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Abstract: With a high moisture content, fresh peppers are perishable and rot easily. Drying is
essential for shelf-life extension. The natural thin wax layer on the pepper surface hinders moisture
transfer. Traditionally, chemical dipping or mechanical pricking is used to remove this wax layer.
However, in chemical dipping, chemical residues can trigger food-safety issues, while the low
efficiency of mechanical pricking hinders its industrial application. Feasible pretreatment methods
are advantageous for industrial use. Here, an emerging pretreatment technique (high-humidity
hot-air impingement blanching, HHAIB) was used for peppers before drying and its effects on
drying characteristics, microstructure, and polyphenol oxidase (PPO) activity were explored. The
impact of drying temperature on color parameters and red pigment content of pulsed-vacuum-dried
peppers was also evaluated. PPO activity was reduced to less than 20% after blanching at 110 ◦C
for 60 s. HHAIB reduced drying time and PPO activity and promoted chemical-substance release.
Effective water diffusivity was highest (5.01 × 10−10 m2/s) after blanching at 110 ◦C for 90 s, and
the brightness value and red pigment content were highest (9.94 g/kg) at 70 ◦C. HHAIB and pulsed
vacuum drying are promising pretreatment and drying methods for enhancing the drying rate and
quality of red peppers.

Keywords: high-humidity hot-air impingement blanching (HHAIB); pulsed vacuum drying (PVD);
drying characteristics; kinetic modeling; transmission electron microscopy (TEM); polyphenol
oxidase activity

1. Introduction

Peppers (Capsicum annuum L.) are annuals or limited perennials belonging to the
nightshade family [1] and are popular for their bright color and pungent taste. According
to Food and Agriculture Organization (FAO) statistics, the global pepper production
is approximately 3.83 × 107 tons. With production of 1.90 × 107 tons, China ranks first
worldwide, followed by Mexico (3.24 × 106 tons), the European Union (2.81 × 106 tons), and
Turkey (2.63 × 106 tons) [2]. Freshly picked peppers show high respiratory and enzymatic
activity [3], with high moisture contents of up to 60–85%, which greatly increases their
susceptibility to microbial infection [4]. Fresh peppers spoil and rot within 2–3 days if not
processed in time, leading to a 12–15% loss in production [5]. Therefore, it is critical for the
pepper industry to extend the shelf life of peppers and reduce post-harvest losses.
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Drying is the most widely used and economically viable method to improve the shelf
life of peppers [6]. Peppers naturally form a waxy layer on their skin during growth, which
provides protection from external microbial infection and UV damage [3]. However, this
layer prevents moisture diffusion during the drying process, thus leading to difficulties in
drying: prolonged drying time; increased energy consumption and biochemical reactions,
oxidative degradation, and physical changes in the function of pepper enzymes; and serious
quality deterioration [5]. Therefore, pretreatment to eliminate the enzymes and improve
product quality has become an indispensable step in pepper processing [7].

The traditional pretreatment methods used before drying peppers include chemical
dipping pretreatment [8]; hot-water [9], steam, ohmic, and infrared and microwave [10]
blanching; and mechanical pricking. Chemical-solvent soaking can increase the pepper-
drying speed, shorten the drying time, and improve product quality. However, this method
can lead to chemical residues that cause food-safety problems, contradicting the current
trend of green consumer protection [8]. The equipment for hot-water blanching requires
low investment and is easy to operate. However, this method involves processing at high
temperatures for a long period and may result in considerable loss of heat-sensitive ma-
terial. Moreover, waste-liquid treatment after blanching is a difficult and costly process.
Steam blanching can effectively solve the problem of nutrient loss and waste-liquid pol-
lution caused by traditional hot-water blanching. However, the heat transfer coefficient
of traditional steam blanching is not high and the blanching efficiency is low [11]. The
ohmic, infrared, and microwave blanching methods offer advantages, such as a short
heating period, high drying rate, and high efficiency. However, these blanching methods
generate oxygen, which, in turn, promotes nutrient oxidation. Moreover, the water content
in peppers may evaporate, and high-intensity physical treatment can cause cell folding and
damage the product’s microstructure [12].

In the case of mechanical pricking, Arora et al. [13] observed that the drying time of
peppers after perforation was shortened by 12–48% compared with that without perfo-
ration. Yong et al. [14] observed that perforation pretreatment could increase the drying
rate of peppers and the drying time was closely related to the pore size. However, be-
cause of perforation, the structure of the pepper itself is destroyed, leading to the loss
of some nutrients, while punching the pepper destroys its original structure and affects
the consumer’s desire for consumption. Therefore, it may not be suitable for large-scale
industrial application.

High-humidity hot-air impingement blanching (HHAIB) is an emerging and efficient
pretreatment method for fruit and vegetables that inactivates enzymes using a combination
of air impingement and hot-steam blanching [15]. Compared with traditional hot-water
blanching, HHAIB can greatly reduce loss of water-soluble nutrients [16] and has an
extremely high convective heat transfer coefficient. HHAIB has been used to blanch
broccoli florets, while maintaining their color and avoiding browning [17], and to pretreat
apricots to increase their drying rate [16].

Pretreatment can increase the drying rate to ensure drying quality but needs to be
combined with advanced drying methods, especially for the retention of red pigments and
other vibrant colors in the peppers. At present, open-sun drying and hot-air drying are
commonly used for drying peppers. Open-sun drying has problems, such as susceptibil-
ity to weather, condensation, and dew at night, which is conducive to microorganisms,
increases susceptibility to dust and insect feces contamination [18], prolongs drying time,
and creates a need for large drying sites [19]. Studies have shown that peppers lose up to
80% of carotenoids during natural drying [20]. Hot-air drying, although low cost and ap-
plicable to shortening the drying time, involves prolonged exposure to a high-temperature
environment and causes oxidative degradation of heat-sensitive components, thus reduc-
ing the quality and active ingredient extraction rate of chili peppers [19]. The higher the
temperature, the lower the rehydration ratio, vitamin C content, and total phenolic content;
Scala et al. [21]. showed that hot-air drying resulted in an 82% loss of carotenoids and an
88% loss of vitamin C in peppers. Pulsed vacuum drying (PVD) uses constantly changing
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vacuum pressure in the drying chamber to enhance moisture transfer and accelerate the
drying process [22]. PVD involves alternate cycling of vacuum and atmospheric pressure,
with little oxygen present in the drying chamber. Thus, PVD can reduce browning reac-
tions, oxidation deterioration, and other adverse biochemical reactions, thus improving
the quality of dried products [23,24]. The pressure cycle promotes the formation of porous
structures in the peel and interconnects and enlarges the micropores in the dried prod-
ucts [23]. Simultaneously, the pressure cycle can generate fissured structures, promoting
water circulation and accelerating drying [25]. Thus, PVD has several advantages and, in
recent years, has been widely used to dry fruit and vegetables, including green prickly
ash [26], blueberries [23], lemons [27], grapes [28], wolfberries [29], pollen [30], ginger [31],
poria [32], and berries [33]. However, to the best of our knowledge, no studies have detailed
the effects of HHAIB on the drying characteristics and PVD of peppers.

Drying is a complex process involving heat and mass transfer [34] and is influenced
by material characteristics, media parameters, process parameters, and environmental
conditions [35]. With the development of drying technology and scientific progress, using
mathematical models to describe and predict the drying process has become an important
part of drying research [36]. Thus, establishing a mathematical model of the drying process
can facilitate analysis and evaluation of the entire drying process, optimize the drying
parameters, predict the drying end point, and improve the quality of the dried product [37].

The objectives of the current study were to (1) explore the effect of HHAIB on PVD
kinetics and quality attributes, including red pigment content and color parameters of
peppers; (2) investigate ultrastructural changes in peppers under different blanching
conditions and elucidate the mechanisms underlying the changes in macroscopic properties;
and (3) identify a suitable kinetic model for drying peppers, which is necessary for selecting
suitable pretreatment and drying technology for red pepper drying.

2. Materials and Methods

The overall experimental setup process is shown in Figure 1.
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2.1. Materials

Fresh peppers (variety: Honglong 13) without mechanical or insect damage were
picked on 27 August 2019, from No. 124 State Farm in Gaoquan (Kuitun, Xinjiang, China).
To ensure uniformity in the physical characteristics of the materials, we selected fresh
red peppers of the same size with undamaged surfaces (average length, 13 ± 1.5 cm;
average weight, 17 ± 0.9 g) for the blanching and drying experiments. The initial moisture
content of the peppers was 84.98 ± 0.8% (wet basis), as measured using a vacuum drying
method (drying for 24 h at 70 ◦C; vacuum degree, 6 kPa). All peppers were refrigerated
(temperature, 4 ± 1 ◦C; relative humidity, 90 ± 5%) 1 d before the experiment. The fresh
peppers were removed from the refrigerator, cleaned using tap water, drained, dried using
absorbent paper, and kept indoors at room temperature (20 ◦C) for 30 min. Subsequently,
the stems and seeds were removed, the peppers were cut into 4 × 1.2 cm slices, and the
slices were laid flat on stainless steel mesh trays (weight per tray, 100 ± 3 g).

2.2. HHAIB Pretreatment Experiments

The characteristics of the HHAIB device (Figure 2; designed by the College of Engi-
neering of China Agricultural University) were reported in detail in our previous work [11].
The device is composed of electric heating pipes, steam generators, nozzles, centrifugal
fans, and controllers, and other components [16]. It generates steam from a steam genera-
tor; a centrifugal fan provides circulating air flow, sprays it to the surface of the material
through a circular nozzle, and controls the blanching temperature through a proportional-
integral-derivative (PID) controller (Omron, model E5CN, Tokyo, Japan) [38]. Based on
pre-experiments, an air velocity of 14.0 ± 0.5 m/s and a blanching relative humidity of
35–40% were the optimal conditions for pepper pretreatment. Fresh peppers were used as
the control group, and peppers in the other groups were exposed to blanching temperatures
of 110, 120, or 130 ◦C for blanching durations of 30, 60, 90, 120, or 150 s. Each treatment
was performed in triplicate.
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Figure 2. Schematic diagram of equipment used for high-humidity air impingement blanching.

2.3. Drying Process
2.3.1. PVD Equipment

We used PVD to dry both treated and untreated pepper samples. The PVD equip-
ment (Figure 3) was also obtained from the College of Engineering of China Agricultural
University. For PVD, the distance between the upper and lower heating plates was 5 cm,
the vacuum degree was 8.0 kPa, the holding time of atmospheric pressure was 3 min, the
holding time of the vacuum was 12 min, and the vacuum and atmospheric pressures were
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cycled alternately. The working time of the dryer (from the atmospheric pressure to the
vacuum state) was approximately 40 s. The temperature and humidity in the dryer were
maintained at constant levels.
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Figure 3. Schematic diagram of the device used for drying.

2.3.2. Experimental Procedure

We set the temperature and humidity of the superheated steam before the pretreatment.
As soon as the heating plate reached and maintained the set value, the peppers were placed
into the blanching room for the blanching test. The distance from the HHAIB nozzle to
the pepper surface was 9 ± 0.1 cm, the wind speed was 14.0 ± 0.5 m/s, and the indoor
relative humidity was 35–40%. The peppers were laid flat on the material tray in one layer
to avoid overlapping. After blanching, the peppers were tested using the PVD method
(drying temperature, 70 ◦C; vacuum time, 12 min; normal pressure time, 3 min). During
the drying process, weight loss was measured every 30 min using an electronic balance
(SP402, Ohaus Co., Parsippany, NJ, USA). The drying test was stopped when the final dry
basis moisture content was lower than 0.11 g/g [19,39]. The dried peppers were cooled to
room temperature (20 ◦C), packed using a vacuum packing machine, and stored at room
temperature and away from light for further tests.

2.4. Measurement of Polyphenol Oxidase (PPO) Activity

PPO activity was measured as reported previously [10]. The enzyme extracting
solution was prepared as follows: 5 g of fresh pepper sample was added to 5.0 mL of an
extraction buffer (including 1 M MPEG, 4% PVPP, and 1% Triton X-100), homogenized
in an ice bath, and centrifuged at 4 ◦C and 12,000× g for 30 min. The supernatant was
collected and used as the enzyme extracting solution. We rapidly mixed 4.0 mL of acetic
acid–sodium acetate buffer (50 mmol/L; pH, 5.5), 1.0 mL of pyrocatechol (50 mmol/L),
and 0.03 mL of the enzyme extracting solution in a 10 mL centrifuge tube and loaded this
in a cuvette within 15 s. The cuvette was placed in a spectrophotometer (Beijing Purkinje
General Instrument Co. Ltd., Beijing, China) sample room for measurement. Distilled
water was used as the reference, and absorbance at 420 nm wavelength was recorded as the
initial value. Data were recorded every 1 min at no less than 6 points, and the measurement
was repeated three times. We then used 3–4 datapoints with the best linearity to calculate
the slope and measure enzymatic activity. Each increment of 1 in the absorbance change
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in 1 min (using 1 g of fresh pepper sample) equaled 1 peroxidase unit, ∆OD420/min·g, as
shown in Equation (1):

U =
∆OD420 × V

Vs × m
(1)

where U is PPO activity, ∆OD420 is the slope with the best linearity in absorbance changes
per min, V is the total volume of the sample extract (mL), Vs is the volume of the sample
extract during testing (mL), and m is the mass of the sample (g).

2.5. Analysis of Drying Characteristics
2.5.1. Moisture Ratio (MR)

The MR of peppers was calculated according to Equation (2), as reported previ-
ously [19,40]:

MR =
Mt − Me

M0 − Me
(2)

where Mt is the dry basis moisture content of red peppers (kg/kg) at time t, M0 at t = 0 is
the initial dry basis moisture content of red peppers (kg/kg), and Me is the equilibrium
moisture content (kg/kg).

2.5.2. Drying Rate (DR)

The DR of peppers was calculated according to Equation (3), as reported previ-
ously [41]:

DR =
Mt1 − Mt2

t2 − t1
(3)

where Mt1 is the dry basis moisture content (g/g) at time t1 and Mt2 is the dry basis
moisture content (g/g) at time t2.

2.5.3. Effective Moisture Diffusivity (Deff)

Deff was measured according to Equation (4), as reported previously [19,42]:

Deff =
Dcal
Rg

(4)

where Dcal is the estimated effective moisture diffusivity (m2/s) and Rg is the physical
dimension constant.

2.6. Kinetic Modeling

Mathematical models are a good representation of research problems and different
laws and inter-relationships between parameters and can be used to analyze the relationship
between parameters and to predict trends. Several common thin-layer drying models were
selected to fit the drying process in this study.

Modified Weibull: The Weibull model is widely used for describing moisture changes
in food materials under different drying conditions. The modified Weibull distribution
function was calculated using Equation (5) [43]:

MR = exp(−(t/α)β) − A, (5)

where t is the drying time, α is the scale parameter of the Weibull model, and β is the shape
parameter of the model.

The Lewis [44] distribution function was calculated using Equation (6):

MR = exp(−k × t), (6)

where k is the rate constant and t is the drying time.
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The Page [45] distribution function was calculated using Equation (7):

MR = exp(−k × tn), (7)

where k and n are the rate constants and t is the drying time.
The Wang and Singh distribution function [46] was calculated using Equation (8):

MR = 1 + a × t + b × t2, (8)

where a and b are the rate constants and t is the drying time.
The two-term distribution function was calculated using Equation (9) [47]:

MR = a × exp(−k0 × t) + b × exp(−k1 × t), (9)

where a, b, k0, and k1 are the rate constants and t is the drying time.
The degree of fit between each model and the data was evaluated using the coefficient

of determination (R2), the root mean square error (RMSE), and χ2, which were calculated
using Equations (10)–(12) [48]:

R2 = 1 − ∑N
i=1 (MRpre,i − MRexp,i)

2

∑N
i=1 (MRpre,i − MRexp,i)2

(10)

RMSE =

[
1
N ∑N

i=1 (MRpre,i − MRexp,i)
2
] 1

2
(11)

χ2 =
∑N

i=1 (MRexp,i − MRpre,i)
2

N − z
(12)

where MRexp,i and MRpre,i are the experimental and computed dimensionless moisture
ratios, respectively; N is the number of experiences; and z is the number of constants.

2.7. Color Measurement

The color parameters of the dried peppers were measured using a LabScan XE spec-
trophotometer (HunterLab, Reston, VA, USA). The dried peppers were ground into powder
and screened using a standard 28-mesh sieve. Using a spectrophotometer, the color of
the paprika red pigment was measured in triplicate for each group and the average was
calculated. The luminance (L*) and green/red value (a*) were determined according to
the CIELAB color system (or L* a* b* color system), and the L* and a* column diagrams
of ground paprika were drawn. In the diagram, L* indicates the luminance (black: L* = 0;
white: L* = 100) and a* indicates the green/red value (range, −60 (pure green) to +60 (pure
red)) [49]. The higher the +a*, the redder the color, whereas the lower the −a*, the greener
the color.

2.8. Determination of Red Pigment Content

The red pigment content of peppers was measured according to the ISO guidelines [50].
The pepper sample (100–200 g) was powdered and screened using a 28-mesh sieve (sieving
rate, >99%). A sample of this (0.1 g, accurate to ±0.0002 g) was added to a 250 mL flask
containing 200 mL acetone. The flask was placed on a shaker and incubated for 4 h in the
dark. Following this, the flask was tilted slightly to allow the paprika to settle at the bottom
of the flask. The solution was diluted with acetone to the calibration standard, shaken, and
allowed to rest for 10 min. A graduated pipette was used to transfer the supernatant into a
cuvette. Acetone was used as the reference liquid, and absorbance at 460 nm wavelength
(A460) was measured using a spectrophotometer.
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The total pigment content of ground paprika (c) was measured as the g weight of red
pigment in 1 kg of dry sample and was calculated (ISO 1989) using Equation (13):

c =
A460 × f × 2.5 × 105

2250 × (100 − H)× m
(13)

where A460 is the absorption of the test solution, f is the calibration factor for the spectropho-
tometer (0.98 in this study), 2.5 × 105 is the conversion coefficient, 2250 is the absorption
coefficient of red pigment in natural paprika, H is the sample moisture content (mass
fraction, %), and m is the sample mass (g).

2.9. Ultrastructure Analysis

The pepper ultrastructure was analyzed using transmission electron microscopy (TEM)
as follows [51]. A scalpel was used to obtain pericarp tissue (size, 2 × 2 mm) from the
epidermis of the red peppers. The sections were fixed with 5% glutaraldehyde and 4%
paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.2) for 2 h. After three 15-min
washes with the buffer, the samples were post-fixed in 1% osmium tetroxide in the same
buffer for 2 h. The samples were then immersed in Spurr resin overnight at 4 ◦C to allow
infiltration, and then embedded in Spurr resin. The blocks were sectioned on a Leica EM
UC6 ultramicrotome (Leica Microsystems, Wetzlar, Germany). The sections were collected
on copper grids and stained with uranyl acetate, followed by lead citrate. The sections were
then examined using Hitachi H-7650 TEM (Hitachi High-Tech Corporation, Tokyo, Japan).

2.10. Statistical Analysis

The data are expressed as the mean and standard deviation of three replicate mea-
surements. An optimal experimental design was used based on a single factor test [52].
The data were analyzed using analysis of variance and Duncan’s multiple range test with
SPSS statistical software (version 21.0. IBM Corp., Armonk, NY, USA). Differences were
considered statistically significant at p < 0.05.

3. Results
3.1. Effects of Different Blanching Methods on the Residual Activity of PPO

PPO promotes biochemical reactions, and its activity is closely related to changes
in product quality; therefore, PPO activity is often used as an indicator of the effects of
blanching [53]. In this study, PPO activity was 73.75% after blanching at 90 ◦C for 120 s
and 62.05% after blanching at 100 ◦C for 120 s. This indicates that blanching temperatures
of 90 and 100 ◦C did not rapidly inactivate PPO, which is inappropriate for the blanching
pretreatment of pigment peppers. A blanching temperature of 110 ◦C for a treatment
time >60 s can inactivate PPO [54]. Therefore, blanching temperatures of 110, 120, and
130 ◦C at blanching durations ≥60 s were selected to study the impact of the blanching
temperature on the drying kinetics and drying quality of pigment peppers (Figure 4).
Nicolas [55] showed that, when the processing temperature exceeded 40 ◦C, PPO activity
was destroyed. Zhu [56] reported that the PPO of apple slices treated at 60–80 ◦C was also
destroyed, but studies have shown that hot-water and other blanching methods require
a long time [15]. Deng [15] also showed that HHAIB inactivates PPO when the core
temperature reaches 61.1 ◦C after treatment for 90 s. Wang’s study of peppers found that
HHAIB treatment for 2 min could inactivate PPO enzymes, possibly because of differences
in the studied pepper varieties [38]. Wang studied red bell peppers [4], while the peppers
used in this study were used to extract the pigment, which is more sensitive to temperature,
thus providing a good reference for actual hot-pepper blanching, avoiding the loss of
nutrients and pigment degradation caused by excessive blanching.
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Figure 4. Effects of HHAIB (high-humidity hot-air impingement blanching) on residual activity of
PPO (polyphenol oxidase). Notes: different letters in the figure reveal significant differences (p < 0.05)
according to the Duncan test.

3.2. Effects of PVD on the Drying Characteristics of Red Peppers

The changes in MRs with drying time during the PVD test (drying temperature,
70 ◦C; vacuum duration, 12 min; and atmospheric pressure duration, 3 min) are shown in
Figure 5. Peppers not pretreated and those pretreated at different blanching temperatures
were tested. The drying time of HHAIB-pretreated peppers was 28.57% shorter than
that of peppers without pretreatment, indicating that blanching pretreatment significantly
reduced the drying time and energy consumption during drying [5,11,15]. This is because
pretreatment with HHAIB removes the waxy layer on the pepper surface and produces tiny
gaps on the surface, thus allowing the internal moisture to escape easily [4,5]. In addition,
blanching separates the inner cell wall of the pepper and increases the permeability of
the cell wall, which allows the flow of internal moisture to the surface and enhances
drying efficiency [11,16]. Similar results have been reported by studies investigating the
drying pretreatment of seedless grapes and apricots [11,16]. These studies showed that an
increase in blanching temperature reduced the drying time to a limited degree. During the
latter stages of PVD, the higher the blanching pretreatment temperature, the longer the
drying time of pigment peppers [16]. One possible reason for this is that excessively high
temperatures destroy the inner tissues of pigment peppers and block the path of escape for
moisture, thus preventing the flow of internal moisture to the surface [4,5].

During PVD, the drying speed decreased with reduction in the dry basis moisture
content in peppers (Figure 6) [19]. However, when the initial dry basis moisture content was
reduced to 0.5 g/g, the drying speed increased with increasing blanching temperature. The
drying speed showed slight differences at different blanching temperatures when the dry
basis moisture content was below 0.5 g/g [4]. Overall, the following trends were observed
(Figure 6): (a) the drying speed decreased with a decrease in the dry basis moisture content
during the PVD of pigment peppers [24]; (b) the drying speed increased with an increase in
blanching temperature when the initial dry basis moisture content was reduced to 0.5 g/g;
and c) the drying speed was slightly different at different blanching temperatures when the
dry basis moisture content was below 0.5 g/g.
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Figure 5. Drying kinetics curve of pepper at different blanching temperatures. Notes: different letters
in the figure reveal significant differences (p < 0.05) according to the Duncan test.

Peppers without pretreatment and those pretreated at a blanching temperature of
110 ◦C for different blanching durations were tested using PVD (drying temperature, 70 ◦C;
vacuum time, 12 min; and atmospheric pressure, 3 min). The moisture diffusion coefficients,
as estimated using the modified Weibull distribution function, are listed in Table 1. The
moisture diffusion coefficient of pigment peppers without pretreatment was estimated
at 4.22 × 10−10 m2/s. The moisture diffusion coefficient of pretreated pigment peppers
first increased and then decreased with increasing blanching duration [4], and reached
a maximum of 5.01 × 10−10 m2/s when the blanching duration was 90 s. This indicates
that an increase in blanching duration may accelerate moisture diffusion during PVD [15].
However, a longer blanching duration would also destroy the interior tissues of pigment
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peppers, block the path of escape for moisture, hinder the flow of moisture to the surface,
and further reduce the moisture diffusion coefficient [5]. Wang et al. [4] also found that
HHAIB pretreatment could effectively increase the drying speed and reduce the drying
time of peppers. However, a longer blanching duration may lead to the collapse of cell
structures, bond the interior tissues, and hinder the diffusion of moisture [49], which is
consistent with our findings.
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Table 1. Moisture diffusion coefficient of pepper during the pulsed vacuum drying process at different
blanching times estimated by the modified Weibull distribution function.

Blanching Time (s) Deff (10−10 m2/s) R2 Blanching Temperature (◦C) Deff (10−10 m2/s) R2

Untreated 4.22 c 0.9964 Untreated 4.22 c 0.9964
30 4.62 b 0.9978 110 4.71 b 0.9973
60 4.71 b 0.9973 120 4.82 b 0.9918
90 5.01 a 0.9956 130 5.11 a 0.9886

120 4.66 b 0.9927
150 4.17 c 0.9902
180 3.89 d 0.9895

Notes: different letters in the figure reveal significant differences (p < 0.05) according to the Duncan test.

3.3. Different Models Used to Fit the Drying Parameters

In this study, we applied five drying models to the experimental data of pepper drying
(Table 2). We found that the coefficient of determination of the Page model was higher
than those of the two-term, modified Weibull, Wang and Singh, and Lewis distribution
functions, suggesting that the Page model was a better fit for these parameters. Notably,
the size parameter (α) in the modified Weibull model gradually decreased with the increase
in drying temperature—a trend also observed for changes in drying time. In a study on the
PVD of grapes pretreated with blanching, Bai et al. [49] reported similar results, showing
that α, respectively, was 45%, 41%, 56%, 50%, and 57% of the completion time of PVD in
the five models. This is because, when using the Weibull model, the MR of the material is
set at 1 before the drying process. However, before starting the drying process, blanching
pretreatment reduces the dry MR of the material to 80% of the original. Therefore, the
α in the modified Weibull model should be 80% of the α in the Weibull model, which is
approximately equal to the completion of the drying process in 51% of the time required.
The α in our experiment was in line with the results of that study [49]. The shape parameter
(β) in the modified Weibull model varied from 0.827 to 0.998, indicating that the material
was always in the reduced-speed drying stage during PVD and that the drying temperature
had no significant effect on β.

Table 2. Fitting parameters of different drying models.

Two Term

Condition k0 k1 a b R2 RMSE χ2 × 104

60 ◦C 3.031 −2.03 1.19 1.224 0.9983 0.01394 17.48
70 ◦C 3.672 −2.673 1.059 0.9177 0.9994 0.01246 0.000466
80 ◦C 10.22 −9.205 1.192 1.142 0.998 0.01986 15.77

Modified Weibull

Condition α β A R2 RMSE χ2 × 104

60 ◦C 95.28 0.827 0.167 0.9864 0.03605 130
70 ◦C 84.72 0.998 0.192 0.9956 0.02391 28.6
80 ◦C 60 0.949 0.182 0.9947 0.03582 64.2

Wang and Singh

Condition a b R2 RMSE χ2 × 104

60 ◦C −0.7027 0.122 0.9705 0.05189 296.2
70 ◦C −0.8993 0.2067 0.9918 0.03364 67.91
80 ◦C −1.21 0.365 0.9954 0.02472 36.66



Foods 2022, 11, 318 13 of 18

Table 2. Cont.

Page

Condition k n R2 RMSE χ2 × 104

60 ◦C 1.116 1.03 0.9984 0.01221 16.41
70 ◦C 1.299 1.12 0.9978 0.01728 17.92
80 ◦C 1.893 1.276 0.9992 0.01002 6.026

Lewis

Condition k R2 RMSE χ2 × 104

60 ◦C 1.126 0.9982 0.01227 18.06
70 ◦C 1.315 0.9957 0.02252 35.5
80 ◦C 1.794 0.9929 0.02846 56.71

3.4. Effect of Drying Temperature on the Pigment Content of Red Peppers

Measuring the changes in color pigment content is a common method to evaluate the
quality of drying in pepper [57]. Capsaicin is a natural organic pigment that is nontoxic,
provides a strong color, and is stable in nature. Because of these advantages, capsaicin is
widely used in the food and cosmetic industries [58]. Capsaicin also has anticancer and
antioxidation effects and helps prevent cardiovascular diseases and is, therefore, used in
the medicine and healthcare industries [58]. Capsaicin and C. annuum have been approved
as natural food additives for unlimited use by the FAO, the UK, Japan, the WHO, and other
countries and organizations [59,60] and are in great demand in international markets. At
present, developing the technology to extract red pigments from paprika and investigating
its applications are research areas of interest in many countries [61].

The color characteristics of dried peppers are listed in Table 3. These results indicate
that the drying temperature had a significant effect on the color of peppers dried under
the same pulsation ratio. With an increase in drying temperature, the L* value of the color
parameter of peppers first increased and then decreased. This was due to the degradation
of the red pigment and the formation of dark pigments as a result of the Maillard reaction
during the drying process, leading to a change in brightness [4]. Thus, the drying tempera-
ture had a significant effect on the brightness (L* value) of the color parameter of peppers.
The brightness of the pigment peppers was highest (44.43 ± 0.18) at a drying temperature
of 70 ◦C. This indicated that, when the drying temperature was 70 ◦C, peppers pretreated
with blanching showed the least browning and had the best color during PVD. However, a
very high drying temperature caused a decrease in brightness. This is consistent with the
results of Rhim and Hong [60], who reported that the brightness (L*) of peppers decreases
as the drying temperature increases.

After the pepper had been dried, the green–red (a*) and blue–yellow (b*) parameters
showed significant changes. An increase in drying temperature promotes the synthesis of
capsanthin compounds [19], which can explain the increase in a*. A higher temperature
also shortens the drying time and reduces the levels of carotenoids, such as violaxanthin,
mutagenic xanthin, and zeaxanthin [22]. Oxidation and the degradation of compounds
(such as capsolutin, β-cryptoxanthin, and β-carotene) ensure color retention [60]. Thus,
the increase in b* may be due to the low-oxygen environment of the PVD chamber, which
inhibited the oxidation of these compounds and helped maintain the yellow color of the
dried product [62].
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Table 3. Effect of different drying temperature on color and red pigments.

Drying Temperature (◦C) Red Pigments (g/kg) a* b* L*

60

Foods 2022, 10, x FOR PEER REVIEW 15 of 19 
 

 

Table 3. Effect of different drying temperature on color and red pigments. 

Drying Temperature (°C) Red Pigments (g/kg) a* b* L* 

60  

9.47 ± 0.12 b 41.27 ± 0.05 b 37.73 ± 0.15 c 39.17 ± 0.07 c 

70  

9.94 ± 0.18 a 42.92 ± 0.06 a 42.20 ± 0.07 b 44.43 ± 0.18 a 

80  

9.60 ± 0.06 b 43.77 ± 0.02 a 43.62 ± 0.02 a 42.88 ± 0.09 b 

Notes: different letters in the figure reveal significant differences (p < 0.05) according to the Dun-
can test. 

After the pepper had been dried, the green–red (a*) and blue–yellow (b*) parameters 
showed significant changes. An increase in drying temperature promotes the synthesis of 
capsanthin compounds [19], which can explain the increase in a*. A higher temperature 
also shortens the drying time and reduces the levels of carotenoids, such as violaxanthin, 
mutagenic xanthin, and zeaxanthin [22]. Oxidation and the degradation of compounds 
(such as capsolutin, β-cryptoxanthin, and β-carotene) ensure color retention [60]. Thus, 
the increase in b* may be due to the low-oxygen environment of the PVD chamber, which 
inhibited the oxidation of these compounds and helped maintain the yellow color of the 
dried product [62]. 

3.5. Effect of Drying Temperature on the Red Pigment Content of Red Peppers 
Following pretreatment, the red pigment contents of peppers under PVD at different 

drying temperatures are listed in Table 3. When the vacuum holding time was 12 min, the 
normal pressure holding time was 3 min, and the drying temperatures were 60 °C, 70 °C, 
and 80 °C, the red pigment contents after drying were 9.47 g/kg, 9.94 g/kg, and 9.60 g/kg 
of dried pepper, respectively. Thus, the drying temperature had a significant effect on the 
red pigment levels. With an increase in drying temperature, the red pigment levels of the 
peppers first increased and then decreased. This may be because the drying times were 
shorter for higher drying temperatures, resulting in lower amounts of red pigment loss 
[19]. However, when the temperature is very high, the red pigment becomes unstable and 
degrades, and its levels decrease gradually [57]. When the drying temperature was 70 °C, 
the red pigment content of peppers was the highest and was 4.96% higher than that at 60 
°C. This indicates that, at a drying temperature of 70 °C, peppers pretreated with blanch-
ing showed the least amount of oxidation and decomposition of red pigment. Studies by 
Xie et al. [24] and Bai et al. [49] on the PVD of wolfberries and grapes, respectively, also 
showed that colors deteriorate with an increase in drying temperature [48]. This may be 
due to strengthening of the Maillard reaction and degradation of carotenoids in high-tem-
perature environments, resulting in a darker color (such as melanoids) [60]. 

9.47 ± 0.12 b 41.27 ± 0.05 b 37.73 ± 0.15 c 39.17 ± 0.07 c

70

Foods 2022, 10, x FOR PEER REVIEW 15 of 19 
 

 

Table 3. Effect of different drying temperature on color and red pigments. 

Drying Temperature (°C) Red Pigments (g/kg) a* b* L* 

60  

9.47 ± 0.12 b 41.27 ± 0.05 b 37.73 ± 0.15 c 39.17 ± 0.07 c 

70  

9.94 ± 0.18 a 42.92 ± 0.06 a 42.20 ± 0.07 b 44.43 ± 0.18 a 

80  

9.60 ± 0.06 b 43.77 ± 0.02 a 43.62 ± 0.02 a 42.88 ± 0.09 b 

Notes: different letters in the figure reveal significant differences (p < 0.05) according to the Dun-
can test. 

After the pepper had been dried, the green–red (a*) and blue–yellow (b*) parameters 
showed significant changes. An increase in drying temperature promotes the synthesis of 
capsanthin compounds [19], which can explain the increase in a*. A higher temperature 
also shortens the drying time and reduces the levels of carotenoids, such as violaxanthin, 
mutagenic xanthin, and zeaxanthin [22]. Oxidation and the degradation of compounds 
(such as capsolutin, β-cryptoxanthin, and β-carotene) ensure color retention [60]. Thus, 
the increase in b* may be due to the low-oxygen environment of the PVD chamber, which 
inhibited the oxidation of these compounds and helped maintain the yellow color of the 
dried product [62]. 

3.5. Effect of Drying Temperature on the Red Pigment Content of Red Peppers 
Following pretreatment, the red pigment contents of peppers under PVD at different 

drying temperatures are listed in Table 3. When the vacuum holding time was 12 min, the 
normal pressure holding time was 3 min, and the drying temperatures were 60 °C, 70 °C, 
and 80 °C, the red pigment contents after drying were 9.47 g/kg, 9.94 g/kg, and 9.60 g/kg 
of dried pepper, respectively. Thus, the drying temperature had a significant effect on the 
red pigment levels. With an increase in drying temperature, the red pigment levels of the 
peppers first increased and then decreased. This may be because the drying times were 
shorter for higher drying temperatures, resulting in lower amounts of red pigment loss 
[19]. However, when the temperature is very high, the red pigment becomes unstable and 
degrades, and its levels decrease gradually [57]. When the drying temperature was 70 °C, 
the red pigment content of peppers was the highest and was 4.96% higher than that at 60 
°C. This indicates that, at a drying temperature of 70 °C, peppers pretreated with blanch-
ing showed the least amount of oxidation and decomposition of red pigment. Studies by 
Xie et al. [24] and Bai et al. [49] on the PVD of wolfberries and grapes, respectively, also 
showed that colors deteriorate with an increase in drying temperature [48]. This may be 
due to strengthening of the Maillard reaction and degradation of carotenoids in high-tem-
perature environments, resulting in a darker color (such as melanoids) [60]. 

9.94 ± 0.18 a 42.92 ± 0.06 a 42.20 ± 0.07 b 44.43 ± 0.18 a

80

Foods 2022, 10, x FOR PEER REVIEW 15 of 19 
 

 

Table 3. Effect of different drying temperature on color and red pigments. 

Drying Temperature (°C) Red Pigments (g/kg) a* b* L* 

60  

9.47 ± 0.12 b 41.27 ± 0.05 b 37.73 ± 0.15 c 39.17 ± 0.07 c 

70  

9.94 ± 0.18 a 42.92 ± 0.06 a 42.20 ± 0.07 b 44.43 ± 0.18 a 

80  

9.60 ± 0.06 b 43.77 ± 0.02 a 43.62 ± 0.02 a 42.88 ± 0.09 b 

Notes: different letters in the figure reveal significant differences (p < 0.05) according to the Dun-
can test. 

After the pepper had been dried, the green–red (a*) and blue–yellow (b*) parameters 
showed significant changes. An increase in drying temperature promotes the synthesis of 
capsanthin compounds [19], which can explain the increase in a*. A higher temperature 
also shortens the drying time and reduces the levels of carotenoids, such as violaxanthin, 
mutagenic xanthin, and zeaxanthin [22]. Oxidation and the degradation of compounds 
(such as capsolutin, β-cryptoxanthin, and β-carotene) ensure color retention [60]. Thus, 
the increase in b* may be due to the low-oxygen environment of the PVD chamber, which 
inhibited the oxidation of these compounds and helped maintain the yellow color of the 
dried product [62]. 

3.5. Effect of Drying Temperature on the Red Pigment Content of Red Peppers 
Following pretreatment, the red pigment contents of peppers under PVD at different 

drying temperatures are listed in Table 3. When the vacuum holding time was 12 min, the 
normal pressure holding time was 3 min, and the drying temperatures were 60 °C, 70 °C, 
and 80 °C, the red pigment contents after drying were 9.47 g/kg, 9.94 g/kg, and 9.60 g/kg 
of dried pepper, respectively. Thus, the drying temperature had a significant effect on the 
red pigment levels. With an increase in drying temperature, the red pigment levels of the 
peppers first increased and then decreased. This may be because the drying times were 
shorter for higher drying temperatures, resulting in lower amounts of red pigment loss 
[19]. However, when the temperature is very high, the red pigment becomes unstable and 
degrades, and its levels decrease gradually [57]. When the drying temperature was 70 °C, 
the red pigment content of peppers was the highest and was 4.96% higher than that at 60 
°C. This indicates that, at a drying temperature of 70 °C, peppers pretreated with blanch-
ing showed the least amount of oxidation and decomposition of red pigment. Studies by 
Xie et al. [24] and Bai et al. [49] on the PVD of wolfberries and grapes, respectively, also 
showed that colors deteriorate with an increase in drying temperature [48]. This may be 
due to strengthening of the Maillard reaction and degradation of carotenoids in high-tem-
perature environments, resulting in a darker color (such as melanoids) [60]. 

9.60 ± 0.06 b 43.77 ± 0.02 a 43.62 ± 0.02 a 42.88 ± 0.09 b

Notes: different letters in the figure reveal significant differences (p < 0.05) according to the Duncan test.

3.5. Effect of Drying Temperature on the Red Pigment Content of Red Peppers

Following pretreatment, the red pigment contents of peppers under PVD at different
drying temperatures are listed in Table 3. When the vacuum holding time was 12 min, the
normal pressure holding time was 3 min, and the drying temperatures were 60 ◦C, 70 ◦C,
and 80 ◦C, the red pigment contents after drying were 9.47 g/kg, 9.94 g/kg, and 9.60 g/kg
of dried pepper, respectively. Thus, the drying temperature had a significant effect on
the red pigment levels. With an increase in drying temperature, the red pigment levels
of the peppers first increased and then decreased. This may be because the drying times
were shorter for higher drying temperatures, resulting in lower amounts of red pigment
loss [19]. However, when the temperature is very high, the red pigment becomes unstable
and degrades, and its levels decrease gradually [57]. When the drying temperature was
70 ◦C, the red pigment content of peppers was the highest and was 4.96% higher than that
at 60 ◦C. This indicates that, at a drying temperature of 70 ◦C, peppers pretreated with
blanching showed the least amount of oxidation and decomposition of red pigment. Studies
by Xie et al. [24] and Bai et al. [49] on the PVD of wolfberries and grapes, respectively, also
showed that colors deteriorate with an increase in drying temperature [48]. This may
be due to strengthening of the Maillard reaction and degradation of carotenoids in high-
temperature environments, resulting in a darker color (such as melanoids) [60].

3.6. TEM Imaging of Peppers with Different Blanching Treatments

Several recent studies have demonstrated that changes in microstructures can lead
to changes in the macroscopic properties of organic matter [5,7,15]. Studying the changes
in the microstructure of pigment peppers after HHAIB pretreatment is a powerful means
of characterizing the drying speeds under different conditions [4]. The submicroscopic
structures of pigment pepper skin cells at different processing times are shown in Figure 7.
These TEM images show that untreated pigment pepper samples (CK) had smooth cell
walls, a complete plasmid, and clear mitochondria and peroxisomes. With blanching, the
peroxisomes and mitochondria rapidly decompose and eventually disappear [24]. The
destruction of peroxisomes could effectively hinder the enzymatic browning reaction,
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which is good for the chemical protection of plants [28]. However, further blanching may
lead to the collapse of the cell wall and cell tissue structures, which explains why the drying
time increased with blanching duration [5].
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HHAIB treatment times. CK—control group; CW—cell wall; Pt—plastid; M—mitochondria.

4. Conclusions

The results show that pretreatment with HHAIB and drying with the specialized PVD
equipment markedly affected the drying characteristics, color, and redness of peppers.
Namely, HHAIB treatment shortened the drying time, reduced peroxidase activity, and
had a significant impact on the water diffusion coefficient. During the drying process,
an increase in the drying temperature shortened the drying time and improved color
brightness. Blanching changed the cell structure of peppers and promoted the synthesis
and release of chemical substances. The Page model presented the best fit for the drying
kinetics of peppers. Thus, the study findings improve our understanding of the effects of
HHAIB and PVD on the drying characteristics and changes in the color, red pigment content,
and ultrastructure of peppers. Through HHAIB treatment, the drying time was shortened
by 21.43% and the energy consumption of the drying process was reduced, whereas PVD
improved the drying quality and effectively improved the quality and efficiency. It is
recommended that industrial partners combine HHAIB with PVD in actual production
to ensure minimum energy consumption and optimal quality. This study, thus, has good
industrial application prospects and potential application value.
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