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Abstract: Colitis is a colon mucosal disorder characterized by intestinal damage and inflammation.
This current study aimed to evaluate the effect of meroterpenoid-rich ethanoic extract of a brown
algae, Sargassum macrocarpum (MES) on dextran sulfate sodium (DSS)-induced colitis in mice and
explore the possible mechanisms. Mice were given 4% DSS in drinking water for 7 days to induce
colitis, followed by 3 days of regular water. MES (12 mg/kg body weight) or celecoxib (10 mg/kg
body weight) was administrated orally to mice on a daily basis during these 10 days. Both MES
and celecoxib supplementations significantly attenuated DSS-induced weight loss, shortening of
colon length, elevated myeloperoxidase activity as well as histomorphological changes of colon. MES
and celecoxib reduced the inflammation level of colon tissue, as indicated by its suppression on a
panel of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-17, tumor necrosis factor α,
and interferon γ, and a group of inflammatory proteins, including intracellular adhesion molecule 1,
vascular adhesion molecule 1, matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and inducible
nitric oxidase. In addition, their administration down-regulated pro-inflammatory cytokines in
serum. Moreover, the supplementation of MES suppressed the DSS-induced hyperactivation of Akt,
JNK, and NF-κB signaling pathways. Taken together, our results demonstrate that MES ameliorates
DSS-induced colitis in mice, suggesting that MES may have therapeutic implications for the treatment
of colitis.

Keywords: Sargassum macrocarpum; inflammatory bowel disease; colitis; anti-inflammation; dextran
sulfate sodium; NF-κB

1. Introduction

Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative
colitis (UC), is a chronic and recurrent gastrointestinal disorder characterized by recruitment
and undesired retention of immune cells in inflamed digestive track. Symptoms include
weight loss, fever, diarrhea and bloody stools [1,2]. IBD affects millions worldwide and its
prevalence increases in Asian countries, such as China and South Korea [3–5]. The precise
etiology of IBD and underlying mechanisms remain elusive. However, many studies have
shown that causes of IBD involve environmental, individual genetic susceptibility, infection,
and immunological factors [6,7]. Currently, therapeutic agents for IBD includes TNF-α
antagonists, aminosalicylates, steroids, and immunomodulators [8]. However, long-term
use of these drugs have adverse effects, such as gastrointestinal intolerance, hepatotoxicity
and increased malignancies [9]. Effective and safe products, especially with natural origin,
for the suppression of IBD are needed.
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The progress of IBD involve a variety of inflammatory-related proteins. For in-
stance, activation of immune cells elevates the release of pro-inflammatory cytokines
and chemokines, such as TNF-α, interleukin-1β (IL-1β), and IL-6, that drive the inflamma-
tory process which leads to tissue damage [10]. Adhesion molecules, such as intercellular
adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), expressed
by leucocytes and endothelial cells, modulate the recruitment of circulating immune cells
to the inflamed intestine [11]. Proteolytic activities of matrix metalloproteinases (MMPs),
as extracellular matrix degrading endopeptidases, including MMP-2, MMP-9 (gelatinases)
and MMP-13 (collagenases), are associated with tissue-destruction and damage [12].

Seaweed has been utilized as food, medicines, fertilizer, and animal feed for cen-
turies [13]. Seaweed shows the ability to ameliorate digestive problems, reduce cancer
occurrence, obesity, and cardiovascular diseases [14,15]. With its health benefits being
recognized, its consumption is growing. A group of seaweed-derived substances has
exhibited protective effects against colitis-induced colon damages, such as aqueous ex-
tract of Laminaria japonica [16], a mineral extract from Lithothamnion corallioides [17], and
fucoidan from Fucus vesiculosus [18]. Sargassum macrocarpum, a brown alga, is a rich source
of anti-inflammatory compounds [19–22]. In previous studies, we have found a strong
anti-inflammatory activity of meroterpenoid-rich ethanoic extract of S. macrocarpum (MES)
using macrophages, human umbilical vein endothelial cells, and collagen-induced rheuma-
toid arthritis mice [21,23,24]. It also shows regulation on critical inflammatory response
signaling pathways, such as MAPK and NF-κB [24,25]. These two pathways strongly
influence the course of UC [24,26].

Dextran sulfate sodium(DSS)-induced colitis is a widely used animal model of colonic
inflammation that resemble several features of UC. Therefore, in this study, we investi-
gated the effects of MES supplementation on intestine condition, inflammatory cytokines,
inflammation regulation pathways, using DSS-treated mice.

2. Materials and Methods
2.1. Reagents

Primary and secondary antibodies were obtained from Santa Cruz Biotechnology
(Santa Cruz, CA, USA) and Abcam (Danvers, MA, USA). Enhanced chemiluminescence
(ECL) detection kit was purchase from GE Healthcare Bio-Sciences (Piscataway, NJ, USA).
Enzyme-linked immunosorbent assay (ELISA) kits and Proteome profiler array kit (Mouse
XL Cytokine Array Kit) were obtained from R&D System (Minneapolis, MN, USA). Dextran
sulfate sodium (DSS, molecular weight 36–50 kDa) was obtained from MP Biomedicals Inc.
(Irvine, CA, USA).

2.2. Preparation of MES and Analysis of Chemical Components

S. macrocarpum was harvested along the coast of Busan, South Korea, in May 2015. The
specimen was identified by an algal taxonomist (C.G. Choi), at the Department of Ecological
Engineering, Pukyong National University, South Korea. Voucher specimen was deposited
in Dr. Choi’s laboratory (CCG51814). The fresh material of S. macrocarpum was air dried
and stored in a deep-freezer until subsequent extraction. The extract preparation and active
component analysis have been described previously [24]. In brief, dried sample (1.0 kg) was
extracted twice with 70% (v/v) ethyl alcohol (5 L each) for 3 h each at 70 ◦C. The ethanol
extract was filtered through an ultrafiltration system (MWCO, 50 kDa) and evaporated
ethanol with vacuum evaporator (Eyela N3010, Tokyo, Japan) until the lipid compound
was separated from the water fraction. The separated lipophilic fraction was washed with
distilled water twice and concentrated by a vacuum evaporator at 45 ◦C until water content
was less than 5% (w/w). The combined extracts were concentrated and lyophilized by a
vacuum evaporator at 45 ◦C to obtain the MES (80 g). The isolated compounds from MES
were identified as sargahydroquinoic acid (SHQA) (37.6%), sargachromeol (SCM) (6.23%),
and sargaquinoic acid (SQA) (1.89%), according to our previous study [27].
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2.3. Animals and Experimental Design

All mouse studies were accomplished with the guidelines of the Korean National
Institute of Health Guide for the Care and Use of Laboratory Animals, and were approved
by the Animal Ethics Committee of Pukyong National University. Six week-old BALB/c
male mice were purchased from Central Lab Animal Inc. (Gyeonggido, Korea). After
one week of acclimation, mice (n = 8 per group) were randomly assigned to four groups:
(1) control, (2) DSS, (3) DSS + MES (12 mg/kg body weight), and (4) DSS + celecoxib
(10 mg/kg body weight) (Figure 1). Colitis was induced through drinking water containing
4% (w/v) DSS. The mice received either regular drinking water (control group) or 4% DSS
drinking water (the other three groups) for 7 days and thereafter all mice were provided
with regular drinking water for 3 days. Celecoxib, a cyclooxygenase-2 (COX-2) selective
inhibitor, significantly ameliorated colitis in various animal models, and therefore was
used as a positive control [28–31]. All the mice were fed with an AIN-93G purified diet.
During the 10-day course, the DSS + MES group mice were given MES (12 mg/kg BW),
and DSS + celecoxib group mice were given celecoxib (10 mg/kg BW) via oral gavage on
a daily basis. Control and DSS groups were given an equal volume of 20% propylene
glycol. After one day of fasting, all mice were sacrificed by cervical dislocation. The
intake amount of MES was determined based on our previous study, which observed a
strong anti-inflammatory effect of both 12 mg MES/kg BW and 24 mg MES/kg BW on
lipopolysaccharide-stimulated mice [32]. The difference between 12 mg MES/kg BW and
24 mg MES/kg BW was not significant. Therefore, we hypothesized that 12 mg/kg MES
may exert anti-inflammatory effect in DSS-induced colitis mice.

Figure 1. Experimental design. Mice were given 4% DSS in drinking water for 7 days to induce
colitis. MES (12 mg/kg BW) or celecoxib (10 mg/kg BW) was given for 10 days. DSS: dextran sulfate
sodium; MES: meroterpenoid-rich ethanoic extract of a brown algae, Sargassum macrocarpum.

2.4. Dosage Information

The human equivalent dose (HED) is determined by the following equation: HED
(mg/kg) = Animal dose (mg/kg) × Km ratio [33]. Km ratio was taken as 0.081 from mouse
to human. Therefore, HES = 12 mg/kg × 0.081 = 0.97 mg/kg. MES up to 100 mg/kg body
weight has been shown to be well-tolerated with little to no toxicity in mice [25].

2.5. Disease Activity Index (DAI) Score

The mice were checked daily for colitis based on their body weight, stool consistency,
and gross rectal bleeding. The disease activity index (DAI) score was determined by
combining scores of body weight, stool consistency, and gross rectal bleeding, as previously
described [34]. Each score was measured as follows: body weight (0 = no change; 1 = 1–5%;
2 = 5–10%; 3 = 10–20% and 4 = ≥ 20%), stool consistency or diarrhea (0 = normal; 1 = some
soft; 2 = soft; 3 = unformed/mild diarrhea and 4 = severe watery diarrhea), and visible
fecal blood (0 = normal, 1 = slightly bloody; 2 = bloody; and 3 = blood in whole colon).
Colons were immediately removed after sacrificing, washed with PBS then length of the
colons was measured using caliper.
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2.6. Histopathological Analysis

One-third of each colon was fixed with 4% paraformaldehyde. After dehydration and
paraffin-embedding, colons were cut into 7 µm sections and stained with hematoxylin and
eosin. The images of stained colon tissues were taken with a Moticam photomicroscope
(Motic, San Antonio, TX, USA). Histological score was evaluated as described earlier [35,36].
The severity of histopathology was assessed based on the three following categories:
epithelial changes (0: normal, 1: loss of epithelium structure, 2: erosion of epithelium, 3:
severity destruction of epithelium), overall crypt damage (0: normal, 1: focal, 2: lesion
of 1/3 area, 3: lesion of 2/3 area, 4: lesion of whole area) and quality and dimension of
inflammatory cell infiltration (0: few infiltration of neutrophil, 1: neutrophil infiltration of
less than 25% of sampled crypts, 2: neutrophil infiltration of more than 25% but less than
50% of sampled crypts, 3: neutrophil infiltration of more than 50% of sampled crypts).

2.7. Immunohistochemical Staining

Paraffin-embedded colon tissues were sectioned to 5 µm, then the sections were
deparaffinized with xylene and rehydrated with ethanol. The sections were incubated in
PBS containing 3% H2O2 for 10 min to inhibit endogenous peroxidase. The sections were
then rinsed with PBS, and blocked with 1% bovine serum albumin for 30 min at room
temperature. Then, sections were incubated with the inducible nitric oxide synthase (iNOS)
antibody (Santa Cruz Biotechnology; dilution 1:100) at 4 ◦C overnight. After washing
three times in PBS for 5 min each time, sections were incubated with secondary antibody
(1:100) for 1 h at room temperature. The sections were stained by DAB chromogen kit and
counterstained with hematoxylin.

2.8. Myeloperoxidase (MPO) Activity Assay

MPO activity was determined according to the manufacturer’s instructions for MPO
activity assay kit (Abcam, Danvers, MA, USA). Briefly, colon samples (20 mg) were thawed
and homogenized with cold assay buffer and then centrifuged at 20,000× g for 2 min at
4 ◦C. Fifty microliters of the supernatant were added to a black 96-well microplate with
clear bottom and 50 µL of MPO reaction mixture was added. Fluorescence intensity was
measured on a microplate reader at Ex/Em = 485/525 nm. All experiments were performed
in triplicate. MPO activity was indicated as units/mg of protein.

2.9. Measurement of Cytokines and Chemokines in Serum

The levels of cytokines and chemokines in serum were determined using a Mouse
XL Cytokine Array Kit (R&D, Minneapolis, MN, USA) following the manufacturer’s
instructions. Briefly, membranes were blocked with blocking buffer for 1 h, serum samples
were subsequently added and incubated overnight at 4 ◦C. Membranes were then incubated
at room temperature for 1 h after mixing with a detection antibody cocktail. After washing,
membranes were incubated for 30 min with streptavidin-horseradish peroxidase conjugate
working solution. After washing, membranes were incubated for 1 min using a Chemi
Reagent Mix, then exposed to an X-ray film for 5 min. Quantitative analysis of cytokine
or chemokine spots were performed using a CS analyzer ver. 3.00 software (ATTO Co.,
Tokyo, Japan).

2.10. Western Blot

Colon tissues were homogenized with RIPA buffer containing a protease inhibitor and
phosphatase inhibitor cocktail on ice. The procedure for Western blot has been described
before [21]. The protein bands were captured using CCD camera system EZ-Capture II
(ATTO & Rise Co., Tokyo, Japan) and data were analyzed by CS analyzer ver. 3.00 software
(ATTO Co., Tokyo, Japan).
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2.11. Statistical Analysis

Data were expressed as means ± standard deviations (SDs) of at least three indepen-
dent experiments unless otherwise indicated. Data were analyzed using one-way analysis
of variance (ANOVA), flowed by Tukey’s post hoc analysis. Differences with a value of
p < 0.05 were considered statistically significant. All analyses were performed using SPSS
for Windows, version 10.07 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. MES Ameliorated DSS-Induced Colitis

The protective effect of MES against colitis was evaluated by body weight, DAI, and
colon length. As shown in Figure 2a, from Day 4 of the intervention, mice showed a
significant body weight loss due to DSS, however, MES and celecoxib could attenuate
such a loss. Furthermore, from Day 4, notable poor stool formation and rectal bleeding
were observed in DSS-treated mice, led to a significant increase in DAI score (Figure 2b).
Those symptoms were observed from Day 5 of MES group and Day 6 of celecoxib group.
Compared to the DSS group, MES and celecoxib groups showed lower DAI scores until the
end of the treatment course. Colon length shortening is another feature of colitis induced
by DSS. As shown in Figure 2c,d, DSS treated group showed shorter colon length compared
to the control group, while MES and celecoxib supplementations significantly alleviated
the shortening.

3.2. MES Ameliorated Histological Damage in Colon Tissue and Inhibited Infiltration of
Inflammatory Cells

DSS-treated mice exhibited pronounced histological changes, such as disruption of the
epithelial barrier, destruction of cryptal glands structure, and infiltration of inflammatory
cells (Figure 3a). MES and celecoxib supplementations significantly ameliorated these
damages. In addition, quantified histological scores from MES and celecoxib groups were
significantly lower than those of the DSS group (Figure 3b).

To examine the infiltration of inflammatory cells into the colon, MPO activity of colon
tissue was also measured. As shown in Figure 3c, MPO activity was remarkably increased
by DSS. Whereas MES and celecoxib strongly inhibited its activity, to an extent even lower
than the control group. These results demonstrated that MES efficiently inhibits neutrophil
infiltration into DSS-caused inflamed colon.

Figure 2. Cont.
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Figure 2. MES supplementation ameliorates symptoms of DSS-induced colitis. (a) Body weight from
day 0 to day 10. (b) Disease activity index (DAI) scores. (c) Gross picture of colons, measured in
mm. (d) Quantification of length of colons from each group mice obtained on Day 11. All data are
expressed as mean ± SD. All data are expressed as mean ± SD. Bars with no common letters are
significantly different (p < 0.05). DSS: dextran sulfate sodium; MES: meroterpenoid-rich ethanoic
extract of a brown algae, Sargassum macrocarpum.

3.3. MES Suppressed the Release of Inflammatory Molecules in Colon Tissue and Serum

DSS markedly elevated the level of pro-inflammatory cytokines such as TNF-α,
IL-1β, IL-17, and IFN-γ in colon (Figure 4). Meanwhile, MES treatment strongly sup-
pressed the elevation of these inflammatory mediators. These results suggest that the
protective effect of MES on DSS-induced colitis is largely related to the suppression of
pro-inflammatory cytokines.
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Figure 3. MES supplementation ameliorates DSS-induced tissue damage. (a) Hematoxylin and eosin
(H & E) images (magnification, ×100 left), scale bar = 100 µm. (b) Histological scores. (c) Myeloperox-
idase (MPO) activity of the colon tissues. All data are expressed as mean ± SD. Bars with no common
letters are significantly different (p < 0.05). DSS: dextran sulfate sodium; MES: meroterpenoid-rich
ethanoic extract of a brown algae, Sargassum macrocarpum.

The overexpression of inflammatory-related proteins, MMP-2, MMP-9 and MMP-
13 has been reported to be involved in colon damage during colitis [37]. DSS exposure
significantly elevated MMP-2, MMP-9 and MMP-13 expressions in colon, however, MES
and celecoxib strongly attenuated their production (Figure 5a).

Adhesion molecules, such as ICAM-1 and VCAM-1, suppress the circulation of lym-
phocytes and propagate the inflammatory process by stimulating their migration into
inflamed bowel tissue. DSS induced the expression of ICAM-1 and VCAM-1 in colon,
which was strongly inhibited by MES (Figure 5b). Besides ICAM-1 and VCAM-1, iNOS ex-
pression was also strongly attenuated by MES administration compared to the DSS-treated
mice. As shown in Figure 5c, the reduced expression of iNOS in colonic mucosa by MES
and celecoxib was corroborated by immunohistochemical analysis. However, the difference
was less pronounced than Western blot. It may be due to the nonspecific binding in the
immunohistochemical samples.
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Figure 4. MES supplementation suppresses levels of pro-inflammatory cytokines in colon of DSS
induced colitis mice. Protein levels of TNF-α, IL-1β, IL-17 and IFN-γ were determined by Western
Blot. All data are expressed as mean ± SD. Bars with no common letters are significantly different
(p < 0.05). DSS: dextran sulfate sodium; MES: meroterpenoid-rich ethanoic extract of a brown algae,
Sargassum macrocarpum.

Besides the inflammatory status of the colon, the level of pro-inflammatory cytokines
and chemokines in serum was also assessed using a Proteome Profiler Array assay kit. As
shown in Supplementary Figure S1a,b, DSS increased the level of a variety of chemokines
(MCP-1, RANTES, MIP-3β, MIP-1α, KC, and MIP-2), inflammatory molecules (myeloper-
oxidase, E-selectin, and P-selectin), and ILs. Meanwhile, MES and celecoxib suppressed
the elevation of those pro-inflammatory molecules. The cytokines (MMP2, MMP-9, IL-17A
and IFN-γ) suppressed by MES in the colon was also lower in the serum of MES group.
However, levels of TNF-α and IL-1β were suppressed by MES in colon but not in serum.
In addition, MES and celecoxib also showed different effects on the release of cytokines,
such as MIP-1α/β, CD14, or IL-23.

3.4. MES Suppressed Signaling Proteins in Colon Tissue

NF-κB regulates the expression of pro-inflammatory cytokines and mediators in
inflammatory responses [38]. The activation of NF-κB is primarily regulated by interaction
with inhibitory IκB proteins. As shown in Figure 6a, in colon tissue, DSS strongly elevated
the phosphorylation of NF-κB (p65), while MES administration markedly suppressed its
phosphorylation. In line with that, DSS induced the phosphorylation of IκB-α, an inhibitor
of NF-κB activation, which was not seen in the MES and celecoxib groups.
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Figure 5. MES supplementation represses levels of inflammation-related proteins in colon of DSS-
induced colitis mice. Total protein levels of (a) MMP-2, -9, and -13 and (b) ICAM-1, VCAM-1, and
iNOS were determined by Western Blot. (c) Representative immunohistochemically stained slides
with iNOS antibody in colon tissues (magnification, ×100 left), scale bar = 100 µm. All data are
expressed as mean ± SD. Bars with no common letters are significantly different (p < 0.05). DSS:
dextran sulfate sodium; MES: meroterpenoid-rich ethanoic extract of a brown algae, Sargassum
macrocarpum; MMP, matrix metalloproteinase; ICAM-1, intercellular adhesion molecule-1; VCAM-1:
vascular cell adhesion molecule-1; iNOS, inducible nitric oxide synthase.

MAPKs (e.g., ERK, JNK and p38 MAPK) and Akt have been implicated in the regula-
tion and release of pro-inflammatory cytokines in the course of UC [26,39]. DSS treatment
resulted in a marked increase of the phosphorylation of Akt and JNK (Figure 6b), but
not ERK and p38 MAPK (data not shown). Treatment with MES and celecoxib strongly
suppressed the phosphorylation of Akt and JNK.

These results indicated that MES inhibited the production of pro-inflammatory cy-
tokines through blocking of the phosphorylation of Akt, JNK and NF-kB signaling pathways
in DSS-induced colitis.
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Figure 6. MES administration inhibits NF-κB, Akt and JNK signal pathways in DSS-induced colon
tissues. Protein levels of (a) NF-κB, p-IκBα, (b) p-Akt, Akt, p-JNK, and JNK were determined by
Western Blot. All data are expressed as mean ± SD. Bars with no common letters are significantly
different (p < 0.05). DSS: dextran sulfate sodium; MES: meroterpenoid-rich ethanoic extract of a
brown algae, Sargassum macrocarpum; NF-κB, nuclear factor kappa-light-chain-enhancer of activated
B cells; Akt, protein kinase B; JNK, Jun N-terminal kinase.

4. Discussion

The majority of colitis patients suffer from a chronic disease course with intensive
pain, rapid weight loss, swelling of the colon tissue, and rectal bleeding [1]. Treatments for
colitis include TNF–α antagonist, aminosalicylates, steroids, and immunomodulators [8].
However, adverse effects of these drugs, such as gastrointestinal intolerance, hepatotoxicity
and increased malignancies, make it necessary to develop effective and safe alternative
treatment [40,41].

MES, a meroterpeniod rich extract of brown alga S. macrocarpum, exhibited a strong
anti-inflammatory activity, in multiple cell and animal models [24,33,42]. Its anti-inflammatory
and immune-modulating activity is attributable to a panel of components including SHQA,
SCM and SQA [21,32,43–45]. In this study, we aimed to assess the effect of MES in colitis,
an inflammatory disease, based on a DSS-induced colitis mouse model. Our results show
that administration of MES significantly ameliorate DSS-induced colitis via modulation of
mucosal barrier and inflammation.

DSS-fed mice present distinct symptoms of colitis, including body weight loss, colon
shortening, bloody diarrhea, disruption of epithelial barrier, destruction of crypt, and
infiltration of inflammatory cells [46]. Our results demonstrate that many of the symptoms
were effectively alleviated by the supplementation of MES. The effect of MES at 12 mg/kg
was comparable to celecoxib at 10 mg/kg. As a selective inhibitor of COX-2, celecoxib is
prescribed for the management of pain and inflammatory disorders [29,47], and was used
as a positive control in the present study.

Defects of epithelial barrier and cryptal glands are strongly implicated in the patho-
genesis of colitis, since disruption of barrier integrity facilitates the translocation of lumen
bacteria into the mucosa [47,48]. Infiltration of immune cells into the intestinal mucosa in
response to insult in the colon is another key feature of colitis [49]. Based on histological
images, the lesion of colon and inflammatory cell infiltration in DSS-induced mice was
ameliorated by MES to an extent similar with celecoxib. MPO is a heme-containing peroxi-
dase released at sites of inflammation by activated leukocytes and excessive generation of
MPO-derived oxidants have been linked to tissue damage in IBD [50]. Our results revealed
that increased MPO activity in DSS mice was effectively suppressed by both MES and
celecoxib. Overall, our findings support a protective role of MES against tissue damage
in colitis.

Pro-inflammatory cytokines produced by hyperactivated immune and stromal cells
are pivotal in the initiation and development of colitis. The imbalance between pro-
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inflammatory and anti-inflammatory cytokines in IBD leads to disease progression and
tissue destruction [51]. For instance, TNF-α induces hypervascularization and angiogenesis,
causes barrier alterations and promotes cell death of intestinal epithelial cells [51]. IL-1β
promotes colitis-associated tumorigenesis [52]. Deficiency of those pro-inflammatory
cytokines results in reduced colitis and anti-cytokine therapies involving TNF-specific
agents composes an important part of clinical therapy in IBD treatment [53–56]. In MES
and celecoxib groups, we observed lower levels of pro-inflammatory cytokines, including
interferon-γ (IFN-γ), TNF-α, IL-1β, and IL-17 in colon biopsies. This was in line with
the decreased immune cell infiltration into colon. The serum cytokine array results also
corroborated such an anti-inflammatory function of MES and celecoxib. The ability of
seaweed to regulate imbalance immune system in intestinal inflammation has been reported.
For example, the administration of Laminaria japonica strongly inhibited pro-inflammatory
cytokines in DSS-induced colitis mice [16].

Matrix metalloproteinases (MMPs) comprise a large group of zinc- and calcium-
dependent endopeptidases, which are involved in the degradation of extracellular matrix
components, including collagen, glycoproteins and proteoglycans, and cleavage of bioactive
proteins [37]. MMP expression increases in inflamed intestinal tissue of IBD patients, and
the symptoms of acute colitis could be attenuated by synthetic MMP inhibitors or MMP-9
knockout [57–59]. The role of MMPs in IBD may be contributed to their regulation on
epithelial barrier function, immune response, angiogenesis and fibrosis [12,60]. In this study,
we observed that the elevation of MMP-2, -9, and -13 expressions in colon of DSS-treated
mice was markedly inhibit by MES as well as celecoxib.

The expression of adhesion molecules such as ICAM-1 and VCAM-1 are upregulated
by cytokines and they function to stop the circulation of lymphocytes and allow their
migration into inflamed bowel tissue and propagate the inflammatory process [11,61]. Anti-
adhesion molecules have been developed for the management of IBD [11]. In the present
study, downregulated expression of ICAM-1 and VCAM-1 in colon by MES administration
in DSS-fed mice was observed. The lower ICAM-1 and VCAM-1 expression level was in line
with the lower cytokine level of colon in MES group mice, and the attenuated expression of
ICAM-1 and VCAM-1 in turn repressed the migration of leukocytes into colon.

Besides pro-inflammatory cytokines, inducible iNOS is another inflammatory marker
whose expression is predominantly at the site of inflammation [62]. Overproduction of nitric
oxide by iNOS has been implicated in colitis, and iNOS deficient mice showed reduced
sensitivity to DSS-induced colitis [62]. Along with alleviated levels of pro-inflammatory
cytokines, MMPs, and adhesion molecules, MES-induced diminished iNOS level supported
a strong anti-inflammatory capacity of MES in colitis.

One major pro-inflammatory transcription factor, NF-κB, is markedly activated in
IBD patients and strongly influences the course of mucosal inflammation [63]. In unstim-
ulated cells, NF-κB is retained in the cytoplasm by NF-κB-inhibitor of kappa B (IκB)-α.
Upon activation, IκB-α is phosphorylated and detached from NF-κB, which leads to the
translocation of NF-κB into the nucleus, where it binds to downstream target gene DNA
binding site [64]. Effects of the therapeutic drugs used to treat IBD such as anti-TNF-α
antibodies, sulfasalazine and methotrexate are known related to suppression of NF-κB
activity [24]. Previous studies have shown that some Sargassum species exert immune re-
sponse regulation function through NF-κB signaling pathway in vivo and in vitro [65–68].
Our data revealed that MES administration suppressed the expression of NF-κB and the
phosphorylation of IκB-α. The ability of MES and its active components SHQA and SQA
to inhibit NF-κB activation was also seen in various cell models and collagen-induced
rheumatoid arthritis mice [20,21,24,25].

Akt and JNK signaling pathways are also implicated in the regulation and release of
pro-inflammatory cytokines, and promote the progress of colitis [26,39]. The protective
role of Akt and JNK inhibitors on colitis have been reported [69,70]. Our results indicated
that phosphorylation of Akt and JNK were elevated in colon of colitis mice, however MES
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supplementation strongly suppressed their activation. The inhibition of MES on Akt and
NF-κB may be contributed to its active compounds SHQA and SQA [20,21,23,71].

This study also has its limitations. For example, functional evaluation of intestinal
permeability was not performed; BALB/c mice were used in inducing acute colitis, instead
of strains that could develop chronic colitis after induction, such as C57BL/6; whether
the beneficial effects was due to the treatment effect of MES or due to its interference
of induction of colitis was not investigated in this study; IBD is a chronic inflammatory
condition, while an acute colitis model was used in current study, the effect of MES on
human UC needs to be further studied.

5. Conclusions

In conclusion, our study showed the administration of MES at 12 mg/kg for 10 days
significantly alleviated symptoms of colitis induced by DSS, and suppressed the corre-
sponding infiltration of inflammatory cells, production of pro-inflammatory cytokines,
expression of adhesion molecules and inflammatory enzymes. Mechanism exploration
suggests that MES may exert those functions through inhibiting NF-κB, Akt, and JNK
signaling pathways.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11030329/s1, Figure S1: MES supplementation suppresses
levels of pro-inflammatory cytokines in serum of DSS-treated mice. (a). Proteome Profile Mouse XL
Cytokine Array kit was used to semi-quantify mouse cytokines in the pooled serum from each group.
(b). Heatmap analysis illustrated the spot density of cytokines suppressed by MES or celecoxib.
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