of clusters is 6 (which is used
as the upper bound in the calculations). Furthermore, except for one, 94% of the products
have at least one index presenting six clusters as an optimum clustering strategy.

As a case study, the solution clusters for the second product (Guinness Extra Stout)
is analysed, and as evident from Figure 7-left, what primarily distinguishes the three
identified clusters is the consumption of the following ingredients: 6th, 10th, 12th, and 13th.
Based on this, Figure 7-right illustrates the three classes through a dendrogram, and Table 7
provides the detail of clusters’ characteristics in terms of the cluster-dependent, ingredient
consumption. This illustrates that, in addition to the uniqueness of individual solutions
themselves, distance thresholds between clusters can be analysed further by using methods
such as hierarchical clustering approaches, which would be a topic for further work.
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Figure 6. Strength of the possible number of clusters (based on the indices) in six products, where
C = {2, ..., 6} represents the number of clusters. The strength of each proposed number of clusters is
determined by taking into account 20 clustering indices. The complete set of charts are provided in
Appendix A.2 in Figure A3.

Table 6. Solution clusters. The figures present the total number of solutions in each cluster when the
best clustering strategy (using majority rule) is used.

Product Clust 1 Clust 2 Clust 3 Clust 4 Clust 5 Clust 6 Majority

Imperial Black IPA 22 (44%) 28 (56%) – – – – 12 (60%)
Guinness Extra Stout 15 (30%) 11 (22%) 24 (48%) – – – 12 (60%)
Atlantic IPA Ale 26 (53%) 23 (47%) – – – – 7 (35%)
Punk Monk 17 (40%) 26 (60%) – – – – 11 (55%)
Santa Paws 15 (30%) 15 (30%) 9 (18%) 11 (22%) – – 7 (35%)
Vice Bier 10 (20%) 12 (24%) 14 (28%) 14 (28%) – – 11 (55%)
Blitz Berliner Weisse 16 (32%) 3 (6%) 13 (26%) 18 (36%) – – 10 (50%)
Jasmine IPA 8 (17%) 11 (24%) 9 (20%) 8 (17%) 6 (13%) 4 (9%) 8 (40%)
No Label 16 (34%) 13 (28%) 18 (58%) – – – 15 (75%)
Monk Hammer 27 (64%) 15 (36%) – – – 12 (60%)
Science IPA 7 (14%) 14 (28%) 5 (10%) 5 (10%) 7 (14%) 12 (24%) 9 (45%)
Blonde Export Stout 26 (58%) 19 (42%) – – – – 12 (60%)
Indie Pale Ale 23 (49%) 11 (23%) 13 (28%) – – – 11 (55%)
Funk X Punk 16 (32%) 16 (32%) 18 (36%) – – – 7 (35%)
Atlantic IPA Ale 27 (54%) 23 (46%) – – – – 12 (60%)
Kozel Dark 16 (33%) 16 (33%) 17 (35%) – – – 7 (35%)
Punk IPA 7 (14%) 14 (28%) 19 (38%) 10 (20%) – – 7 (35%)
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Figure 7. Left: Ordered solutions for Guinness Extra Stout based on clusters, C1, C2, C3, with C1:
1–15, C2: 16–26, and C3: 27–50). Right: Dendrogram of the clusters where colours green, red, and
blue represent the aforementioned clusters.
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Table 7. Clusters’ distinct characteristics in Guinness Extra Stout, illustrating varying ingredient con-
sumptions.

Pale Malt Wheat Malt Munich Malt Pilsner

Cluster 1 HIGH
Cluster 2 HIGH
Cluster 3 HIGH HIGH

3.3. Dynamic Organoleptic Changes: Drastic and Gradual Modes

The experiments in this section evaluate the system’s ability to adapt to rapid changes
in user’s preferences without the need to restart the optimisation process. These changes
are expressed in terms of the target organoleptic properties. In the initial experiment,
the system’s behaviour is examined when target properties are updated from one product
to the next during the optimisation process (e.g., consider three products, 1, 2, and 3; each
is optimised in turn, and the optimiser selects the next one, in a loop). The aim of this
experiment is to evaluate the system’s ability in handling user’s change of “options” from
one product to the next during the optimisation process. To proceed, initially one set of
the organoleptic properties, belonging to item 1 (e.g., Guinness Extra Stout) is selected,
and the optimiser is run until the target error value is reached; then, another product, item 2
(Kozel Black) is selected, followed by item 3 (Imperial Black IPA). This is repeated, and
the properties are set to item 1 again and so forth. This process is illustrated in one trial
demonstrating the system’s performance in adapting to the user’s drastic changes from
one product to the next.

Figure 8 illustrates the error values over the iterations and highlights the timing of
change from one set of user preferences to another. The transition error, which is the transi-
tioning from one set of organoleptic properties to the next, reflects the distance between
the two sets. Another noticeable feature is the shorter time required when commencing
the optimisation which ‘stretches’ over time. For instance, see item 1 which reaches an
acceptable error value in nearly 50 iterations, whereas when transitioning from item 3
(where members of the population are mainly concentrated on this particular item), the per-
sonalisation takes nearly 350 iterations to readjust to the ‘newly’ chosen product. Despite
the extended convergence time, the ability to operate in radically altered landscapes could
be attributed to the algorithm’s persistent diversity (even after convergence) as discussed
in Section 3.1.
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Figure 8. Applying drastic changes to preferences: switching from one product to the next.
The dashed vertical lines represent the moment of change from one set of organoleptic properties to
the next, and the horizontal lines present the transition error for each of the products.

While the possibility to switch from one product to the next is an essential feature,
the ability to operate when minor changes are applied is also important in practice for
various purposes, including the adaptation to marketing needs and fine-tuning adjustments
to support, for instance, end-product localisation.
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To investigate the system’s performance in dealing with these gradual changes, in an-
other run, the IBU value of Guinness Extra Stout is incrementally increased by 5, from 40 to
80. The performance of the system in this setup is illustrated in Figure 9, where it is shown
that the error value “bounces back” and the system identifies new sets of ingredients to
match the updated IBU. Note that other than the start of the process when the optimiser
is converging to the solution (the shaded area), in the remaining part, the population self-
organises faster around the new desired features. Achieving the original user preference
(i.e., the organoleptic properties for Guinness Extra Stout) takes 16 iterations; however,
from this point onward, the gradual changes to the user’s IBU preference only require on
average 4.5 iterations. This illustrates the ability of our specific evolutionary algorithm to
adapt to real-time changes in optimisation parameters. As a consequence, our approach can
cope with users’ on-the-fly gradual adjustments of properties, thereby allowing a smooth
fine-tuning of parameters, without the need to restart the entire optimisation process.
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Figure 9. Applying gradual changes to preferences: gradually increasing IBU for Guinness Extra
Stout by 5. The figure shows the gradual change (from IBU = 40 onwards) requires less than half the
time steps to accommodate user’s updated preferences.

3.4. User-Defined Ingredient Consumption

From a practical perspective, another important feature required by small-scale brew-
ers and industry brewers alike is the ability to consume a user-defined supply of certain
ingredients while accommodating the required organoleptic properties. The rationale is
the presence of certain ‘favourite’ ingredients whose quantities brewers may wish to fix.
This can be because of their flavours, marketing preferences, ingredient costs, or other
physicochemical characteristics, thereby exercising autonomy of choice rather than reliance
on the optimiser. As outlined in the system architecture, when loading the inventory, users
can specify the amounts they would like considered as part of the recipe discovery process.
For the purpose of the experiment here and to evaluate the impact on the optimisation
process, the usage of certain ingredients is set to correspond to their full consumption.
Therefore, users can select the ingredients they would like consumed completely for their
current brew ‘on-the-fly’ while observing (in ‘real-time’) the impact on discovering the
right recipe with the desired organoleptic properties.

To test this feature and as illustrated in Figure 10, initially, the system finds a recipe
for Guinness Extra Stout using the existing inventory, and then each of the fermentables
(see Table 1) are singled out in turn and set to be consumed entirely (except for the heaviest
ingredients: ‘Pale Malt’ and ‘Pilsner’, which are 7 and 5 kg, respectively); this process
continues until a recipe is discovered. Subsequently, the existing constraint is retired, and
then the next fermentable is set to be individually consumed and so forth. The results
illustrate the system’s ability to dynamically update recipes to reflect users’ needs and
preferences in varying conditions.

In summary, we have shown the potential of the swarm intelligence method in the
optimisation of various aspects of the brewing process. Since this first proof of concept
was based on simulated data, we demonstrated a mechanism for the “reverse brewing”
of commercial brands by taking into account the desired organoleptic properties and an
inventory of ingredients in order to validate the algorithm with real-world data. In future
work, when further objectives are considered, the use of multiobjective optimisation tech-
niques (and by extension, multicriteria decision making methods) becomes necessary in



Foods 2022, 11, 351 16 of 23

order to investigate the Pareto front and subsequently identify the nondominated, Pareto
optimal solutions [42–44]. In this work, in addition to using the presented system as an an-
alytical tool to discover ideal and distinctive recipes, the reported experiments demonstrate
adaptability and flexibility in dealing with a number of users preferences.
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Figure 10. User selection of one ingredient at a time for full consumption.

4. Conclusions

In this work, a population-based evolutionary technique is used to automate the
quantitative ingredients selection, which is one of the key experimental aspects of brewing,
specially in low- and medium-cost production environments. The performance of the pre-
sented tool was evaluated on a diverse set of real-world products to ensure its generalised
applicability in generating solutions with distinctive features.

This work analyses the system’s adaptability on a number of practical and experimen-
tal scenarios with ‘on-the-fly’ changes in users preferences. The system’s ability in dealing
with the properties of one product to the next was investigated, as well as its behaviour in
adapting to gradual changes in some of the organoleptic properties. Additionally, the opti-
miser’s capability in exploring user preferences for consuming certain ingredients (while
adhering to the predefined organoleptic properties) was examined.

In summary, the proposed approach alleviates the challenges of producing novel
recipes based on their organoleptic properties. This is an attractive feature for both commer-
cial producers where varieties and quantities of ingredients are not hard constraints and,
in less equipped setups such as microbrewing, with stronger ingredients-based constraints,
allowing the design of high-quality beer. Our results suggest that evolutionary methods
should find their place in the panel of optimisation techniques: they are able to incorporate
process modelling through their fitness functions, without being constrained or determined
by a detailed modelling of the process itself, which would compromise solution explo-
ration and interactive solution tuning; they can be interfaced with standard representations
for ingredients selection; and most importantly, they can reconcile optimisation with the
exploration of solution diversity.

Considering the high experimental cost associated with innovation in the beer brewing
process, the approach we have introduced constitutes an optimiser and an analytical tool,
which could be used from a simulation perspective or as a way to guide real-time experiments.

As part of the future work, we will add the more complex flavour and aroma profiles
as well as foam characteristics, which are dependent, among others, on the fermentables
and hops.
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Appendix A. Process Equations, List of Visualised Solutions, Distances and Clusters

Appendix A.1. Process Equations and Optimisation Variables

In the brewing process, ingredients are divided in three broad categories: hops,
fermentables, or yeasts. In addition to weight, several other relevant physicochemical
features are needed to calculate their impact in the brewing process (e.g., hop’s alpha
and beta; fermentable’s yield, colour, moisture and diastatic power; yeast’s minimum and
maximum temperatures; and attenuation). Beer’s taste changes significantly depending
on the exact quantities and varieties of ingredients and their timing in the process. The
key organoleptic properties which contribute towards computing the fitness value of
the solutions are alcohol by volume (ABV), bitterness or international bitterness unit
(IBU), and colour, which are used by the optimiser to determine the suitability of each
proposed solution. From a food science perspective, the brewing process, although in
some parts empirical, has been the subject of many descriptions and partial formalisation,
which are, however, sufficient to derive relevant equations. More specifically, a number of
formal relationships between ingredients and target organoleptic properties are sufficiently
specific to support the generation of fitness functions. Some of the relevant formulas are
discussed next.

ABV = f (OG, FG) and is defined as [45]:

ABV = 131.25× (OG− FG) (A1)

When ABV is above 6% or 7%, the following is used, providing a higher level of
accuracy [46,47]:

ABV =
76.08 (OG− FG)FG
0.794 (1.775−OG)

(A2)

IBU is determined by taking into account the bitterness produced by hops or the hop
extracts (from the fermentables), thus IBU = f ( ~hops, ~fermentables, volume). The bitterness
produced by hops is calculated as follows:

IBUh =
Nh

∑
i=1

10wiαi(1− exp−0.04ti )

4.15 v
1.65× 0.000125(OG−1) (A3)

where Nh is the number of hops; ~w represents the weight; v is the volume or batch size;~t is
time in minutes; and fermentables’ bitterness is defined as:

IBU f =

N f

∑
i=1

gi wi
v

(A4)

where N f is the number of fermentables; and ~g is ‘IBU gal per lb’ which is associated
with each fermentable and is known for each ingredients. The final IBU is the sum of the
individual IBUs: IBU = IBUh + IBU f .
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IBU/GU is often described in the following categories: cloying, slightly malty, bal-
anced, slightly hoppy, extra hoppy, and very hoppy. IBU/GU = f (OG, IBU):

IBU/GU =
IBU

1000(OG− 1)
(A5)

Colour is mainly determined by malts and hops. The two main protocols to measure
colour are Standard Reference Method (SRM) and European Brewing Convention (EBC).
Table A1 shows the representative colours. SRM, which is used in this work, was initially
adopted in 1950 by the American Society of Brewing Chemists. The value of SRM is
determined by measuring the attenuation of light of a particular wavelength (430 nm) in
passing through 1 cm of the beer, expressing the attenuation as an absorption and scaling
the absorption by a constant (12.7 for SRM or 25 for EBC, where EBC = SRM× 1.97). Stone
and Miller [48] proposed malt colour unit (MCU), which is defined as:

MCU =

N f

∑
i=1

ci wi
v

(A6)

where~c refers to grains’ colour (fermentables’ colour). As shown in the equation above,
for more than one grain type, the MUC is calculated for each, and all the values are
aggregated. However, MUC tends to overestimate the colour value for darker beers
(MUC > 10.5). Thus, Morey [49] derived the following to deal with SRM up to 50:

SRM = 1.4922
N f

∑
i=1

ci w0.6859
i
v

(A7)

Table A1. Beer colour in SRM and EBC values.

SRM EBC Colour
2 4 Pale Straw
3 6 Straw
4 8 Pale Gold
6 12 Deep Gold
9 18 Pale Amber

12 24 Medium Amber
15 30 Deep Amber
18 35 Amber-Brown
20 39 Brown
24 47 Ruby Brown
30 59 Deep Brown

40+ 79 Black
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Figure A1. Ingredients combinations generated by the system. This illustrates the recommended
ingredients uptake proportion and the independent solutions’ diversity for each product.
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Figure A2. Solution vector distances. Visualising the distance matrices of the solution vector in the
first 12 products. Note that products 4, 7, and 14 are not included as they have not been optimised.
As for the rest of the products, only the valid solutions are considered (e.g., while Imperial Black IPA
has 50 valid solutions, Punk Monk has 43). These graphs illustrate the diversity in the generated
solutions. Table 5 presents the numerical summary of solution distance matrices.
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Figure A3. Strength of the possible number of clusters in each product, where C = {2, ..., 6} represents
the number of clusters. The strength of each proposed number of clusters is determined by taking
into account 20 clustering indices.
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