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Abstract: The aim of this study was to assess the hygienic status of raw milk cheese and determine
the trends of virulence and antimicrobial resistance in thermotolerant Escherichia coli. Two hundred
samples of karish, a popular Egyptian fresh raw milk cheese, were analyzed for coliforms and fecal
coliforms using a standard most probable number (MPN) technique. Overall, 85% of samples were
unsuitable for consumption, as they exceeded Egyptian standards for coliforms (10 MPN/g), and 65%
of samples exhibited coliforms at 44.5 ◦C. Of 150 recovered thermotolerant strains, 140 (93.3%) were
identified as E. coli. Importantly, one Shiga toxin-producing E. coli (STEC) strain carrying a striking
virulence pattern, stx1−, stx2+, eae−, was detected. Eleven strains (7.8%, 11/140) showed resistance
to third-generation cephalosporins. Antibiotic resistance genes included blaSHV, blaCTX-M, qnrS, tet(A),
and tet(B), which were present in 4.3%, 2.8%, 0.71%, 2.1%, and 0.71% of isolates, respectively. In
conclusion, this study indicated that hygienic-sanitary failures occurred throughout the production
process of most retail karish cheese. Furthermore, our findings emphasize the need for adopting
third-generation cephalosporin-resistant E. coli as an indicator for monitoring antimicrobial resistance
in raw milk cheese to identify the potential public health burden associated with its consumption.

Keywords: thermotolerant coliforms; cheese; antibiotic resistance; virulence; Shiga toxin-producing
E. coli (STEC)

1. Introduction

Cheese making is a primary industry worldwide. In general, cheese is still made on
a relatively small scale. The traditional practices for preparing raw milk cheeses account
for the rich diversity of cheeses available [1]. Several types of fresh raw milk cheeses are
consumed worldwide, such as quark, chevre, ricotta, cottage, and queso fresco. Karish
is the most popular fresh cheese in Egypt. Like quark and cottage cheese, karish cheese
is manufactured without the addition of rennet. It is an ancient type of white, soft, lactic
cheese made from curdled skim milk curd, “Laban Rayeb”, and neither acidifying agents
nor lactic acid bacteria are added. However, lactic acid is created when lactose is fermented
by the endogenous microflora of milk during the cheesemaking process, which is potent
against some bacteria [2]. In general, bacterial contamination of raw milk during the milking
process or from environmental sources (such as contaminated water or milking equipment)
is a significant contributor to the microbial contamination of raw milk cheeses [3,4]. In
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processing plants, workers’ hands and cheese-contact surfaces have been recognized as
primary sources for contamination with spoilage and pathogenic bacteria [2].

Coliforms are a group of Gram-negative, non-spore-forming, rod-shaped aerobes
and facultative anaerobes that inhabit the intestinal tract of all vertebrates. They can
ferment lactose when incubated at 35–37 ◦C, producing acid and gas [5]. The coliform
bacteria that grow at 44.5 ◦C are referred to as fecal coliforms, including Escherichia coli,
Klebsiella pneumoniae, Enterobacter agglomerans, Enterobacter aerogenes, Enterobacter cloacae,
and Citrobacter freundii [6]. It is now clear that the ability of fecal coliforms to grow at high
temperatures has little relationship with their fecal origin [7]. However, fecal coliforms
are considered more directly associated with fecal contamination of mammals than other
members of the coliform group [8]. Therefore, in the European Union, New Zealand, and
Australia, the “fecal coliform” term has been substituted by what is considered a more
suitable descriptor of this group of bacteria, “thermotolerant coliforms” (THC) [9]. Of
note, despite misinterpretation of results of the coliform assay, current food and water
quality regulations all over the world are still primarily based on coliform concentrations.
They are a commonly used indicator of the hygienic quality of foods and water. It should
be mentioned that the Egyptian standard of karish cheese lacks a limit for fecal coliform
counts, and thus the acceptability of karish cheese is based on the count of coliforms [10].

E. coli is an extremely diverse species, including strains with little or no pathogenic
potential and those that have acquired chromosomal or extra-chromosomal virulence
operons to become highly infectious and virulent towards humans, animals, or both [11].
Pathotypes of diarrheagenic E. coli are grouped according to their virulence genes into
enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC),
diffuse adherent E. coli (DAEC), enteroaggregative E. coli (EAEC), adherent-invasive E. coli
(AIEC), cell-detaching E. coli (CDEC), and Shiga toxin-producing E. coli (STEC) [12]. The
latter pathotype includes a subgroup designated as enterohemorrhagic E. coli (EHEC),
which is characterized by harboring the eae gene (encodes intimin, which is involved in
attaching and effacing phenotype). The pathogenicity of STEC is mainly reliant on the
development of one or two Shiga toxins (Stx1, Stx2), causing mild to severe symptoms of
hemorrhagic colitis (HC). However, two major lethal syndromes, namely hemolytic uremic
syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP), have been reported as
outcomes associated with STEC infection [13].

The evolution of resistance to clinically important antibiotics in foodborne bacteria,
which can transmit antibiotic resistance determinants to human pathogens, is a critical
public health concern. Notably, the propensity of E. coli to interchange genetic material with
different bacteria makes them great candidates for understanding the reservoir of resistance
genes in food of animal origin. One of the most prominent resistance mechanisms in E. coli
that have been widely reported worldwide is the production of β-lactamases, particularly
extended-spectrum β-lactamases (ESBL), which confer resistance to extended-spectrum
cephalosporins such as cefotaxime, ceftriaxone, and ceftazidime [14]. Worryingly, ESBL-
producing bacteria have shown co-resistance to several other classes of antimicrobials
such as aminoglycosides, tetracyclines, quinolones, chloramphenicol, and sulfonamides.
Consequently, third-generation cephalosporin-resistant E. coli was selected as an indicator
to monitor antimicrobial resistance in food animals in the European Union [15]. However,
there is a dearth of information about using such indicators for the surveillance of resistance
to zoonotic antimicrobials in food of animal origin, particularly raw milk cheese. It is worth
mentioning that harmonization of surveillance programs of antimicrobial resistance in
humans, animals, and foods of animal origin all over the world, using known indicators, is
important from a One Health perspective [16].

Of note, there are many studies on the phenotypic and molecular characteristics of
coliforms and fecal coliforms in water and some dairy foods [6,17], but there are few
reports on the phenotypic and molecular characteristics of this group in unpasteurized
dairy products. Therefore, this study aimed to assess the hygienic status of raw milk cheese
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in Egypt, which could contribute to the development of public health protection monitoring
and control activities for dairy industries.

2. Materials and Methods
2.1. Collection of Samples

A total of 200 karish cheese samples were collected from different small-scale super-
markets (60 samples), retail (100 samples), and dairy shops (40 samples) in the El-Menofia
governorate of Egypt. All samples were produced not more than one day before the collec-
tion date and kept in the refrigerator for sale. Samples were collected in aseptic packages
and transferred to our laboratory in an icebox. Upon arrival at the laboratory, they were
maintained in the refrigerator at 4 ◦C and examined within 6 h of their arrival.

2.2. Fecal Coliform Analysis

Cheese samples (25 g) were diluted with 225 mL (dilution 1:10) of buffered peptone
water (BPW) (Oxoid, Hampshire, UK) and homogenized in a stomacher. Seven consecutive
dilutions (from 10−2 to 10−8) were performed. Coliform populations were estimated using
the three-tube most-probable-number (MPN) method [18]. Briefly, one milliliter of the
diluted cheese sample (10−1 to 10−8) was added to three lauryl sulfate tryptose broth tubes
(9 mL) (Merck, Darmstadt, Germany) with inverted Durham tubes and incubated at 37 ◦C
for 48 h [18]. All gas-positive samples were then inoculated into Escherichia coli broth (EC
broth) (9 mL) (Oxoid, Hampshire, UK) and incubated at 44.5 ◦C for 48 h.

2.3. Bacterial Identification

The EC broth-positive samples were streaked onto eosin-methylene blue agar (EMB)
(Oxoid, Hampshire, UK) and incubated at 35 ◦C for 24 h. Three colonies representing
different morphological types on the EMB plates were subcultured for subsequent charac-
terization. Isolated colonies were biochemically confirmed, as previously described [18].

2.4. Antimicrobial Susceptibility Testing

All isolates were characterized by antimicrobial susceptibility testing for 16 antimi-
crobials (Oxoid, Hampshire, UK) using a disc diffusion method in accordance with the
Clinical and Laboratory Standards Institute (CLSI) guideline [19]. The selected antimi-
crobials are important in both clinical and agricultural settings and utilized to assess
acquired resistance in E. coli and other Enterobacteriaceae [15,19]. They were as follows
(µg): amoxicillin-clavulanic acid (20/10), ampicillin (10), aztreonam (30), cefepime (30),
cefixime (5), cefotaxime (30), cefpirome (30), ceftazidime (30), ceftriaxone (30), ciprofloxacin
(5), gentamicin (10), imipenem (10), nalidixic acid (30), streptomycin (10), sulfamethoxazole-
trimethoprim (23/75), and tetracycline (30).

2.5. Screening and Confirmatory Tests for β-Lactamase and Extended-Spectrum β-Lactamase
(ESBL) Production

All isolates were tested for β-lactamase production using nitrocefin (Oxoid, Hamp-
shire, UK), as described previously [20]. Isolates showing β-lactamase production in the
nitrocefin test were further screened for ESBL production by the double-disc synergy test
(DDST). DDST was performed as a standard disc diffusion assay on Mueller Hinton agar
(MHA) following CLSI recommendations [19]. All presumptive ESBL-producing isolates
were subjected to phenotypic confirmation tests using ESBL clavulanic acid (CLA) com-
bination discs [19]. Cefotaxime/clavulanic acid (CTX/CLA; 30/10 µg) and ceftazidime/
clavulanic acid (CAZ/CLA; 30/10 µg) discs (Becton Dickinson, East Rutherford, NJ, USA)
were used. ESBL production was defined as an increase in the diameter of the zone of
inhibition of ≥5 mm for either ceftazidime or cefotaxime in combination with clavulanic
acid compared with the diameter when tested alone [19].
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2.6. Molecular Analysis

Total DNA was extracted using a rapid boiling procedure, as previously described [21].
Enterobacterial repetitive intergenic consensus (ERIC)-PCR [22] and susceptibility patterns
were used for clone delineation. One representative per clone was included. E. coli isolates
were assigned to phylogenetic groups, as described previously [23]. The presence of
virulence and antibiotic resistance genes was identified by PCR in isolated strains. Primer
sequences are listed in Supplementary Table S1.

2.7. Statistical Method

Box-and-whisker plots using log10-transformed data of MPN/g were produced to
visually explore the dispersions and central tendencies of the data [24]. The boxes illustrate
median values (horizontal line through the box) and the interquartile range; the whisker
lines represent the lowest and highest values within 1.5 times the interquartile range. Violon
plots were also produced to represent the frequency of samples [24]. Both box-and-whisker
and violin plots were prepared using R studio [25].

2.8. Visualization of Genotypic and Phenotypic Patterns

The ComplexHeatmap (v2.6.2) R package [26] was used to plot a summary heatmap
for the resistance or susceptibility to different antimicrobials and the virulence patterns of
our STEC strain and STEC strains identified in 17 studies published in the last decade.

3. Results and Discussion

Coliforms were detected in 94% (188/200) of analyzed cheese samples. The majority of
samples (85%, 170/200) were unsuitable for consumption as they exceeded the maximum
Egyptian standard for coliforms (10 MPN/g) [10]. The visual distribution of the MPN/g of
coliforms and fecal coliforms is presented in Figure 1. The coliform counts ranged from a
minimum of 3 MPN/g to a maximum of 9.3 × 105 MPN/g with a mean value of 1.5 × 105.
Of note, 75% of samples contained more than 1.1 × 103 MPN/g (above the first quartile).
However, a higher count of coliforms with a mean value of 2.9 × 107 cfu/mL was previously
reported in Brazil [27]. On the other hand, in the US, a considerable percentage of raw milk
cheeses (42%) were contaminated with coliforms at a concentration of > 10 cfu/g [7]. Our
data reveal how unsanitary manufacturing practices during the production and handling
of raw milk cheese may jeopardize the product’s microbiological quality, the situation that
was reported in both developed and developing countries.

On the other hand, 65% (130/200) of samples exhibited fecal coliforms at 44.5 ◦C. The
load of contamination by fecal coliforms was within the range of 16 to 3.4 × 105 MPN/g,
with 75% of samples containing more than 6.4 × 103 MPN/g (Figure 1). Notably, about half
of the samples (47.7%, 62/130) had fecal coliforms with concentrations between 104 and
105 MPN/g. Similarly, Araujo et al. [28] reported a distinct distribution of fecal coliforms,
with 93.3% of samples containing fecal coliforms from 105 to 106 MPN/g. Interestingly,
in developing countries, the dissemination of food safety awareness material has been
minimal, and this study underlines the need for better hygiene measures for preparing raw
milk cheese. Enhanced hygiene practices, including pasteurization on dairy farms and at
small factories, should be carried out to improve the quality and safety of raw milk cheese.

Thermotolerant E. coli is the primary bacterium in fecal coliforms and is considered
the most precise indication of fecal contamination because it does not come from the
environment but is only seen in high quantities in the feces of humans and warm-blooded
animals [5,7]. In this study, 150 strains were isolated at 44.5 ◦C. Analysis of the population
structure of isolated strains revealed that most isolates were thermotolerant E. coli (93.3%,
140/150) and K. pneumoniae (6.7%, 10/150). The high occurrence of thermotolerant E. coli
in our samples revealed possible fecal contamination during milk collection and cheese
processing. Regarding the limit of E. coli, unlike several international standards that set
a permissible limit of 10–1000 E. coli in cheese samples [5], the Egyptian standard stated
that karish cheese must be free from E. coli [10]. Given that E. coli was not detected in
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five cheese samples out of 130 samples containing fecal coliforms, thus 62.5% (125/200) of
analyzed samples did not comply with the Egyptian standard. Higher occurrences of E. coli
at percentages of 100% [27] and 97.7% [28] were detected from cheese samples in Brazil. On
the other hand, lower occurrences of 40% [29] and 22% [7] were reported in Mexico and the
US, respectively. It is worth mentioning that while E. coli and fecal coliforms are thought
to be linked to fecal contamination, they do not provide a sufficient level of resolution to
distinguish between human and animal transmission routes.
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Figure 1. Violin plots overlaid on box and whisker plots showing the distribution of log 10 MPN/g
of coliforms and fecal coliforms in raw milk cheese samples. The box represents 50% of data values,
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box are the 75th and 25th percentile, respectively. The whiskers (error bars) above and below the box
represent the highest and lowest values within 1.5 times the interquartile range and indicate the 90th
percentiles and 10th percentiles, respectively. White spots represent the outliers. The width of the
violin plot reveals the frequency of samples.

Phylogenetic analyses have shown that E. coli strains belong to five phylogenetic
groups (A, B1, B2, D, and F) [23]. Most commensal strains belong to groups A and B1,
whereas virulent extra-intestinal strains belong mainly to group B2 and, to a lesser extent,
group D [30]. Interestingly, detecting a specific phylogenetic group or groups in food
isolates may prove valuable as a risk assessment marker for food safety research. In previ-
ous studies, animal and human E. coli isolates exhibited significant shifts in phylogenetic
distribution, with the former being mainly from phylogenetic groups B1, while the latter
was predominantly from phylogenetic group A [31–33]. In this study, phylogenetic analysis
revealed that 88.6% (124/140) of E. coli isolates belonged to group A, and some were from
group B1, 11.4% (16/140), suggesting that indirect fecal contamination probably origi-
nated from the cheese makers because of poor hygienic practices during the production of
karish cheese.

Analysis of the susceptibility status of THC isolates revealed that 60 (42.8%, 60/140)
isolates were susceptible to all antibiotics tested, 47 (33.6%, 47/140) isolates were resistant
to one antibiotic, and 20 (14.3%, 20/140) isolates were resistant to two antibiotics. Multiple
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resistance (to three or more antimicrobial agents) was observed in 13 isolates (9.3%, 13/140).
The phenotypic and genotypic characteristics of 80 thermotolerant E. coli strains that
showed resistance to at least one antimicrobial are presented in Figure 2. Overall, the
highest rates of resistance were observed for ampicillin (30.7%, 43/140), cefixime (16.4%,
23/140), streptomycin (16.4%, 23/140), and tetracycline (12.8%, 18/140). Of note, none
of the isolated strains were resistant to the fourth generation cephalosporins (cefepime
and cefpirome), a carbapenem (imipenem), and monobactam (aztreonam). Visualization
of the antimicrobial resistance profiles of isolated strains using a heatmap revealed three
clusters (Figure 2). Cluster 1 and 2 included strains that were not resistant to any of the
third-generation cephalosporins tested in this study. The majority of the strains (83.7%,
67/80) showed resistance to one or two classes of antimicrobials and were included in
cluster 1. Cluster 2 included two strains, KC-9 and KC-42, which showed resistance to
antimicrobials belonging to three or more classes of antimicrobials and thus classified as
multidrug-resistant strains. Cluster 3, on the other hand, was made up exclusively of
isolates that were resistant to one or more third-generation cephalosporins as well as one
or more antimicrobial classes.

Interestingly, in the recent ranking of medically essential antimicrobials conducted by
the World Health Organization (WHO), third-generation cephalosporins were classified
as “highest priority critically important antimicrobials” [34]. Thus, a closer follow-up for
the emergence and dissemination of resistance to this group of antibiotics in animal and
food of animal origin is essential for public health. A striking finding in this study is that
11 strains (7.8%, 11/140), which made up cluster 3, showed resistance to two or three clinically
important third-generation cephalosporins, including cefotaxime (6.4%, 9/140), ceftriaxone
(5.7%, 8/140) and ceftazidime (7.1%, 10/140) (Figure 2). Worryingly, nine (6.4%, 9/140) strains
were confirmed as ESBL-producers (KC-10, KC-18, KC-32, KC-40, KC-50, KC-53, KC-54, and
KC-60), five (3.6%, 5/140) strains (KC-40, KC-50, KC-53, KC-60, and KC-28) showed the
antibiotic resistance pattern, “CRO (ceftriaxone) + CTX (cefotaxime) + CAZ (ceftazidime)”,
and three (2.1%, 3/140) strains (KC40, KC-53, and KC54) considered as multidrug-resistant
strains because they showed co-resistance to at least three different classes of antimicrobials.

Notably, the discovery of a ceftriaxone-resistant strain, KC-28, that was not an ESBL
producer supports Tamma and Humphries’ hypothesis [35] that non-susceptibility to third-
generation cephalosporins is not an accurate proxy for ESBL production. It was also not
surprising that strains KC-5, KC-10, KC-18, and KC-32, which harbored either blaCTX-M
or blaSHV, were susceptible to one or more third-generation cephalosporins, given that
such genotype–phenotype discrepancy was previously described in clinical isolates [19].
Compared to our findings, a higher occurrence of ceftriaxone-resistant E. coli strains (17.3%)
was reported in Mexico [29]. However, our findings contrast with a previous study that
could not detect cefotaxime resistance in 319 E. coli strains isolated from raw milk and raw
milk cheese in Brazil [27]. Interestingly, the relatively high frequency of third-generation
cephalosporine-resistant E. coli strains detected in this study prompts increased attention
of researchers to routinely perform susceptibility to this group of antibiotics in food iso-
lates. We believe that testing food isolates for resistance to at least three third-generation
cephalosporins, such as ceftriaxone, cefotaxime, and ceftazidime is critical for accumulating
sufficient antimicrobial resistance data in this type of cheese and determining the burden
of its consumption.

Globally, antimicrobial resistance genes in commensal bacteria are an indirect risk
to public health, as they increase the genomic pool from which pathogenic bacteria can
acquire resistance genes. In this study, resistance to quinolones, which was included
in the WHO list of highest priority critically important antimicrobials used for human
treatment [34], was detected in one strain (KC-53) (0.7%, 1/140) which carried the plasmid-
mediated quinolone resistance gene, qnrS (Figure 2). On the other hand, PCR amplification
of β-lactam resistance genes showed that 4.3% (6/140) and 2.8% (4/140) of isolates were
positive for blaSHV, and blaCTX-M, respectively. Further, of the six tetracycline resistance
genes screened, tet(A) and tet(B) were detected, with 2.1% (3/140) of strains carrying tet(A)
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and 0.71% (1/140) carrying tet(B). The antibiotic resistance genes detected in this study
provided important clues about their ability to be horizontally transmitted, as they are
usually carried on mobile genetic elements.
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numbers of strains are on the right of the heat map, followed by the identified antibiotic resistance
genes. The dark blue color of the box indicates the resistance to the antimicrobial, while the white color
indicates the susceptibility to the antimicrobial. The dendrogram on the left reflects the hierarchical
clustering of antibiotic resistance profiles in the isolated strains. The numbers on the dendrogram (1 to
3) indicate the numbers of clusters. The dendrogram on the top reflects the hierarchical clustering of
screened antibiotics. Abbreviations of the antimicrobials are AMC, amoxicillin-clavulanic acid; AMP,
ampicillin; CAZ, ceftazidime; CFM, cefixime; CIP, ciprofloxacin; CRO, ceftriaxone; CTX, cefotaxime;
GEN, gentamicin; NAL, nalidixic acid; STR, streptomycin; SXT, sulfamethoxazole-trimethoprim and
TET, tetracycline.
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In Egypt, the over-counter availability of antibiotics and the lack of adequate antibiotic
stewardship and laws to regulate the use of antibiotics for animals and people make
it challenging to utilize antibiotics responsibly. As a result, finding multiple antibiotic-
resistant and multidrug-resistant E. coli strains in retail raw milk cheese samples from
Egypt is not surprising. However, in the absence of antimicrobial resistance pattern data for
isolates from humans and animals in Egypt, it cannot be deduced with confidence whether
contamination from animal, human, or both sources has occurred. Our findings corroborate
that conducting national surveillance programs in Egypt for periodically monitoring the
prevalence of antimicrobial-resistant E. coli strains in retail raw milk cheese is crucial to
ensure its safety.

To gain insight into the role of karish as a vehicle for transmission of diarrheagenic
E. coli, we examined different virulence factors in the isolated E. coli strains. One strain
(KC-119) (0.71, 1/140) carried the sxt2 gene, which is alarming as epidemiological studies
found that Stx2, not Stx1, is more frequently linked to severe illness and development of
HUS [36,37]. Even though the absence of the intimin coding gene in this strain (eae) led to
its exclusion of the enterohemorrhagic E. coli (EHEC) group but it still has the potential
to be injurious to human health, considering that some eae-negative strains were found
to be associated with human diseases [38]. Notably, the occurrence of STEC in raw milk
cheeses showed a slightly wide variation between and within countries. For instance, on
the one hand, the occurrence of STEC was 2.5%, 2.25%, 0%, and 0% in raw milk cheese
samples from Italy, Egypt, the US, and Brazil, respectively [39–41]. On the other hand,
relatively higher occurrences of 5.7% and 8% were reported in Switzerland and Mexico,
respectively [29,42]. Several hypotheses have been proposed to explain this issue, including
loss of stx genes during isolation, the presence of high levels of competing bacteria, and
natural inhibitors produced within dairy products that interfere with STEC isolation [43].
Given the risk of STEC transmission to humans through raw milk cheese-eating, as well
as the serious health consequences of STEC infection, further study is urgently needed to
address this problem and develop an agreement on the best procedure for isolating STEC
from raw milk cheeses.

A striking finding of our study is the detection of virulence pattern, stx1−, stx2+, eae−,
that was frequently detected in STEC strains isolated from cattle in different countries all
over the world, such as Argentina [38,44], France [45], and Portugal [46]. To increase our
understanding of the spread of this pattern in STEC isolated from raw milk cheeses, we
investigated its occurrence among other patterns in STEC strains isolated from natural
milk cheeses worldwide in the last decade. To this end, we constructed a heat map for
depicting the virulence patterns of STEC reported in 17 studies. As illustrated in Figure 3,
the virulence patterns were categorized into seven distinct clusters representing seven
virulence patterns. Eleven studies (61.11%, 11/18), including our study, found the virulence
pattern “stx1−, stx2+, eae−,” which makes up cluster 1. STEC was shown to carry stx2
with one or both stx1 and eae genes in 13 (72.2%, 13/18) investigations, forming clusters
4, 5, and 7. Our strain clustered with strains isolated from raw milk cheeses in Egypt
and European countries, including France, England, Italy, and Switzerland. Surprisingly,
this virulence pattern was detected in 27 out of 29 STEC strains isolated from raw milk
cheese in Switzerland [42]. We assume that STEC strains carrying this virulence pattern
may find their way to cheese through fecal contamination from cattle during the milking
process. Worryingly, given that cheese-making processes can induce phage production,
leading to the presence of Stx phages as free particles in cheeses [47], the possibility of
other pathogenic and non-pathogenic bacteria acquiring stx genes remains. Our findings,
together with the data depicted in Figure 3 from the globally disseminated STEC, reveal
that raw milk cheese is a potential reservoir of stx genes, particularly stx2, posing a threat
to human health.
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Figure 3. Heatmap showing virulence profiles of our strain and published strains isolated from raw
milk cheeses in different countries in the last decade. All virulence patterns discovered in each of
the 17 investigations were depicted once, regardless of their frequency. The dark blue color of the
box indicates the presence of the gene, while the white color indicates the absence of the gene. On
the right side of the heatmap, the country of origin of each strain and the year of publication of each
study were written. The following studies were included: Study 1 [48]; Study 2 [49]; Study 3 [50];
Study 4 [51]; Study 5 [39]; Study 6 [42]; Study 7 [52]; Study 8 [53]; Study 9 [27]; Study 10 [54]; Study
11 [29]; Study 12 [40]; Study 13 [55]; Study 14 [56]; Study 15 [57]; Study 16 [41]; and Study 17 [58].
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4. Conclusions

The high prevalence and loads of coliforms and fecal coliforms found in this study
indicated that hygienic-sanitary failures occurred throughout the production process of
most retail karish cheese in Egypt. In line with the earlier idea of employing indicators
to track antimicrobial resistance in humans and food-producing animals [15], we propose
that antimicrobial resistance surveillance systems in raw milk cheese be harmonized using
markers like third-generation cephalosporin-resistant E. coli. These indicators are recom-
mended to reflect the current state of antimicrobial resistance in this type of cheese and, as
a result, to identify potential health hazards associated with its consumption. On the other
hand, considering that contamination of raw milk cheese by STEC may not be entirely
controlled through the cheesemaking process [59,60], the finding of stx2-positive E. coli
in this study, as well as other prior studies, highlights the importance of routine STEC
surveillance in retail raw milk cheese to assure its safety.
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