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Abstract: Postprandial hyperglycemia can be reduced by inhibiting α-glucosidase activity. Common
α-glucosidase inhibitors such as acarbose may have various side effects. Therefore, it is important
to find natural products that are non-toxic and have high α-glucosidase-inhibitory activity. In the
present study, a comprehensive computational analysis of 27 dietary flavonoid compounds with
α-glucosidase-inhibitory activity was performed. These included flavonoids, flavanones, isoflavonoids,
dihydrochalcone, flavan-3-ols, and anthocyanins. Firstly, molecular fingerprint similarity cluster-
ing analysis was performed on the target molecules. Secondly, multiple linear regression quanti-
tative structure–activity relationship (MLR-QSAR) models of dietary flavonoids (2D descriptors
and 3D descriptors optimized), with R2 of 0.927 and 0.934, respectively, were constructed using
genetic algorithms. Finally, the MolNatSim tool based on the COCONUT database was used
to match the similarity of each flavonoid in this study, and to sequentially perform molecular
enrichment, similarity screening, and QSAR prediction. After screening, five kinds of natural
product molecule (2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, norartocarpetin, 2-
(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-4H-
chromen-4-one, and morelosin) were finally obtained. Their IC50pre values were 8.977, 31.949, 78.566,
87.87, and 94.136 µM, respectively. Pharmacokinetic predictions evaluated the properties of the
new natural products, such as bioavailability and toxicity. Molecular docking analysis revealed
the interaction of candidate novel natural flavonoid compounds with the amino acid residues of
α-glucosidase. Molecular dynamics (MD) simulations and molecular mechanics/generalized Born
surface area (MMGBSA) further validated the stability of these novel natural compounds bound
to α-glucosidase. The present findings may provide new directions in the search for novel natural
α-glucosidase inhibitors.

Keywords: dietary flavonoids; α-glucosidase; molecular fingerprint similarity; MLR-QSAR; molecular
dynamics simulation

1. Introduction

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia
caused by various etiologies. Diabetes can be divided into different types according to
its etiology. The common clinical types of diabetes are type 1 diabetes, type 2 diabetes,
and gestational diabetes. Type 2 diabetes mellitus (T2DM) is the main type of diabetes,
accounting for 90–95% of the incidence of diabetes [1]. T2DM can lead to certain secondary
complications, such as nerve damage, kidney failure, and blindness [2]. Controlling
postprandial blood glucose plays an important role in interfering with T2DM. Inhibiting
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the activity of α-glucosidase can slow down or inhibit the digestion and absorption of
carbohydrates, thereby reducing postprandial hyperglycemia [3].

α-Glucosidase, an enzyme that catalyzes the hydrolysis of glycosidic bonds in com-
plex carbohydrates, is present in the intestinal brush border membrane. It catalyzes the
hydrolysis of α-(1→4)-glycosidic bonds of sugars (disaccharides and starches), releasing
free monosaccharides (α-D-glucose) in the final step of carbohydrate digestion [4]. The
released monosaccharides are absorbed by the gut, resulting in increased blood sugar and
insulin levels [5]. Therefore, α-glucosidase inhibitors can delay the release of α-D-glucose
from complex dietary carbohydrates and delay the absorption of glucose, thereby reducing
blood glucose levels and suppressing postprandial hyperglycemia [6].

α-Glucosidase inhibitors can inhibit the digestion and absorption of carbohydrates by
reversibly competing with carbohydrate molecules for the binding site of α-glucosidase on
the brush border of small intestinal epithelial cells, thereby reducing postprandial blood
glucose [7]. α-Glucosidase inhibitors are a unique class of antidiabetic agents that have
been described as attractive therapeutic targets for T2DM [8]. Therefore, the development
of α-glucosidase inhibitors has become a hotspot in the current research. At present,
typical clinical drugs for the treatment of non-insulin-dependent diabetes mellitus by this
approach include acarbose, voglibose, miglitol, etc. [9]. Although these inhibitors have
good effects in regulating blood sugar levels, they may have various side effects, such as
diarrhea, flatulence, liver disease, and abdominal cramps [10]. Numerous studies have
shown that natural products (e.g., active natural ingredients and crude extracts) can inhibit
α-glucosidase activity with no or few side effects [11]. Therefore, more and more attention
has been paid to finding α-glucosidase inhibitors with less toxicity or side effects from
natural products.

Flavonoids are natural compounds that exist widely in various plants [12], many of
which possess high biological activities, such as reducing vascular fragility, improving
vascular permeability, reducing blood lipids and cholesterol, etc. [13]. The basic structure
of flavonoids takes C6-C3-C6 as the nucleus, forming a series of sub-class compounds,
mainly including flavones, flavanones, isoflavones, flavonols, flavanols, anthocyanins, and
chalcones [14]. Studies have shown that many flavonoids can inhibit α-glucosidase activity
and may have the potential to improve postprandial blood glucose or T2DM [15]. Although
some studies have explored the structure–activity relationship between flavonoids and
glucosidases [16–18], few studies have explored this structure–activity relationship at the
molecular topological level. On the other hand, it is more important to use the optimized
model application for the screening of natural anti-α-glucosidase flavonoids.

In recent years, quantitative structure–activity relationship (QSAR) models have
been widely used for the quantitative analysis of the structure–activity relationships of
compounds [19]. QSAR modeling based on computer assistance can be an important tool
to guide the design and screening of new α-glucosidase inhibitors with higher activity,
which can remarkably reduce the cost of discovery [20]. Therefore, in this study, QSAR
models were established based on the previous experimental data [21]. We then used these
models with our previously developed natural product clustering library tool, MolNatSim,
to enrich and screen for natural anti-α-glucosidase flavonoids. Finally, ADMET prediction,
molecular dynamics (MD) simulations, and molecular mechanics/generalized Born surface
area (MMGBSA) were conducted to verify the potential pharmacokinetics of these candidate
inhibitors and their binding stability to α-glucosidase.

2. Materials and Methods
2.1. Preparation of Datasets

The sample set for this study was derived from 27 dietary flavonoids with α-glucosidase-
inhibitory activity from our previously measured data [21]. α-Glucosidase (from
Saccharomyces cerevisiae, 58.55 units/mL, EC 3.2.1.20) and p-nitrophenyl-α-D-glucopyranoside
were purchased from Sigma (Sigma-Aldrich, Shanghai, China). Flavonoid standards (purity
≥ 98.0%) were obtained from Chengdu Must Biotechnology Co., Ltd. (Chengdu, Sichuan,
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China). The inhibition of α-glucosidase activity was performed using a modified method
with p-nitrophenyl-α-D-glucopyranoside (p-NPG) as a substrate. The reaction was started
by adding 4 mmol L−1 p-NPG (diluted in 50 mmol L−1 phosphate buffer, pH 6.8). The reac-
tion mixture was incubated at 37 ◦C for 10 min, and the absorbance values were measured
at 405 nm using a Spectra Max M5 microplate meter. Acarbose (purity > 95%) was used as a
positive control, and 5% DMSO was used as a negative control. These molecules were used
to perform the QSAR analysis. The average IC50 values of flavonoids for α-glucosidase
inhibition were converted to pIC50 (−log IC50) values as the dependent variable for QSAR
analysis. The QSAR model was constructed by using MolAICal (version 1.3) [22] software.
Additionally, the whole dataset was split into two datasets: 80% of the flavonoids were
used as the training set, and the remaining 20% were used as the validation set, which
was used to generate the final QSAR models and evaluate the predictive power of the
derived models.

2.2. Structural Modeling

SMILES of dietary flavonoids were taken from the PubChem database, and the SMILES
format for each dietary flavonoid was obtained using the RDKit program (version 2021.09,
http://www.rdkit.org/ (accessed on 8 June 2022)) [23]. All structures performed energy
minimization using the steepest descent method of the MMFF94s force field [24], which
was used to eliminate poor atomic contacts and geometries.

2.3. Molecular Fingerprint Similarity Calculation

Molecular fingerprinting, as a method of characterizing chemical structures, is widely
used in clustering or recursive partitioning and similarity searching [25]. The molecu-
lar fingerprint similarity of the dietary flavonoids was calculated using the Open-Source
Cheminformatics Software RDKit (version 2021.09, http://www.rdkit.org/ (accessed on
12 June 2022)). Additionally, Simplified Molecular-Input Line-Entry System (SMILES)
formats and topological fingerprints for each dietary flavonoid compound were obtained
using the RDKit software. Finally, hierarchical clustering of dietary flavonoids was per-
formed using the single-link algorithm of the Python scikit-learn library (version 0.23.2,
https://scikit-learn.org.cn/ (accessed on 20 July 2022)) [26].

2.4. MLR-QSAR Modeling

The 2D and 3D molecular descriptors for each dietary flavonoid compound were ob-
tained using the PaDEL-Descriptor software package (version 2.21, http://www.yapcwsoft.
com/dd/padeldescriptor/ (accessed on 3 August 2022)) [27]. PaDEL descriptors contain
1875 descriptors (1444 1D and 2D descriptors, and 431 3D descriptors). The 2D molecular
descriptors represent structural information that can be calculated from the 2D structure of
the molecule, such as the number of benzene rings, the number of hydrogen bond donors,
etc. The 3D molecular descriptors represent structural information that must be obtained
from the 3D representation of the molecule (e.g., the solvent-accessible and surface area
of the structure with a positive partial charge). Additionally, parameters such as the 3D
autocorrelation charged part surface area, gravity index, length and width, moment of
inertia, Petitjean shape index, RDF, and WHIM were described. Then, blank columns
and columns with all zeros were removed, and correlation analysis was performed to
remove the high covariance parameter (p > 0.9). Finally, genetic algorithms were used to
further optimize these parameters, and the pIC50 values of the flavonoids were iteratively
optimized to build a multiple linear regression (MLR)-QSAR model.

2.5. Validation of the MLR-QSAR Model

The prediction ability and stability of the MLR-QSAR model were evaluated by using
the parameters Q2 (leave-one-out cross-validation), R2 fitting, adjusted R2, RSS, PRESS,
SDEC, SDEP, MSE, and MAE of partial least squares analysis. The formula definitions of
these parameters can be found in the Supplementary Materials (Table S1).

http://www.rdkit.org/
http://www.rdkit.org/
https://scikit-learn.org.cn/
http://www.yapcwsoft.com/dd/padeldescriptor/
http://www.yapcwsoft.com/dd/padeldescriptor/
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2.6. Natural Product Screening

Firstly, molecular fingerprint similarity clustering analysis was performed on the target
molecules, and the MolNatSim tool based on the COCONUT database was used to match
the similarity of each flavonoid in this study to establish a clustering library of the target
compounds. To rapidly locate the most similar natural product molecules and perform
conditional screening, pre-optimized molecular similarity prediction models (molecular
ECFP4 fingerprint and mini-batch k-means algorithm) are required [28]. In addition, the
MolNatSim tool also provides visual analysis operations. Finally, the generated MLR-QSAR
model and ADMET prediction analysis were used to make predictions for the possibility of
the screened natural product molecules.

2.7. Molecular Docking and Molecular Dynamics Simulation

AutoDock Vina was used for molecular docking to obtain complexes in potentially
optimal poses [29]. The 3D conformational isomers of the flavonoids were downloaded
from PubChem and optimized using RDKit software based on the MMFF94s force field.
The crystal structure of α-glucosidase from Saccharomyces cerevisiae is still not available.,
so we used the homology model reported by Jia et al. [21]. The structure was taken
from the Protein Data Bank (PDB ID: 3A4A). ORCA 5.0.3 was used to calculate the struc-
tural optimization vibration and single-point energy, and the calculation level used for
vibration and optimization was r2scan-3c [30]. The single-point energy used was RI-B3LYP-
D3(BJ)/def2-TZVP [31], and the RESP charge was fitted using Multiwfn [32]. The small
molecule Topol was obtained by fitting the bond and angle parameters based on the
Hessian matrix using Sobtop [33]. Molecular dynamics (MD) simulations were used to
explain conformational changes in the complex ligand–receptor binding interactions and
stability [34]. All MD simulations in the current work used the GROMACS 19.5 package
(https://manual.gromacs.org/ (accessed on 20 August 2022)) [35]. The docking structure
models of flavonoids and α-glucosidase proteins were subjected to 50 ns MD simulations
in solution with AMBER14SB [36] and the general AMBER force field (GAFF), respectively.
The water box adopted the TIP3P water model with a minimum distance of 1.0 nm between
the solute atoms and the edge of the periodic box. The system removed overlapping
water molecules, and appropriate amounts of Na+/Cl− ions were added to neutralize the
system. The energy minimization was conducted in two steps by gauge ensemble (NVT)
and isothermal isobaric ensemble. After MD simulations, the root-mean-square deviation
(RMSD) and root-mean-square fluctuation (RMSF) of the complexes were analyzed using
the GROMACS package. Unless otherwise stated, other parameters can be found in our
previous work [37].

2.8. Combined Free Energy Calculation

Molecular mechanics/generalized Born surface area (MMGBSA) was used to calculate
the binding free energy of the enzyme protein receptor and ligand small molecule com-
plexes [38]. This algorithm can be used to resolve complex interactions between complex
molecules by decomposing and calculating the components that make up the binding free
energy. This method extracts the architecture from the MD simulation trajectory of the com-
plex at certain time intervals and calculates the average binding free energy. As a scoring
function, the MMGBSA calculation method is widely used in drug design. MMGBSA was
used in this study to obtain binding free energies for the design of α-glucosidase inhibitors.

3. Results and Discussion
3.1. Molecular Fingerprint Similarity Analysis

Molecular fingerprints are special qualitative molecular descriptors originally de-
signed for similarity searching, comparison, and clustering of molecules, and they are
widely used in drug discovery and virtual screening [15]. The molecular similarity method
was developed based on the principle of molecular similarity (i.e., structurally similar
molecules should exhibit the same or similar biological activity) to search for compounds

https://manual.gromacs.org/
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with similar characteristics to known ligands. Therefore, to reveal the difference in the
α-glucosidase-inhibitory activity of dietary flavonoids, fingerprint similarity analysis was
performed on the selected dietary flavonoid compounds (Figure 1).
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Figure 1. (a) Hierarchical clustering of molecular fingerprint similarities of dietary flavonoid com-
pounds. (b) Structures of 27 dietary flavonoid compounds.

The hierarchical clustering results of the molecular fingerprint similarity of the selected
dietary flavonoid compounds are shown in Figure 1. The more purple the color of the
heatmap, the higher the molecular fingerprint similarity (MFS). Flavonoids are structurally
composed of two benzene rings (A and B rings) with phenolic hydroxyl groups linked by
three central carbon atoms [39]. According to the hierarchical clustering results of molecular
fingerprint similarity, these dietary flavonoids can be classified into six categories according
to the differences in the three-carbon-atom structure connecting the A ring and the B
ring, such as whether the ring is formed, oxidized, and/or substituted. Flavanones (e.g.,
hesperitin, taxifolin, and eriodictyol) and (+)-catechin, with the largest IC50 values, can be
clustered as Cluster 1 (mean MFS score > 0.6). Among them, epigallocatechin gallate and (+)-
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catechin both belong to flavan-3-ols and are therefore clustered in Cluster 1. Since phloretin
belongs to the dihydrochalcones, it was separately aggregated as Cluster 2. Flavonoids
that do not contain O-glucose groups (e.g., myricetin, luteolin, baicalein, isorhamnetin,
quercetin, apigenin, galangin, kaempferol, fisetin) were clustered into Cluster 3 (mean MFS
score > 0.7). Isoflavones (e.g., genistein, formononetin) were clustered into one category as
Cluster 4, which had a higher paired MFS score (mean MFS score > 0.8). Anthocyanins (e.g.,
cyanidin-3-O-glucoside) and flavonoids containing the O-glucose group (e.g., isorhamnetin-
3-O-rutinoside, myricitrin, apigenin-7-O-glucoside, luteoloside, rutin, kaempferol-7-O-β-
glucoside) were clustered into Cluster 5 (mean MFS score > 0.75). Among the flavonoids,
vitexin, vitexin glucoside, and isoschaftoside, with more similar side-chain linkages, were
clustered into one category as Cluster 6, which had the highest paired MFS scores (mean
MFS score > 0.9). Overall, the hierarchical clustering results showed that the molecular
fingerprint similarity and structures of the flavonoids were in good agreement.

3.2. MLR-QSAR Analysis

QSAR modeling is a method for establishing quantitative relationships between the
structural or physicochemical parameters of compounds and their biological activities using
mathematical calculation and statistical analysis based on MLR. Predicting the biological
activity of unknown compounds based on the MLR-QSAR model can significantly reduce
the cost of target compound screening and design. We used the PaDEL-Descriptor software
package to generate 2D and 3D descriptors to fully characterize the structure of the dietary
flavonoids, analyzing the autocorrelation of the descriptors while excluding highly linear
descriptors. Finally, a genetic algorithm was used to further optimize the descriptors, and
the pIC50 values were iteratively modeled to construct the MLR-QSAR [40]. The results in
Figure 2 show that all of the points are located near the diagonal line, indicating a good
correlation between the experimental inhibition rate (pIC50) and the predicted inhibition
rate (pIC50pre), suggesting that the model is very predictable (Table 1). In the 2D-MLR-
QSAR model, the R2 fitting was 0.9273, the R2 adjusted was 0.9046, and the Q2

LOO was
0.8861. In the 3D-MLR-QSAR model, the R2 fitting, R2 adjusted, and Q2

LOO were 0.9336,
0.9129, and 0.8991, respectively (Table 2). These results indicate that the developed model
has a good fit and could adequately predict the inhibitory effects of dietary flavonoid
compounds on α-glucosidase.
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Table 1. Experimental and 2D- or 3D-MLR-QSAR predicted pIC50 values for α-glucosidase-inhibitory activity of 27 dietary flavonoids.

2D-MLR-QSAR 3D-MLR-QSAR

PubChem CID Name pIC50 * pIC50pre # Residue PubChem CID Name pIC50 pIC50pre Residue

5280443 Apigenin 3.224 3.684 −0.46 5280445 Luteolin 4.082 4.054 0.028
5281605 Baicalein 3.586 3.42 0.166 5280863 Kaempferol 3.814 3.746 0.068
5281616 Galangin 3.381 3.284 0.097 5280443 Apigenin 3.224 3.593 −0.37
5281654 Isorhamnetin 3.17 3.271 −0.102 5280343 Quercetin 3.939 4.008 −0.07
5280445 Luteolin 4.082 3.938 0.144 5281654 Isorhamnetin 3.17 3.264 −0.095
5281672 Myricetin 4.934 4.92 0.014 5281672 Myricetin 4.934 4.729 0.206
5280863 Kaempferol 3.814 3.751 0.064 5280704 Apigenin-7-O-glucoside 4.642 3.502 1.14
5280343 Quercetin 3.939 4.05 −0.111 5281605 Baicalein 3.586 3.29 0.296
5280704 Apigenin-7-O-glucoside 4.642 3.468 1.174 5281614 Fisetin 4.334 4.271 0.063
72281 Hesperitin 2.72 2.654 0.067 440735 Eriodictyol 2.986 3.035 −0.049

5280441 Vitexin 3.448 3.353 0.095 5281616 Galangin 3.381 3.122 0.259
5281614 Fisetin 4.334 3.839 0.494 439533 Taxifolin 2.531 2.869 −0.338
439533 Taxifolin 2.531 2.371 0.16 72281 Hesperitin 2.72 2.708 0.012
440735 Eriodictyol 2.986 2.911 0.075 5280378 Formononetin 3.126 3.101 0.025

4788 Phloretin 3.85 3.806 0.045 5280637 Luteoloside 3.365 3.463 −0.098
9064 (+)-Catechin 1.789 1.888 −0.098 5280961 Genistein 3.192 3.357 −0.164

5280637 Luteoloside 3.365 3.582 −0.217 5280441 Vitexin 3.448 3.302 0.147
5280378 Formononetin 3.126 3.189 −0.063 3084995 Isoschaftoside 3.411 3.366 0.045
5280961 Genistein 3.192 3.219 −0.027 172648475 Kaempferol-7-O-β-glucoside 3.689 3.654 0.035

172648475 Kaempferol-7-O-β-glucoside 3.689 3.47 0.219 9064 (+)-Catechin 1.789 1.729 0.06
5281673 Myricetin 3.51 2.776 0.734 5281673 Myricetin 3.51 4.997 −1.487
441667 Cyanidin-3-O-glucoside 4.197 4.204 −0.006 5280805 Rutin 3.761 3.771 −0.01
65064 Epigallocatechin Gallate 4.011 4.009 0.002 5481663 Isorhamnetin-3-O-rutinoside 3.268 3.196 0.072

3084995 Isoschaftoside 3.411 3.646 −0.234 56776173 Vitexin-4′-O-glucoside 3.354 2.898 0.456
5280805 Rutin 3.761 3.623 0.138 4788 Phloretin 3.85 3.865 −0.015

56776173 Vitexin-4′-O-glucoside 3.354 3.049 0.306 65064 Epigallocatechin Gallate 4.011 3.826 0.185
5481663 Isorhamnetin-3-O-rutinoside 3.268 3.245 0.023 441667 Cyanidin-3-O-glucoside 4.197 4.365 −0.168

* pIC50 = experimental value. # pIC50pre = predicted pIC50 value.
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Table 2. MLR-QSAR models (2D- and 3D-descriptor optimized) of 27 dietary flavonoids and cross-
validation results.

Parameters 2D-MLR-QSAR 3D-MLR-QSAR

Q2
LOO 0.8861 0.8991

R2 fitting 0.9273 0.9336
R2 adjusted 0.9046 0.9129

RSS 0.6906 0.5679
PRESS 1.0829 0.8633
SDEC 0.1772 0.1607
SDEP 0.2219 0.1981
MSE 0.1636 0.2545
MAE 0.3138 0.349

MLR

pIC50 = 4.12506 + (−0.15599) ×
MIC1 + (−0.00011) × ATS4v +

(0.05492) × AATS7m + (3.06615)
× CIC3 + (−3.00189) ×minssCH2

pIC50 = 8.97844 + (0.49135)
LOBMAX + (−0.03043) × RDF35i
+ (0.00505) × TDB10i + (−0.01383)
× TDB9i + (0.01155) × TDB6m

The RSS, PRESS, SDEC, SDEP, MSE, and MAE parameters were calculated to further
evaluate the robustness of the model, and the results are shown in Table 2. The RSS of
the 2D and 3D QSAR models was 0.6906 and 0.5679, the PRESS was 1.0829 and 0.8633,
the SDEC was 0.1772 and 0.1607, the SDEP was 0.2219 and 0.1981, the MSE was 0.1636
and 0.2545, and the MAE was 0.3138 and 0.349, respectively. These results show that this
model has good robustness and predictive capability, and that the predictive performance
of 2D-MLR-QSAR is better than that of 3D-MLR-QSAR.

Next, the relationships between the structural properties and pIC50 values of the
dietary flavonoids were further analyzed based on key descriptors. In the MLR equation of
the 2D-QSAR model, MIC1, ATS4v, AATS7m, CIC3, and minssCH2 were identified as key
descriptors affecting the inhibitory activity of dietary flavonoids on α-glucosidase (Table 2).
The maximum coefficient of CIC3 was 3.06615, and the coefficient of AATS7m was 0.05492,
contributing positively to the model. Meanwhile, the coefficients of MIC1, ATS4v, and
minssCH2 were −0.15599, −0.00011, and −3.00189, respectively, contributing negatively to
the model. ATS4v is a molecular descriptor for characterizing the topology of compounds
based on the intrinsic states of atoms [41]. AATS7m corresponds to the length of the
branch on the R group in the molecular structure of dietary flavonoids [42]. CIC3 is the
complementary information content index (third-order neighborhood symmetry). MIC1
is a molecular descriptor that considers steric effects in molecule–receptor interactions
based on proximity and edge multiplicity [43]. Unlike the MLR equation of the 2D-QSAR
model, LOBMAX, RDF35i, TDB10i, TDB9i, and TDB6m in the MLR equation of the 3D-
QSAR model were considered to be the key descriptors affecting the inhibitory activity of
dietary flavonoids on α-glucosidase (Table 2). Among them, TDB10i, TDB9i, and TDB6m
were considered to be based on molecular 3D topological distance autocorrelation [43].
Based on the coefficients of these parameters listed in Table 2, LOBMAX, TDB10i, and
TDB6m were 0.49135, 0.00505, and 0.01155, respectively, contributing positively to the
model, while the other two parameters (RDF35i and TDB9i) contributed negatively to the
model. RDF35i corresponds to the radial distribution function—055/weighted by the first
ionization potential, which describes the molecular radial distribution function [44].

Based on Pearson’s correlation coefficients, autocorrelation analysis of the two descrip-
tors used to train the MLR-QSAR model was conducted. Figure 3a,b show the optimal
autocorrelation plots of the descriptors for the 2D-MLR- and 3D-MLR-QSAR models of the
flavonoids, respectively. The results showed that the pairwise correlation of most of the key
descriptors was less than 0.8, indicating that the correlation between these key descriptors
was not strong. It follows that the constructed model can be used to quantify the inhibitory
activity of dietary flavonoids on α-glucosidase. Since the 2D-MLR-QSAR model had better
predictive performance, it was used for prediction and screening in subsequent study.
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3.3. Discovery of Natural α-Glucosidase Inhibitors and ADMET Analysis

To better apply the model to predict the potential natural α-glucosidase inhibitors, we
used the COCONUT-based MolNatSim tool (which contains over 400,000 natural products)
to match the 27 natural dietary flavonoid molecules modeled in this paper. Refer to our
previous work for an introduction to the MolNatSim Tool [45]. Natural product clustering
libraries with five different clustering degrees were used to enrich each molecule. Firstly, the
Morgan fingerprint similarity between the molecules in each molecular arrowhead and the
target molecule was calculated using RDKit, and molecules with a similarity greater than
80% were retained. Secondly, a total of 1716 natural molecules were enriched by merging
27 molecular arrowheads. Finally, 1198 natural molecules were obtained by deduplication
according to SMILE and number.

Drug similarity is a key consideration when selecting compounds in the early stages
of drug discovery. Applying quantitative estimation of drug-likeness (QED) to the molecu-
larly targeted druggability assessment problem facilitates drug discovery by prioritizing a
large number of published biologically active compounds [46]. Therefore, QED and other
screening methods should be used to accelerate the discovery of α-glucosidase-inhibitory
activity of natural dietary flavonoid molecules based on similarity. We chose a QED value
of 0.5 and MWs of 650 as the threshold to reduce the number of molecules from 852 to
82 and removed the elements not contained in the molecules from the modeling. The
results are shown in Table S2, and 78 natural product molecules were obtained, includ-
ing the 3 molecules in the modeling. The prediction of pIC50pre was carried out using
the 2D-MLR-QSAR model, and the results are shown in Table S2. Finally, five natural
products were found to meet the requirements that pIC50pre be larger than the pIC50
of the 27 natural dietary flavonoid molecules. These were 2-(3,5-dihydroxyphenyl)-5,7-
dihydroxy-4H-chromen-4-one, norartocarpetin, 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-
4H-chromen-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-4H-chromen-4-one, and morelosin.
The quantitative conformational relationship predictions showed that their IC50pre values
were 8.98, 31.95, 78.57, 87.87, and 94.14 µM, respectively.

To assess bioavailability and avoid drug interactions based on the proposed natu-
ral compounds, the prediction of ADMET properties was conducted to reduce poten-
tial problems in later clinical trials. For this purpose, the pharmacokinetics of these
novel natural product α-glucosidase inhibitors were considered using SwissADME web
server [47] (http://www.swissadme.ch (accessed on 17 August 2022)) and PreADMET
web server [48] (https://preadmet.bmdrc.kr (accessed on 18 August 2022)) predictions.
ADMET parameters were calculated for the five natural products, and the results are
shown in Table 3. Solubility is an important parameter in ADMET prediction to evalu-
ate the possibility of intestinal absorption and blood distribution. Three of these natu-
ral products—2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, norartocarpetin,

http://www.swissadme.ch
https://preadmet.bmdrc.kr
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and 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one—had good solubility, and
all five natural products may have good bioavailability and gastrointestinal absorption. In
addition, the blood–brain barrier (BBB) is the main interface separating the central nervous
system from the blood circulation [49]. Our results showed that these five natural products
have non-permeable BBB ability. Pgp is an important transporter protein responsible for the
excretion of many harmful substances from cells, and naturally also for the removal of many
drugs from cells [50]. Our results showed that these five natural products are not Pgp sub-
strates, indicating they cannot reduce the debilitating effects of drug efficacy. Fortunately,
our candidate compounds 2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one and
norartocarpetin are not expected to show toxicity to cancerous rat and mouse cells. As
shown in Table S3, based on drug similarity predictions, the natural compounds conformed
to Lipinski’s rule, Veber’s rule, and Egan’s rule, indicating that the compounds can be
easily synthesized [51]. Thus, these studies provide favorable support for our model to
predict the outcomes of natural α-glucosidase inhibitors.

3.4. Molecular Docking Analysis

We used AutoDock Vina for molecular docking to explore the possible binding modes
of five natural compounds with α-glucosidase. The interaction results were visualized and
analyzed using Discovery Studio 2016 software. The docking results showed many interac-
tions between the five natural flavonoid compounds and α-glucosidase. Figure 4a–e show
the interaction of the ligands (2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one,
2-(3,4-dihydroxyphenyl)-5-hydroxy-4H-chromen-4-one, morelosin, norartocarpetin, and 2-
(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, respectively) with the amino acid
residues of α-glucosidase. As shown in Figure 4, the compound 2-(2,5-dihydroxyphenyl)-
5,7-dihydroxy-4H-chromen-4-one interacts with the active site of α-glucosidase, forming
conventional hydrogen bond interactions between two amino acid residues (Gln276 and
Glu274), and forming π-anion and π-cation interactions between Asp349 and Arg312,
as well as π-alkyl interactions with residues of Val 213. It has been reported that gallic
acid catechins exhibit strong inhibition of α-glucosidase in a non-competitive manner
by reacting with Arg 312 and others [52]. For the compound 2-(3,4-dihydroxyphenyl)-
5-hydroxy-4H-chromen-4-one, there are two main interactions with the α-glucosidase
receptor: the π-anion interaction with residues of Asp349, and the formation of hydrogen
bonds between Asp304 and Gln350. Morelosin and 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-
4H-chromen-4-one similarly interact with α-glucosidase receptors in a variety of ways,
with conventional hydrogen bond interactions forming between Gln350, Asp349, and
Arg210, and π-cation and π-anion interactions with Arg312 and Arg439. The compounds
norartocarpetin and morelosin formed similar interactions with the α-glucosidase recep-
tor, forming conventional hydrogen bond interactions with Asp349, Asp304, and Arg439,
π-cation interactions with Arg312, and π-alkyl interactions with residues of Val213. An-
other study found that Arg439 and Val213 were important for the catalytic reaction of
α-glucosidase [53]. 2-(3,5-Dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one mainly
formed hydrogen bond interactions with α-glucosidase receptors with Arg439, Glu274,
Ash212, Gln276, and Asp239. In addition, π-cation and π-alkyl interactions were formed
with Arg312 and Val213, respectively. In a previous study [21], acarbose was used as
a positive control to react with amino acid residues of α-glucosidase, including Glu274,
Asp349, Arg439, and Arg 312. These were used to stabilize the enzyme–ligand complex
in the catalytic reaction, so these amino acid residues affected the catalytic action of α-
glucosidase. We found that five natural flavonoid compounds could form hydrogen bonds
with multiple residues of α-glucosidase. The hydrogen bonding interaction force is thought
to play a key role in stabilizing the enzyme–ligand complex to perform the catalytic reaction,
which depends mainly on the number of hydrogen bonds [54]. 2-(3,5-Dihydroxyphenyl)-
5,7-dihydroxy-4H-chromen-4-one, morelosin, and norartocarpetin have more hydrogen
bonding interactions with the α-glucosidase receptor and, therefore, are able to form more
stable enzyme–ligand complexes.
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Table 3. The 2D-MLR-QSAR prediction and ADMET analysis of potential natural α-glucosidase inhibitors.

Compounds Molecular
Structure

IC50pre # (µM) Water
Solubility

Bioavailability
Score

GI
Absorption

BBB
Permeant

Pgp
Substrate

log Kp
(cm/s)

Toxicity

Carcino_Mouse Carcino_Rat

2-(3,5-
Dihydroxyphenyl)-
5,7-dihydroxy-4H-

chromen-4-one
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Figure 4. Docking interactions between five novel natural products and α-glucosidase 3A4A:
(a) 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one; (b) 2-(3,4-dihydroxyphenyl)-5-
hydroxy-4H-chromen-4-one; (c) morelosin; (d) norartocarpetin; (e) 2-(3,5-dihydroxyphenyl)-5,7-
dihydroxy-4H-chromen-4-one.

3.5. Molecular Dynamics Simulation Analysis

The dynamic stability and binding energy of the complexes were further analyzed
by molecular dynamics (MD) simulations. RMSD was used to determine the average
deviation of the complex conformation from the original conformation at a given time
and to assess whether the complex system had reached a steady state [55]. As shown
in Figure 5a, both 2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one and 2-(2,5-
dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one systems reached equilibrium at 20,000
ps, and their RMSD values remained stable at 0.12 and 0.14 nm, respectively. Both 2-
(3,4-dihydroxyphenyl)-5-hydroxy-4H-chromen-4-one and morelosin showed a rise in their
RMSD values in the first 25,000 ps of the simulation and then became more stable at
45,000 ps while reaching equilibrium, and their RMSD values remained stable at 0.20
and 0.18 nm, respectively. The norartocarpetin system reached equilibrium faster, within
15,000 ps, and was stable at an average value of 0.10 nm. Moreover, norartocarpetin was
the least fluctuating system overall among the five systems. In summary, the five systems
converged and balanced within 50,000 ps of simulation, with 2-(3,5-dihydroxyphenyl)-5,7-
dihydroxy-4H-chromen-4-one, 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one,
and norartocarpetin showing the best stability.
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RMSF can be used to characterize the stability of a composite system by evaluating
the fluctuation of conformational change from the original conformation [55]. Figure 5b
shows the RMSF values of the five natural product–α-glucosidase complex molecules as a
function of residue number. In the active center, GLU274, GLN276, ASP304, GLN350, and
ARG439 are the key amino acid residues. The binding of the five natural products to the
α-glucosidase receptor leads to the increased flexibility of residues (212–239), (274–304),
and (407–439) in the critical region. This suggests that novel natural flavonoid compounds
may inhibit α-glucosidase activity by interacting with key residues affecting the activity
pocket. As shown in Figure 5b, the mean values of RMSF for all residues of the five
natural products were 0.07, 0.06, 0.07, 0.08, and 0.09 nm, respectively. Thus, the natural
products 2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, norartocarpetin, and
2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one have lower flexibility (or higher
rigidity), except for a limited number of regions. The RMSF provided information on
the local structural mobility of the proteins during the MD simulations. Among the five
environments, the natural products 2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-
4-one, norartocarpetin, and 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one
showed lower residue fluctuations, indicating that these three natural products have fewer
conformational changes and higher stability after binding to α-glucosidase.

3.6. Combining Free Energy Calculations by the MMGBSA Method

To quantitatively characterize the effects of the interactions between the five novel
natural products and α-glucosidase, we calculated the binding free energy of the two
products using the MMGBSA algorithm. After choosing 40–50 ns and taking conformations
at certain intervals, the MD of the complex systems was simulated by the MM-GBSA
algorithm. As shown in Table 4, all of the complexes showed good binding free energies;
the simulated values of free energy of binding (∆Gbind) for the five complexes were −23.87,
−37.78, −27.81, −22.53, and −16.56 kcal/mol, respectively. The negative values of the
free energy of binding indicate that the process of binding is spontaneous and can reach
a steady state [56]. Among all types of interactions, the van der Waals interaction energy
term (∆Evdw) and the electrostatic interaction energy term (∆Eele) contribute the most to
the average binding free energy, providing the main driving force for the binding of novel
natural products to α-glucosidases. The non-polar solvation energy term (∆Gnon-pol) also
acts as a key force to maintain the stability of the system. ∆Ggas includes van der Waals en-
ergy (∆Evdw), electrostatic energy (∆Eele), and non-polar solvation energy (∆Gnon-pol) [56].
However, the polar solvation energy (∆Gpol) exhibited an unfavorable energetic contri-
bution, inhibiting the spontaneous binding of the natural product to α-glucosidase, but
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was mostly counteracted by the molecular electrostatic interaction energy under vacuum
conditions. Notably, in terms of the total binding free energy, the natural product inhibitors
norartocarpetin, 2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, and 2-(2,5-
dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one can form more stable complexes with
α-glucosidase.

Table 4. Binding free energy of complex formation between α-glucosidase and its inhibitors.

Energy (kJ/mol)

2-(3,5-
Dihydroxyphenyl)-
5,7-Dihydroxy-4H-

Chromen-4-one

Norartocarpetin

2-(2,5-
Dihydroxyphenyl)-
5,7-Dihydroxy-4H-

Chromen-4-one

2-(3,4-
Dihydroxyphenyl)-

5-Hydroxy-4H-
Chromen-4-one

Morelosin

∆Evdw −23.24 ± 1.95 −30.29 ± 2.98 −26.31 ± 4.52 −35.28 ± 2.77 −29.34 ± 2.45
∆Eele −38.62 ± 5.45 −53.66 ± 5.59 −46.07 ± 9.18 −15.2 ± 10.68 −7.1 ± 3.49
∆Gpol 41.82 ± 3.12 51.32 ± 3.38 48.7 ± 8.00 32.38 ± 7.23 23.99 ± 3.64

∆Gnon-pol −3.84 ± 0.27 −5.15 ± 0.13 −4.13 ± 0.34 −4.43 ± 0.15 −4.11 ± 0.23
∆Ggas −61.86 ± 5.44 83.95 ± 4.93 −72.38 ± 10.14 −50.48 ± 9.98 −36.43 ± 4.19
∆Gsol 37.98 ± 3.01 46.17 ± 3.36 44.57 ± 7.72 27.95 ± 7.25 19.88 ± 3.52

∆Gbind −23.87 ± 3.18 −37.78 ± 3.28 −27.81 ± 3.45 −22.53 ± 3.40 −16.56 ± 2.55

Note: ∆Evdw, the van der Waals interaction energy term; ∆Eele, the electrostatic interaction energy term;
∆Gpol, the polar solvation energy term; ∆Gnon-pol, The non-polar solvation energy term; ∆Ggas, the gas phase free
energy term; ∆Gsol, the solvation free energy term; ∆Gbind, the free energy of binding.

4. Conclusions

In this study, the molecular fingerprint similarity clustering analysis was carried
out on the target molecules, and then the results of the MLR-QSAR model construction
showed a good correlation between the experimental value (pIC50) and the predicted
value (pIC50pre), meaning that the model can be used to predict the properties of new
and potential dietary flavonoid compounds. Finally, the MolNatSim tool, based on the
COCONUT database, was used to build the clustering library of the target compounds.
After a series of screenings, five natural products (2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-
4H-chromen-4-one, norartocarpetin, 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-
4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-4H-chromen-4-one, and morelosin) were found
to have good α-glucosidase-inhibitory activity. The results of ADMET assessed properties
such as the bioavailability and drug similarity of natural products. Molecular docking
analysis revealed the interactions of the candidate novel natural flavonoid compounds with
the amino acid residues of α-glucosidase. MD simulations and MMGBSA further validated
the stability of these novel natural compounds bound to α-glucosidase. In particular, the
compounds 2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, norartocarpetin,
and 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one (predicted pIC50pre values
of 8.98, 31.95, and 78.57 µM, respectively) can be considered potent novel α-glucosidase
inhibitors.
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