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Abstract: There is growing interest in enhancing the freeze–thaw stability of a Pickering emulsion to
obtain a better taste in the frozen food field. A Pickering emulsion was prepared using a two-step
homogenization method with soybean protein and maltose as raw materials. The outcomes showed
that the freeze–thaw stability of the Pickering emulsion increased when prepared with an increase
in soybean protein isolate (SPI) and maltose concentration. After three freeze–thaw treatments
at 35 mg/mL, the Turbiscan Stability Index (TSI) value of the emulsion was the lowest. At this
concentration, the surface hydrophobicity (H0) of the composite particles was 33.6 and the interfacial
tension was 44.34 mN/m. Furthermore, the rheological nature of the emulsions proved that the
apparent viscosity and viscoelasticity of Pickering emulsions grew with a growing oil phase volume
fraction and concentration. The maximum value was reached in the case of the oil phase volume
fraction of 50% at a concentration of 35 mg/mL, the apparent viscosity was 18 Pa·s, the storage
modulus of the emulsion was 575 Pa, and the loss modulus was 152 Pa. This research is significant for
the production of freeze–thaw resistant products, and improvement of protein-stabilized emulsion
products with high freeze–thaw stability.

Keywords: pickering emulsion; freeze–thaw stability; nanoparticles concentration; dispersed phase
volume fraction; stability analysis

1. Introduction

Frozen fast food has received wide attention due to consideration of the needs inherent
to a fast-paced life and the demand for better quality of products [1]. Freezing is a broadly
used method that improves the shelf life of provisions, while the ice crystals composed
throughout the freezing process constitute an important environmental stress, causing
damage to the structure of provisions and ultimately generating an influence on the quality
of products [2,3]. Therefore, it is worth producing emulsion-based products with an
enhanced freeze–thaw stability. Pickering emulsion has excellent biocompatibility and a
strong anti-aggregation ability. Solid particles adsorbed at the interface between oil and
water in a Pickering emulsion can form a thick viscoelastic layer around the surface of
oil droplets. During the freezing process, the viscoelastic layer in the Pickering emulsion
resist the stress caused by ice expansion, giving it a certain freeze–thaw stability, and thus
guaranteeing good product quality after the freezing treatment [4]. At present, the methods
used to prepare a Pickering emulsion with high freeze–thaw stability include heating
modification of protein, modification of the protein glycosylation, adjustment of ionic
strength, and so on. For example, a steady thymol oil-in-water Pickering emulsion was
prepared through electrostatic interaction between soluble almond gum and whey protein
isolation. The combination of whey protein and soy polysaccharide using heat-induced
polymerization was used to strengthen the freeze–thaw stability of the emulsion [5]. The use
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of three various vegetable oils in the freeze–thaw stability of Pickering emulsion prepared
with quinoa protein, determined that various vegetable oils exerted little effect on the
freeze–thaw stability of Pickering emulsion [6].

Bean protein can be used as a substitute for animal protein due to its low cost and ex-
cellent performance. Common bean proteins are soybean protein and pea protein. Soybean
protein has good emulsifying properties and solubility. In addition, the amphiphilic nature
of soybean protein makes it an excellent interface stabilizer. Therefore, this experiment
takes soybean protein as the experimental material [7,8]. However, a Pickering emulsion
prepared with soy protein in its natural state has poor freeze–thaw stability and is difficult
to be widely used in frozen foods [9]. This is because when the external temperature
decreases, water forms ice crystals, and the stress generated by the ice crystals plays a
destructive role in the solid particles adsorbed at the oil–water interface; thus, the stability
of the emulsion is destroyed [10]. Maltose has good frost resistance and thermal stability,
ensuring that the Maillard reaction is in the early stages. By adding maltose, the carbonyl
group of the sugar and the amino group of the soy protein undergo a condensation reac-
tion [11]. The electrostatic repulsion increased with the charge density of the soy protein
changing. Changing the amphiphilicity of the soy protein causes it to have balanced wetta-
bility and strengthening. During the effective adsorption of sugar particles at the oil–water
interface, the freeze–thaw stability of the emulsion is improved [12–14].

The thermally induced aggregation method is a simple and effective method for
preparing proteins and sugars to form nanoparticles, nanofibrils and nanogels. It has the
advantages of a simple preparation and operation process, low cost, avoiding chemical
residues, etc [10,15]. Therefore, this experiment adopts the heat-induced aggregation
method to combine soybean protein and maltose to enhance its freeze–thaw stability. At
present, the effect of soy protein, maltose concentration, and oil and water ratio of a
Pickering emulsion on freeze–thaw stability has still not been studied. This study aims
to prepare a a Pickering emulsion with high freeze–thaw stability, which can support the
subsequent improvement in frozen food quality.

2. Materials and Methods
2.1. Materials

SPI was obtained from Yuwang Industrial Co., Ltd. (Dezhou, China). Maltose
(purity ≥ 95%) was obtained from Ding sheng Industrial Co., Ltd. (Guangzhou, Guangzhou
Province, China). Soy oil was accessed through a supermarket in Harbin, China. Other
reagents were analyzed and bought from Shangdong Tuopu Biotechnology Co., Ltd. (Qing-
dao, China).

2.2. Preparation of Dispersions Containing Soy Protein Isolate and Maltose

SPI–maltose particles were created with reference to the approaches of Cabezas et al.
with slight modifications [16]. The solutions with SPI and maltose concentrations of 15, 20, 25,
30, 35 mg/mL were made, and then mixed at equal concentration and volume at a proportion
of 1:1, and magnetically stirred for 2 h after mixing. The SPI–maltose solution and the maltose
solution were heated at 90 ◦C for 15 min and were rinsed and cooled immediately to obtain
the SPI–maltose complexes. Afterwards, they were stored overnight at 4 ◦C (for the full
hydration of SPI–maltose). The pH of the solution was changed to 8. The 0.02% NaN3 (w/v)
was put into control for the development of microorganisms in the emulsions.

2.3. Characterization of SPI–maltose Particles

The methods for measuring Dz and potential referred to Chen et al.’s, with slight
modifications [17]. The test sample was diluted with deionized water to an SPI–maltose
solution of about 0.01 mg/mL, and was then screened through a 0.45 µm membrane filter.
The refractive index of SPI–maltose is 1.460, and was tested using a Zetasizer Nano S90
Malvern particle size analyzer (Malvern Instruments Ltd., Worcester, UK).
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2.4. Determination of SPI–maltose H0

The method for measuring the hydrophobicity (H0) of the particle surface was deter-
mined pursuant to the approach of Xu et al., using an F97pro fluorescence spectrophotome-
ter (Shanghai Lengguang Technology Co., Ltd., Shanghai, China) [18]. The SPI–maltose
samples (0.01 mol/L) were dissolved in pH 7.0 phosphate buffer, which was followed by
1 hour stirring at room temperature and 30-min centrifugation at 10,000× g centrifugal
force. To the sample solutions of 4 mL were added 8 mmol/L ANS solution of 40 L, and
these were shaken and set for 3 min.

2.5. Interfacial Behavior of Nanoparticles

The interfacial tension was measured as described by Feng et al., with slight modifi-
cations [19]. Surface tension (MC-1021 homogenizer, Mince Instrument Equipment Co.,
Ltd., Xiamen, China) meter assayed the interfacial tension of the sample. The samples were
poured into the measuring cup to the middle graduation line. Using the platinum plate
method, the interfacial tension of each sample was measured 3 times with an automatic
interfacial tension meter at 25 ◦C.

2.6. Preparation of Pickering Emulsions

The preparation method of a Pickering emulsion was used with reference to Zhu et al. [20].
The soybean oil (10%, 20%, 30%, 40%, 50% w/w) was added to SPI–maltose complexes with
a concentration of 35 mg/mL. The mixed solutions were stirred for 3 min at a speed of
12,000 rpm through an XHF-DY high-speed homogenizer (Xinzhi Biological Co., Ltd., Ningbo,
China). The crude emulsion was further homogenized through a Scientz-150 high-pressure
homogenizer (Xinzhi Biological Co., Ltd., Ningbo, China) at a stress degree of 80 MPa to
produce an initial emulsion. The Pickering emulsion (40 g) was placed in a 100 mL plastic
bottle, which was followed by 22 h freezing at −22◦C and 2 h thawing at 30 ◦C. The freeze–
thaw cycle treatment was repeated 3 times to obtain a targeted emulsion.

2.7. Stability Analysis of Pickering Emulsion

As stated in the research of Gmach et al. [21], a Turbiscan stability analyzer (Formu-
laction, Toulouse, France) was adopted to detect the stability of the initial emulsion and
the freeze–thaw process. The emulsion of 20 mL was put in a bottle and scanned from the
bottom to top at room temperature (25 ◦C) for 24 h. The diffuse light changes of the initial
emulsion and freeze–thaw treatment emulsion were determined.

2.8. Confocal Laser Scanning Microscope (CLSM)

CLSM (Leica Microsystems Inc., Heidelberg, Germany) was adopted to review vari-
eties of the microstructure of the Pickering emulsion in the whole freeze–thaw cycle with
the test approach of Zhu et al. [22]. Briefly, the protein stage of emulsion was dyed with
Nile Blue, while the oil stage of it was dyed with Nile Red for 30 min. Stained Pickering
emulsions were dripped onto glass slides and monitored by CLSM.

2.9. Rheological Measurement

The rheometer (MCR102, Antona Co., Ltd., Graz, Austrian) was selected to test the
shear viscosity of the different emulsions and select the viscoelastic fluid mode. The shear
rate is from 0.05 to 100 s−1.

The viscoelasticity of different emulsions was measured by the rheological strain scan
and frequency scan mode using a rheometer (MCR102, Antona Co., Ltd., Graz, Austrian).
The strain scan range is from 0.001–1.0, and the frequency is set to 1 Hz. The measurement
results expressed in the storage modulus (G′) and the loss modulus (G′′) were recorded.

2.10. Differential Scanning Calorimetry (DSC)

The 204 F1 DSC (NETZSCH-Gerätebau GmbH, Selb, Germany) measurement method
was modified as stated by the previous study [23]. A small amount of the Pickering
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emulsion (10–20 mg) was placed on a dish. The temperature set range was from −50 ◦C to
40 ◦C. The cool temperature set range was from 40 ◦C to −50 ◦C at the rate of 5 ◦C/min,
balanced and then heated to 40◦C at the same rate.

2.11. Statistical Analysis

The above experiments were carried out at least in triplicate, and the origin 2019
software was adopted for exploration and mapping. SPSS 20 software was adopted for
one-way ANOVA and Duncan’s test of the experimental data, with p < 0.05 as the great
difference, and the outcomes were expressed by mean ± SD.

3. Results
3.1. Particle Size and Potential Change of SPI–maltose

By measuring the complex potential and particle size of SPI–maltose at different
concentrations, the properties of SPI–maltose particles were evaluated. Figure 1A shows
the particle size (Dz) of SPI–maltose nanoparticles when they were developed at the
concentration values of 15–35 mg/mL. The results proved the Dz of the produced composite
particle gradually increased, which conformed to the findings of Chen et al.’s research [24].
Within the concentrations of 15–35 mg/mL, particle diameter increased with the increase
in the concentrations, and a larger Dz was beneficial to obtain higher freeze–thaw stability
for the Pickering emulsion. It was observed that the particle concentration had little impact
on the potential, and the potential of the composite particles under different SPI–maltose
concentrations was in the range of −27 to −29 mV (Figure 1B).
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Figure 1. Dz and ξ-potential of different concentration of SPI–maltose. (A) shows the particle
size, and (B) shows the potential. Different letters (a–e) indicate statistically significant differences
(p ≤ 0.05), according to ANOVA (one-way) and the Tukey test.

3.2. The H0 of SPI–maltose

The interaction between two water-insoluble molecules was the key indicator to gauge
the working feature of proteins. The H0 of composite particles gradually increased with
the increase in SPI and maltose concentrations (Figure 2). When the concentration reached
35 mg/mL, the H0 reached the maximum. Soy protein’s conformation was changed by
the interaction between SPI and maltose. Glycosylation causes reduced H0 of the SPI, and
heating during the Maillard reaction causes the unfolding of SPI conformation, thereby
exposing the internal polar groups and reducing the hydrophobicity on the SPI surface [25].
However, as the concentration of the SPI increases, the hydrophobic amino acid content in
the complex increases, which in turn increases the H0 of the complex particles [26].
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3.3. The Interfacial Tension of SPI–maltose

Interfacial tension was the prerequisite for emulsification and foam generation, and
a reduced level was closely relevant to the emulsifying and foaming capabilities. The
interfacial tension of SPI–maltose nanoparticles was measured with an interfacial tension
meter, and the outcomes were proven in Figure 3. The interfacial tension decreased from
46.62 mN/m to 44.34 mN/m, while the particle concentration rose from 15 mg/mL to
35 mg/mL. The results showed that increasing the concentration of SPI and maltose could
reduce the interfacial tension. This was because, with the increase in concentration, the
concentration of SPI–maltose molecules increased as well, which increased the possibility of
aggregation of SPI–maltose. The enthalpy of aggregation may be lower than that of a single
molecule, which made it tend to be adsorbed at the interface, thus reducing the interfacial
tension. In addition, the contact probability between SPI-free amino groups and carbonyl
groups at the reducing end of maltose increased, which promoted the reaction between SPI
and maltose, leading to more SPI expansion and higher SPI flexibility, as well as reducing
the interfacial tension of SPI–maltose molecules in oil and water. In addition, the contact
probability between the free amino group and the carbonyl group of SPI at the reducing end
of maltose increased, promoting the reaction, leading to more SPI unfolding and higher SPI
flexibility, and reducing the interfacial tension of SPI–maltose molecules in oil and water.
Lower interfacial tension can promote the formation rate of bridges between droplets and
shorten the contact time between droplets. The shorter the contact time between droplets,
the better the emulsion’s stability, as it can better resist the pressure brought by ice crystals
and improve the freeze–thaw stability of the emulsion [27].
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Figure 3. Interfacial tension value of SPI–M prepared dispersion. Different letters (a–e) indicate
statistically significant differences (p ≤ 0.05), according to ANOVA (one-way) and the Tukey test.
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3.4. Pickering Emulsion’s Freeze–thaw Stability

Turbiscan stability analyzer is one of the methods that can quickly and reliably measure
the stability of the Pickering emulsion. The freeze–thaw stability of the emulsion was
evaluated by the change of TSI and backscattered light intensity (∆BS) (Figure 4).
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Figure 4. TSI of Pickering emulsions made by different oil phase volume fractions and different
concentrations of SPI and maltose. ((A0) prepared the initial emulsion with different concentrations
of SPI and maltose, (B0) prepared the initial emulsion with different oil phase volume fractions,
(A3) was the emulsion after three freeze-thaw cycles with different concentrations of SPI and maltose,
(B3) was the emulsion after three freeze-thaw cycles with different oil phase volume fractions).

Firstly, the slope of the TSI curve of the Pickering emulsion after freeze–thaw cycle was
higher than that of the initial emulsion, indicating that freezing would damage the Pickering
emulsion and reduce its stability. This is because when the Pickering emulsion was frozen,
oil phase or water phase in the Pickering emulsion crystallized to make the droplets gather,
which destroyed the film at the oil–water interface of the Pickering emulsion, making the
Pickering emulsion easier to agglomerate during the dissolution process, and thus reducing
its stability [21]. By increasing the concentration of SPI and maltose, the overall TSI of the
initial emulsion was reduced from 4.9 to 1.8. The TSI of the prepared Pickering emulsion
after three freeze–thaw cycles was 2.9 when the oil volume was 40% and the concentration
was 35 mg/mL, which still showed good stability. The reason for this phenomenon was
that, at low particle concentration, the emulsion was unstable because the droplet was
partially covered by SPI–maltose nanoparticles, and there was almost no excess SPI–maltose
particles in the continuous phase. By increasing SPI–maltose concentration, the aggregate of
excessive SPI–maltose particles in the continuous phase changed from dense flocs to loose
networks, so that the droplets kept a good separation from each other. On the other hand,
the lower SPI and maltose concentration might form a thin polymer layer on the surface of
the droplets, resulting in the easy aggregation and coalescence of the droplets. As oil phase
fraction increased, the overall TSI of the initial emulsion reduced from 4.7 to 0.2. When the
concentration was 35 mg/mL and oil phase was 50%, the TSI of freeze–thaw treatment for
three times was 0.7. At this time, the Pickering emulsion still had a better stability. This
was because when dispersed phase volume fraction increased within a certain range, more
oil droplets in the emulsion could be filled into the emulsion layer, and the crosslinked gel
structure was tighter, which made the Pickering emulsion system more stable so that it
could resist the damage caused by ice crystals during freezing [28].
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The above experimental results can be further confirmed by ∆BS (Figures 5 and 6).
∆BS can evaluate the change of concentration or droplet size in the Pickering emulsion. In
Figure 5, it is proved that the Pickering emulsion ∆BS changes with different concentrations
of SPI and maltose before and after a freeze–thaw cycle treatment. After freeze–thaw cycle
treatment of emulsion, with the increase in freeze–thaw cycle times, ∆BS increased gradually;
however, as the concentration increased, ∆BS gradually dropped from −65% to −20% at the
bottom of freeze–thaw lotion, while ∆BS decreased from 36% to 10%. The results show that
higher particle concentration (35 mg/mL) can improve its ability to stabilize emulsion, and
the emulsion droplets are not easy to flocculate or coalesce. The emulsion formed by higher
particle concentration still has a certain stability after freeze–thaw cycle treatment. It may be
that, with growing concentration, the H0 of particles increased and the interfacial tension
decreased, which is conducive to more effective adsorption of particles at the oil–water
interface, so as to improve freeze–thaw stability of emulsions [29,30].
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Figure 5. Cont.



Foods 2022, 11, 4018 8 of 15

Foods 2021, 10, x FOR PEER REVIEW 8 of 17 
 

 

 

 

 

Figure 5. The change of ΔBS under different particle concentrations under the same oil phase vol-

ume ratio. (The ΔBS of the Pickering emulsion was measured at 0 h intervals for 25 h across the 

height of the samples. The blue line was detected at 0 min and the red line was at 25 h. (A0) 15 
mg/mL initial Pickering emulsion, (B0) 20 mg/mL initial Pickering emulsion, (C0) 25 mg/mL initial 
Pickering emulsion, (D0) 30 mg/mL initial Pickering emulsion, (E0) 35 mg/mL initial Pickering emul-

sion, (A3) 15 mg/mL Pickering emulsion with three freeze-thaw cycles, (B3) 20 mg/mL Pickering 
emulsion with three freeze-thaw cycles, (C3) 25 mg/mL Pickering emulsion with three freeze-thaw 
cycles, (D3) 30 mg/mL Pickering emulsion with three freeze-thaw cycles, (E3) 35mg/mL Pickering 
emulsion with three freeze-thaw cycles). 

  

0 10 20 30 40 50

-60

-50

-40

-30

-20

-10

0

10

20

30

40

Δ
B

S
(%

)

Height(mm)

00 h
01 h
02 h
03 h
04 h
05 h
06 h
07 h
08 h
09 h
10 h
11 h
12 h
13 h
14 h
15 h
16 h
17 h
18 h
19 h
20 h
21 h
22 h
23 h
24 h
25 h

C
3

0 10 20 30 40 50

-60

-50

-40

-30

-20

-10

0

10

20

30

40

Δ
B

S
(%

)

Height(mm)

00 h
01 h
02 h
03 h
04 h
05 h
06 h
07 h
08 h
09 h
10 h
11 h
12 h
13 h
14 h
15 h
16 h
17 h
18 h
19 h
20 h
21 h
22 h
23 h
24 h
25 h

D
0

0 10 20 30 40 50

-60

-50

-40

-30

-20

-10

0

10

20

30

40

Δ
B

S
(%

)

Height(mm)

00 h
01 h
02 h
03 h
04 h
05 h
06 h
07 h
08 h
09 h
10 h
11 h
12 h
13 h
14 h
15 h
16 h
17 h
18 h
19 h
20 h
21 h
22 h
23 h
24 h
25 h

D3

0 10 20 30 40 50

-60

-50

-40

-30

-20

-10

0

10

20

30

40

Δ
B

S
(%

)

Height(mm)

00 h
01 h
02 h
03 h
04 h
05 h
06 h
07 h
08 h
09 h
10 h
11 h
12 h
13 h
14 h
15 h
16 h
17 h
18 h
19 h
20 h
21 h
22 h
23 h
24 h
25 h

E
0

0 10 20 30 40 50

-60

-50

-40

-30

-20

-10

0

10

20

30

40

Δ
B

S
(%

)

Height(mm)

00 h
01 h
02 h
03 h
04 h
05 h
06 h
07 h
08 h
09 h
10 h
11 h
12 h
13 h
14 h
15 h
16 h
17 h
18 h
19 h
20 h
21 h
22 h
23 h
24 h
25 h

E
3

Figure 5. The change of ∆BS under different particle concentrations under the same oil phase volume
ratio. (The ∆BS of the Pickering emulsion was measured at 0 h intervals for 25 h across the height
of the samples. The blue line was detected at 0 min and the red line was at 25 h. (A0) 15 mg/mL
initial Pickering emulsion, (B0) 20 mg/mL initial Pickering emulsion, (C0) 25 mg/mL initial Pickering
emulsion, (D0) 30 mg/mL initial Pickering emulsion, (E0) 35 mg/mL initial Pickering emulsion,
(A3) 15 mg/mL Pickering emulsion with three freeze-thaw cycles, (B3) 20 mg/mL Pickering emulsion
with three freeze-thaw cycles, (C3) 25 mg/mL Pickering emulsion with three freeze-thaw cycles,
(D3) 30 mg/mL Pickering emulsion with three freeze-thaw cycles, (E3) 35mg/mL Pickering emulsion
with three freeze-thaw cycles).
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Figure 6. Shows the change of ∆BS of the Pickering emulsion formed by different oil phase volume
fractions under the condition of particle concentration 35 mg/mL and after freeze–thaw treatment.
(The details are the same as the notes in Figure 5. (A0) 10% initial Pickering emulsion, (B0) 20%
initial Pickering emulsion, (C0) 30% initial Pickering emulsion, (D0) 40% initial Pickering emulsion,
(E0) 50% initial Pickering emulsion, (A3) 10% Pickering emulsion with three freeze-thaw cycles,
(B3) 20% Pickering emulsion with three freeze-thaw cycles, (C3) 30% Pickering emulsion with three
freeze-thaw cycles, (D3) 40% Pickering emulsion with three freeze-thaw cycles, (E3) 50% Pickering
emulsion with three freeze-thaw cycles).

To illustrate the potential mechanism of improving the stability of the emulsion by
increasing dispersed phase volume fraction, Figure 6 shows the stability of the initial
emulsion and the freeze–thaw emulsion with different dispersed phase volume fraction
∆BS. With the dispersed phase volume fraction doubling in the range of 10–50%, the
∆BS gradually decreased from −65% to −20%, while the top ∆BS decreased from about
35% to 10% (Figure 6). This phenomenon, combined with the rheological results of the
emulsion, shows that the interaction between oil droplets affects the viscoelasticity of the
emulsion. By increasing the stiffness of the emulsion’s gel network structure, the freeze–
thaw stability of the emulsion can be improved. Therefore, the volume fraction of oil phase
and particle concentration can be appropriately increased to make the emulsion have better
freeze–thaw stability [31].

3.5. The CLSM of Pickering Emulsion

According to the results of stability analysis, the initial emulsion and frozen processing
emulsion under the best conditions of the Pickering emulsion frozen stability were selected.
The oil phase indicator was red, and the protein indicator was green. The CLSM (Figure 7)
showed that the Pickering emulsion formed under this condition still guaranteed its own
stability after one and two freeze–thaw cycles. As stated by the outcomes of protein staining,
the protein’s fluorescence intensity was weak and a large amount of aggregation was not
found, indicating that the protein was in a state of adsorption at the oil–water interface
and the stability of emulsion was excellent. The oil phase showed obvious large particles
aggregated, and the protein signal was meaningfully enhanced and appeared aggregated
when the samples carried out three freeze–thaw cycles. The particle layer formed by
irreversibly adsorbed particles on the interface physically blocks the coalescence of droplets
and the sharing of gel particles by oil droplets. It can spatially obstruct the agglomeration of
droplets through bridging and ensure the stability of the emulsion; thereby, the freeze–thaw
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stability was enhanced. That is, the freeze–thaw stability of Pickering emulsion may be
consequently enhanced by adapting particles’ adsorption at the oil–water interface [23].
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Figure 7. CLSM figures of the Pickering emulsion gels before and after three freeze–thaw cycles.
(A0) initial Pickering emulsion oil phase, (A1) Pickering emulsion oil phase after one freezing thawing
cycle, (A2) Pickering emulsion oil phase after two freezing thawing cycle, (A3) Pickering emulsion oil
phase after three freezing thawing cycle, (B0) initial Pickering emulsion protein phase, (B1) Pickering
emulsion protein phase after one freezing thawing cycle, (B2) Pickering emulsion protein phase after
two freezing thawing cycle, (B3) Pickering emulsion protein phase after three freezing thawing cycle).

3.6. Rheological Properties of the Pickering Emulsion

In order to clearly show the mechanism of freeze–thaw stability of the Pickering emul-
sion, the apparent viscosity, G′ and G′′, of the initial Pickering emulsions was characterized.
The apparent viscosity of the emulsion prepared with SPI–maltose at different concentra-
tions and different oil volume fractions was shown in Figure 8. As shear rate increased, the
fluidity of the emulsion declined, and the viscosity of the initial emulsion grew with the
increased concentration. When the concentration was 35 mg/mL, the apparent viscosity of
the Pickering emulsion increased as the volume proportion of oil phase increased. When the
particle concentration was 35 mg/mL and the volume of oil phase was 50%, the maximum
apparent viscosity was 18 Pa·s. This is because the increase in SPI–maltose concentration
and oil volume fraction enhanced the adhesion between the Pickering emulsion droplets,
and the spatial network structure between the emulsion is more compact, causing it to
show greater apparent viscosity [32,33].

Secondly, the apparent viscosity of the emulsion at different concentrations of SPI–
maltose and dispersed phase volume fractions under different shear rate γ were determined,
and fitted the apparent viscosity of the emulsion according to the power law model. R2
in the emulsion fitting equation is 0.98–0.995, indicating that the flow curve at this time is
more in line with the power law model. The consistency parameter K and flow index in
the power law equation were empirical constants related to the properties of liquid. K is a
measure of liquid viscosity; the larger the K, the more viscous the emulsion. n value was a
measure of the degree of pseudoplasticity. If n value is less than 1, it is a shear thinning
pseudoplastic fluid [34]. The greater the deviation of n value from Table 1, the easier the
shear thinning is; that is, the greater the degree of pseudoplasticity. It was found from
Tables 1 and 2 that the flow index of all samples is n < 1, showing pseudoplastic fluid
properties. As the shear rate increased, the apparent viscosity of the Pickering emulsion
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composed of various components dropped sharply, leading to the shear thinning effect.
Firstly, the solid particles in the emulsion were adsorbed on the oil–water interface, and the
oil droplets were dispersed in the water. However, the components flow at different speeds,
and the emulsion could not keep this state for long. When the emulsion was flowing, every
long chain molecule would enter the flow layer with the same flow rate as far as possible.
Secondly, the SPI–maltose molecule had a long molecular chain. In the static state, these
substances maintained irregular internal order and had high internal resistance to hinder
their movement. With the increase in shear rate, the rearrangement of substances led to
the decrease in resistance and apparent viscosity of emulsions. With the increase in SPI
and maltose concentration, the volume fraction of the oil phase increased, the irregular
internal order was maintained, the viscosity increased, and the internal resistance was large,
which hindered the flow of emulsion. However, as the SPI–maltose concentration increased
and the volume fraction of the oil phase grew, the internal irregular order is maintained,
the viscosity increases, and the internal resistance is large, thus hindering the flow of the
emulsion. It shows that increasing the concentration of SPI and maltose and increasing the
volume ratio of the oil phase are beneficial to enhancing the fluid nature of the Pickering
emulsion and improving the freeze–thaw stability of Pickering emulsion [35,36].
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Figure 8. The influence of concentration of SPI and maltose (A) and oil phase volume fraction (B) on
the rheological properties of the Pickering emulsion. (A1) was the G′ of Pickering emulsion prepared
under different concentrations of SPI and maltose, (B1) was the G′ of Pickering emulsion prepared
under different oil phase volume fraction, (A2) was the G′′ of Pickering emulsion prepared under
different concentrations of SPI and maltose, (B2) was the G′′ of Pickering emulsion prepared under
different oil phase volume fraction).
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Table 1. Power law equations and coefficients of the Pickering emulsion prepared at different
concentrations of SPI and maltose.

Concentrations
(mg/mL)

Shear Rate (S−1)

0.5–100

N K/(Pa·Sn) R2

15 0.229 ± 0.012 a 2.123 ± 0.137 e 0.982
20 0.225 ± 0.010 b 2.528 ± 0.186 d 0.987
25 0.230 ± 0.011 a 4.537 ± 0.157 c 0.989
30 0.220 ± 0.009 c 6.886 ± 0.264 b 0.984
35 0.191 ± 0.007 d 8.663 ± 0.356 a 0.978

Values are expressed as mean ± expanded uncertainty limit (EUL). a–e Various superscripts in the same column
stand for great diversities (p < 0.05).

Table 2. Power law equations and parameters of the Pickering emulsion prepared at various oil
phase volume fraction.

Oil Phase Volume
Fraction/(%)

Shear Rate (S−1)

0.5–100

N K/(Pa·Sn) R2

10 0.148 ± 0.003 b 0.567 ± 0.023 e 0.989
20 0.148 ± 0.002 b 1.13426 ± 0.054 d 0.989
30 0.148 ± 0.001 b 2.26852 ± 0.126 c 0.989
40 0.148 ± 0.004 b 4.53703 ± 0.275 b 0.989
50 0.230 ± 0.014 a 6.88594 ± 0.327 a 0.984

Values are expressed as mean ± expanded uncertainty limit (EUL). a–e Various superscripts in the same column
stand for great diversities (p < 0.05).

In addition, the G′ of all emulsion is greater than the G′′, indicating that a gel network
structure guided by spring is formed in the emulsion system. At a frequency in the scope of
0.1–100 rad/s, the G′ and G′′ of initial emulsions grew in line with the increase in particle
concentrations and the dispersed phase volume fraction (Figure 9). When the concentration
was 35 mg/mL and the volume fraction of oil phase was 50%, the maximum value of G′′

was 100 Pa and the maximum value of G′ was 575 Pa. The outcomes showed that the
viscoelasticity of the Pickering emulsion could be improved, the damage of ice crystals to the
emulsion could be reduced, and the freeze–thaw stability of the Pickering emulsion could be
improved by increasing the concentration and dispersed phase volume fraction to a certain
extent [37]. The crosslinking of protein molecules increases the penetration resistance of the
interface layer during thawing and freezing, thus efficiently controlling the migration of oil
droplets and strengthening the freeze–thaw stability of the emulsion gel [2].
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Figure 9. The effect of particle concentration (A) and oil phase volume fraction (B) on the apparent
viscosity properties of the Pickering emulsion. ((A) is the apparent viscosity of Pickering emulsion
prepared at different concentrations of SPI and maltose, (B) is the apparent viscosity of Pickering
emulsion prepared at different oil phase volume fraction).
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3.7. Pickering Emulsion’s Thermal Properties

The alteration of the crystallization point for the emulsion was also one of the methods
used to improve the Pickering emulsion’s freeze–thaw stability [38]. To understand the
effects of SPI and maltose concentration and oil–water ratio on the temperature of crystal-
lization and melting during freezing of SPI–M preparation of the Pickering emulsion, we
recorded the DSC thermal spectrum of the Pickering emulsion. Figure 10A shows the DSC
thermal spectrum of the Pickering emulsion prepared at different concentrations of SPI and
maltose, and Figure 10B is the DSC thermal spectrum of the Pickering emulsion prepared
with different oil phase volume fractions.
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Figure 10. The effect of particle concentration (A) and oil phase volume fraction (B) on the apparent
viscosity of the Pickering emulsion. ((A) is the DSC of Pickering emulsion prepared at different
concentrations of SPI and maltose, (B) is the DSC of Pickering emulsion prepared at different oil
phase volume fraction).

Figure 10A shows that the crystallization temperature of the Pickering emulsion
prepared under different concentrations of SPI and maltose was −12.05 to −14.29 ◦C.
As the concentration grew, the crystallization temperature of the emulsion first declined
and then increased. This may be because the increase in SPI and maltose concentration
accelerated the reaction speed, increased the particle size of SPI–maltose particles, increased
the number of nucleation in the reaction, and lowered the crystallization temperature of
the emulsion. In addition, the high concentration of SPI and maltose formed a thick
interface film at the interface, which provided great resistance to the phase transition, thus
improving the freeze–thaw stability of the emulsion. In addition, the high concentration
of SPI and maltose formed a thick interface film at the interface, which provided great
resistance to the phase transition, thus improving the freeze–thaw stability of the emulsion.
According to Figure 10B, the crystallization temperature of the Pickering emulsion prepared
by different oil ratios is from −11.17 to −15.22 ◦C, which may be due to the crystallization
temperature of soybean oil being −15 ◦C; thus, proper addition of soybean oil could reduce
the crystallization temperature of emulsion.

4. Conclusions

The research showed that the interaction between particles and the highly viscoelastic
interface film formed were the key factors for determining the freeze–thaw stability of the
Pickering emulsion. The higher SPI–maltose concentration made the particles develop a
larger size, higher H0, and firmer interior integrity. Gel-like flow behavior was exhibited
by all the initial emulsions. Emulsions with higher oil phase volume and particle concen-
tration possessed higher viscosity, lower fluidity and a viscoelastic layer. Freeze–thaw
stability of these emulsions changed with the cycles of freeze–thaw, particle concentration,
and dispersed phase volume fraction. Compared with the emulsion with lower parti-
cle concentration, the emulsion with higher particle concentration can prevent emulsion
and coalescence, thus showing better freeze–thaw stability. Higher oil or higher particle
concentration phase volume has better freeze–thaw stability than that of lower particle con-
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centration and lower oil phase volume. This phenomenon may be generated by Pickering
steric stability and the network structure of gel-like. These findings are of great significance
for the preparation of high Pickering emulsions with the potential for freeze–thaw stability,
which can be used in the production of frozen foods.
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