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Abstract: The lentil (Lens culinaris Medik.) is one of the major pulse crops cultivated worldwide. How-
ever, in the last decades, lentil cultivation has decreased in many areas surrounding Mediterranean
countries due to low yields, new lifestyles, and changed eating habits. Thus, many landraces and
local varieties have disappeared, while local farmers are the only custodians of the treasure of lentil
genetic resources. Recently, the lentil has been rediscovered to meet the needs of more sustainable
agriculture and food systems. Here, we proposed an image analysis approach that, besides being a
rapid and non-destructive method, can characterize seed size grading and seed coat morphology. The
results indicated that image analysis can give much more detailed and precise descriptions of grain
size and shape characteristics than can be practically achieved by manual quality assessment. Lentil
size measurements combined with seed coat descriptors and the color attributes of the grains allowed
us to develop an algorithm that was able to identify 64 red lentil genotypes collected at ICARDA
with an accuracy approaching 98% for seed size grading and close to 93% for the classification of seed
coat morphology.

Keywords: pulses; lentil grains; germplasm resources; morphological descriptors; image analysis

1. Introduction

The lentil (Lens culinaris Medik.) is among the most commonly cultivated grain
legumes and one of the oldest domesticated crops worldwide. While Canada, India, Turkey,
and the United States are the main lentil-producing areas [1], the countries surrounding the
Mediterranean basin hold the largest quota of genetic variation for the species [2]. However,
a drastic reduction in lentil cultivation has occurred in the last century in Mediterranean
countries due to changing lifestyles and eating habits [3] and due to climate changes
resulting in the loss of many landraces [4]. So far, several local farmers and international
genebanks are the custodians of the existing biodiversity, including neglected landraces.
A first step to guarantee their preservation is to characterize them both in situ and ex
situ starting from the grain seed size, which is one of the major qualitative descriptors of
lentil [5]. Besides grain size, grain color is another important morphological trait associated
with quality [6,7]. In particular, grain color is given by the grain ground color (i.e., green,
grey, brown, black, or pink), the cotyledon color (i.e., yellow, orange, red, or olive green),
the pattern of testa (i.e., absent, dotted, spotted, marbled, or complex), and the color of
pattern on testa (absent, olive, grey, brown, or black) [8].

While uniform, light-colored lentil grains are preferred in the United States and
Europe [9], dark seed coats are more appreciated in Asia and in some Mediterranean
countries [10]. The seed color is due to the accumulation of polyphenols in the grain tissues,
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which also influences plant adaptation to environmental constraints [11,12], antioxidant
capacity, and other health-related benefits in humans [13].

To estimate the lentil seed size and color, several objective and non-destructive meth-
ods were proposed. Recently, some image-based methods were used for sizing lentil grains
through segmentation by thresholding in hue–saturation–value (HSV) color space [14].
Color and appearance grading were analyzed by image color, color distribution, and tex-
tural features using Wilk’s lambda and the average-squared-canonical correlation as the
criteria of significance [15]. Another approach was developed for discriminating between
colored lentil genotypes (red/yellow) with large-, medium-, and small-sized grains [10].
Otsu’s automatic threshold algorithm was used for seed segmentation, whereas classifica-
tion was carried by back propagation neural network and support vector machine classifiers
fed by morphological features (eccentricity, axial length, area, and perimeter). Finally, it is
worth mentioning that a portable imaging system (BELT) supported by image acquisition
and analysis software (phenoSEED) was created for small seed optical analysis [16]. Based
on that, phenoSEED was able to process images returning results of extracted seed shape,
size, and color. However, none of the previous works provided a complete algorithmic
pipeline for lentil seed analysis, including the classification of testa patterns, because they
focused on the estimation of size and color cluster [17]. In addition, the current measure-
ment systems require initial calibration procedures, well-defined acquisition setups, and/or
online adjustments by operators.

In this paper, we developed a novel approach to overcome the drawbacks of the
previous methods by introducing a pipeline fed by RGB (red, green, and blue) images.
These were acquired in the laboratory under hybrid lighting systems with the use of
available natural daylight, supplemented with artificial light to meet the required level of
seed illumination. Our aim was to operate under the most common conditions in which
in situ custodians of lentil germplasm work, enabling them to undertake a reliable and
objective characterization of seed morphology of neglected lentil accessions. In this study,
we used an off-the-shelf mobile phone camera to acquire the images of the 64 pigmented
lentil genotypes comprising a collection of pigmented lentils received from the International
Center for Agricultural Research in the Dry Areas (ICARDA-Lebanon). The images enabled
us to recover very accurate information about lentil seed size and testa patterns exploiting
a randomized circle detection strategy, local binary patterns descriptors, and XGBoost
classifier, which were applied for the first time in seed morphology analysis.

2. Materials and Methods

The proposed approach does not require a specific acquisition setup. Images can be
taken from a camera mounted on off-the-shelf mobile devices. It only requires a “quasi”
top view of the seeds (to avoid huge perspective deformations), a little radiometric contrast
between the seeds and the background (seeds should be clearly visible in the images), and
a sheet of graph paper pictured in a small area of the acquired images (for automatically
controlling the image scale). The mobile phone can be handled by the user during the
acquisition or placed on a support (avoiding, this way, motion artefacts).

The acquisition image campaign was carried out under hybrid lighting systems with
the use of available natural daylight, sometimes supplemented with artificial light to meet
the required level of seed illumination. The focus and iris parameters of the camera were
set at fixed values.

The images were acquired from a camera of a smartphone positioned on a height-
adjustable holding structure (camera support) on different days. The camera support was
moved between acquisition campaigns, and we found that its repositioning contained a
non-negligible error for the purposes of the evaluation process here described. This means
that the images in some cases showed a different scaling factor that was handled by the
algorithms. In Figure 1, the acquisition setup is shown. The dataset is publicly available at
https://github.com/beppe2hd/unconstrainedLentils (accessed on 10 November 2022).

https://github.com/beppe2hd/unconstrainedLentils
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Figure 1. Frontal and lateral view of the setup used in the acquisition campaign.

2.1. Plant Materials

In the present study, we analyzed the grains of 64 lentil genotypes received by ICARDA
in Lebanon, including 48 varieties released in 19 different countries between 1984 and 2018,
9 germplasm accessions, and 7 elite breeding lines developed at ICARDA in Lebanon
(Table A1). For brevity, the genotypes were labeled using a progressive numeration from
1 to 64, while the information about each genotype is shown in Appendix A. The plant
materials were grown in the 2018/19 season at Terbol, Lebanon (33.81◦ N, 35.98◦ E), at
890 m above sea level, and characterized by cool winter and high rainfall as a typical
continental to semi-arid climate with clay soil.

The input data for the computer vision analysis were 64 images picturing lentil seeds
randomly positioned on a black surface. In each image, the number of lentil seeds varied.
In total, the seeds in the images totaled 1408.

Within each image, the seeds were separated well from each other, but in some cases,
there was a superimposition among close seeds and partial occlusions occurred. The
number of seeds randomly varied depending on the availability of the seed samples.

Due to the unconstrained acquisition conditions, some seeds positioned out of the
image center were not pictured in focus, and the images showed different radiometric
values depending on the lighting conditions at the shot event.

2.2. Grain Traits

The proposed algorithmic pipeline (represented in Figure 2) consisted of several steps
aimed at extracting information about the image contents. In more detail, the full image
was processed by the “square detector” module in charge of the identification of the seeds
in the image. Detected circles were then employed on one side to extract the patches of the
lentil seeds and, on the other side, to retrieve the average seeds’ radius in pixels. Other
than that, the original images were also processed by the “square detector” exploiting the
graph paper as a reference to detect the small squares. The detected squares were then
used to compute the scaling factor, which is useful for estimating the average seeds’ radius
in millimeters. In addition, the extracted patches were provided, one by one, as input to
the seed texture classification module returning their texture class (rare, sparse, dense).
Subsequently, a seed pattern classification module was employed to define the seed class
estimation (absent, dotted, spotted, marbled, complex).
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image context.

2.3. Seeds Segmentation

At the beginning, the problem of segmenting seeds, i.e., extracting foreground objects
(the seeds) from the background had to be addressed in each input image. To exploit
the curvature of edges on seeds, a circular shape detector was exploited for the scope.
Circular shapes in the input images were detected using a randomized approach [18] that
can accurately detect circles within a limited number of iterations, maintaining a sub-pixel
accuracy even in the presence of a high level of noise and partially occluded edges. In
addition, it did not require a priori knowledge about searched radius enabling the detection
of circles having different sizes, even in the same image, as is usual when analyzing images
picturing lentil seeds. This way, in each image, a set of circular regions was extracted, and,
for each region, the center and the radius were returned.

A radiometric check was conducted to discard false circles containing large back-
ground areas (this can happen due to the randomized nature of the algorithm chosen to
avoid a priori information about expected dimensions).

In the considered experiments, circular regions with more than 10% of background
pixels were discarded. Moreover, a statistical check on detected radii was conducted, and
values outside within two standard deviations were discarded too. To measure the average
size of the seeds in the image, the estimation of the scaling factor in each image was first
carried out. This allowed the system to transform the detected radii from pixel to mm. Each
image contained a 1 mm graph paper pictured on top of it. The square shapes were detected
by using edge extraction and contour following strategies, and the average square side in
pixels was estimated. This allowed us to extract, image by image, the spatial coverage S of
each pixel on the plane where the seeds were positioned and then obtain a measure in the
real world for the object on that plane.

Using a formula, the scale parameter S could be computed as S = ADV/EDV, where
EDV was the estimated average measure (in pixels) of the squares on the graph paper, and
ADV was the a priori known measure (in mm) of the square side (in the considered graph
paper, it was 1 mm).

Figure 3 shows the process on the graph paper of the image corresponding to the lentil
grain sample n. 6. It is worth noting that only a portion of squares was detected because
not all the sides of the squares could be retrieved, even after image enhancements. Anyway,
the detected squares were enough to build reliable statistics for estimating the length
of the sides.
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Figure 3. On the left: the graph paper and, superimposed, the detected squares. On the right:
histogram of the side length of detected squares. The peak corresponds to the values in pixels
corresponding to 1 mm.

This way, the seed measures were referred to as the measures of their orthogonal
projection on the laying plane. It is worth noting that this was not a limitation because
the final goal was to measure the radius of the sphere approximating a seed. The average
radius in mm of seeds in each image was finally computed by multiplying the values in
pixels with the computed scale factor S. This way, the estimated radius of the lentil species
in each input image was the outcome of the considered algorithmic step.

2.4. Lentil Seeds Pattern Classification

According to the scientific literature, the classification for seed pattern includes
5 classes, namely, “absent”, “marbled”, “dotted”, “spotted”, and “complex” [8]. However,
this classification is not satisfactory to describe the variation that many lentil genotypes
show. To automatically address this problem, a two-step procedure was introduced and is
represented in Figure 4.
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Figure 4. Two-step pipeline used to classify the lentil seed patterns.

The patches extracted around the circles detected as described in the previous section
were the input of the procedure. Each patch was processed independently from the image
from which it was extracted. The first step addressed a 3-classes problem by analyzing
texture patterns and color histograms. Each patch was classified as containing rare, sparse,
and dense texture patterns. Seeds with rare texture did not contain specific patterns, or,
if some blobs were present, they were few and localized in small regions. Each cluster
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could have a different size and shape. Sparse textures were characterized by a uniform
distribution of patterns on the surface of the seed. In other words, there was no substantial
texture difference among different regions of the seed.

Finally, dense texture showed patterns covering the whole surface of the seed, and
they looked like a large stain.

Some examples of rare-, sparse-, and dense-textured seeds are reported in Figure 5. In
the second algorithmic step, the patches having rare texture patterns are disambiguated
and definitively classified as absent or spotted, whereas the patches with sparse-textured
patterns are labeled as dotted or complex. Densely textured patches were directly labeled
as marbled.
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The algorithmic details of the methodological steps are detailed in the following steps.
In the first step, the local binary pattern (LBP) descriptors [19] were computed in each
circular area extracted as described in the previous section. The length of the LBP descriptor
was 18. To the end of each LBP descriptor, a 180 bins histogram was attached to collect
information about each color channel (60 bins for each RGB channel). As a result, the
feature vector consisted of 198 items describing the color and the texture. These vectors
were used then to train a tree-based ensemble method named XGBoost [20]. Once each
seed was classified as one of the three classes, a morphological region analysis was applied
to determine if a rare texture corresponded to an absent or spotted subclass and if a sparse
texture was relative to a dotted or complex subclass. The morphological analysis [21]
aimed at separating relevant patterns (foreground) from the uniform surface of the seeds
(background). The analysis consisted of several sequential steps: edge detection using the
Canny operator with adaptive threshold, connectivity analysis, closing operation (dilation
and erosion using the same rectangular structuring element for both operations), contour
following, and, finally, the area computation of the detected regions. Among the seeds with
rare texture, those with no significant regions were labeled as absent, whereas those with
a few regions were labeled as spotted. On the other hand, among the seeds with sparse
texture, those with large regions covering more than 50% of the surface were labeled as
complex, and the remaining ones were labeled as dotted.
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3. Results
3.1. Seeds Segmentation and Measuring

Using the algorithm described in the previous sections, 1549 circles were detected in
the 64 images of the provided dataset. After the radius check, 1136 patches were retained,
and finally, after the radiometric check, 940 were definitively retained for further processing.
The seeds pictured in the 64 images totaled 1270. This means that circle detection correctly
retrieved more than 74% (940 × 100/1270) of seeds that were the input of the following
processing steps. No false circles were detected. The missed circles were mainly due
to defocusing and occluded edges (seeds too close to each other). The circle detection
algorithm had thresholds concerning the minimum number of edge pixels to detect a circle.
This parameter was set to avoid false circles (highly likely in a cluttered scene such as the
processed one, but, on the other side, this choice led to some missing detection that could
be better tolerated considering the multiple seeds for each species). Figure 6 reports two
examples of discarded circles.
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Figure 6. Example of circles discarded by radius (on the left) and radiometric (on the right) checks.

In Figure 7, the outcomes of the processing of image 39 are reported. On the left,
the whole image is reported to show the graph paper pictured on the top, from which
it was possible to estimate the scale factor. In this example, each mm was estimated as
containing about 56.64 pixels, and then the scale factor was S = 0.01765. On the right, the
outcomes of the algorithm aiming at finding circular shapes are reported. In the image
of lentil sample n. 20, the seeds were correctly detected (one was missed on the top-left
part, which could be due to defocusing that led to the partial detection of edge points).
No circle was discarded by radiometric or statistical checks since all the detected circles
fitted actual seeds.

The average radius of detected circles was 146 pixels in the example, and then the size
of the seed was computed as 146 × S = 146 × 0.01765 = 5.16 mm. The absolute error E
was then estimated as E = abs(r − r̂), where r is the actual radius of the seed, and r̂ is the
corresponding estimated value. In the example, E = abs (5 mm − 5.16 mm) = 0.16 mm.

Figure 8 reports the comparison between the measured and the estimated average size
of the seeds in each of the 64 input images and the relative absolute error. The mean of the
absolute errors was E = ∑i Ei

N = 0.1 mm, where N = 64 is the number of input images.
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The root mean square error and R-squared values were instead:

RMSD =

√
∑N

i=1(xi − x̂i)
2

N
= 33.35 mm

R2 = 1 − RSS
TSS

= 0.82

where RSS is the sum of squares of residuals, and TSS is the total sum of squares.
The accuracy of measurement was cc = ∑i

xi−(xi−x̂i)
xi

= 0.98.

3.2. Lentil Seeds Pattern Classification

To assess the accuracy in pattern classification, all the 940 patches extracted from full
images were annotated by a team of experts. The first experimental phase was devoted to
validating the ability of the proposed pipeline to address the three classes of classification,
i.e., to recognize the texture pattern of the seeds as rare, sparse, or dense. The method
exploits LBP and histograms as features and XGBoost as the classifier. A square patch (side
equal to the relative circle diameter) was extracted around each of the 940 detected circles.
The patches were labeled as follows: 635 seeds with rare patterns, 25 seeds with dense
patterns, and 280 seeds with sparse patterns. Considering the size of the available dataset,
the leave-one-out approach was used to test the performance of the proposed method. First,
the three-class problem was considered.

The results are reported as a confusion matrix in Table 1, whereas statistical scores were F1-
Score = (correct classifications)/(correct classifications + wrong classifications) = 0.98. overall
accuracy = correct classification/number of examples = 0.97. balanced accuracy = (correct
classification class 1/number of examples class 1 + correct classification class 2/number of
examples class 2 + correct classification class 3/number of examples class 3)/3 = (631/635 +
270/280 + 18/25)/3 = 0.89.

Table 1. Confusion matrix for rare/sparse/dense classification. The subscript P indicates the predic-
tion, and the subscript GT indicates the ground truth.

Rare P Sparse P Dense P

Rare GT 631 4 0

Sparse GT 9 270 1

Dense GT 1 6 18

The second experimental phase dealt with the finer classification of lentil seed classes
starting from the three-class coarse classification above. The 64 images used for the test
contained 511 seeds classified as absent, 124 as spotted, 247 as dotted, 25 as marbled, and
33 as complex.

To assess the algorithm based on morphological region analysis, the seeds containing
rare textures and sparse patterns were processed. In Figure 8, an example of a sparse
textured pattern is finally classified as complex relying on morphological analysis. Seeds
with rare texture patterns were classified as presented in the confusion matrix of Table 2
providing an F1-score of 0.9221 and an overall accuracy of 0.93.

Table 2. Confusion matrix for absent/spotted classification. The subscript P indicates the prediction,
and the subscript GT indicates the ground truth.

Absent P Spotted P

Absent GT 502 9

Spotted GT 38 86
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Classification results concerning the sparse texture patterns were reported in the
confusion matrix of Table 3 with an F1 score of 0.86 and an overall accuracy of 0.84.

Table 3. Confusion matrix for dotted/complex classification. The subscript P indicates the prediction,
and the subscript GT indicates the ground truth.

Dotted P Complex P

Dotted GT 215 32

Complex GT 12 21

In the third experimental phase, all the patches were classified according to the two-step
scheme in Figure 3. This brought to the results presented in the confusion matrix of Table 4
with an overall accuracy of 0.93, a balanced accuracy of 0.98 + 0.69 + 0.96 + 0.76 + 0.94 = 0.87,
and an F1-score of 0.92.

Table 4. Confusion matrix for the overall classification. The subscript P indicates the prediction, and
the subscript GT indicates the ground truth.

Absent P Spotted P Dotted P Marbled P Complex P

Absent GT 500 9 2 0 0

Spotted GT 38 85 1 0 0

Dotted GT 0 9 236 0 2

Marbled GT 0 1 1 19 4

Complex GT 0 0 0 2 31

In Figure 9, some examples of correct lentil pattern classifications are reported, whereas
Figure 10 reports two examples highlighting the algorithmic details of a sparse texture,
finally classified as complex, and a rare texture, finally classified as spotted.
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4. Discussion

The seed size, color, and testa appearance of lentils are important grading factors
influencing the nutritional quality [7] and market acceptance [9,10]. In this study, we
developed a new computer vision system for assessing the seed size, color grading, and
testa morphology of lentils using an off-the-shelf mobile phone camera to acquire the
images of the 64 pigmented lentil genotypes obtained from the International Center for
Agricultural Research in the Dry Areas (ICARDA-Lebanon). The images enabled us to
recover very accurate information about lentil seed size and testa patterns by exploiting
an algorithmic pipeline leveraging a randomized circle detection strategy, local binary
patterns descriptors, and XGBoost classifier, which were applied for the first time in seed
morphology analysis. It is worth noting that the provided outcomes are independent of the
subjectiveness and the expertise of humans, and this can make the characterization uniform
in time and among different places allowing a more powerful sharing of information.

To give evidence of the scientific contribution, it is worth noting that such an auto-
matic classification of testa patterns was never addressed before. Previous attempts only
concentrated on colour and size.

For the first time, the color components of the seeds were not exploited for color
grading, but they were combined with local binary features allowing the characterization
of the testa patterns and their classification according to the prominent literature for lentil
assessment. In addition, size measurements were not constrained by calibrated acquisition
systems or seed handling facilities.

Among the existing tools for seed measurement relying only on 2D measurements,
the Belt and phenoSEED platforms represent a milestone for this research field. Anyway,
according to the results reported in a related paper [20], experienced very large variance
even among the samples of cultivated lentils. Furthermore, the reported interquartile range
for area measurements shows that the error was typically around 1 mm against the 0.1 mm
reached by using the proposed algorithm pipeline.

On the other hand, there exist platforms providing better accuracy than the proposed
one [14], but they were obtained by combining 2D and 3D data acquired by a calibrated
line-scan camera and laser scanners, with seeds dispensed on a vibrating comb and onto
a conveyor belt so that the seeds were disjointly positioned on a conveyor system. These
kinds of platforms are not cost-effective, and a skilled operator, especially for registering
different acquisition sources, should control them.

The proposed pipeline can work in uncontrolled conditions (lighting and seed posi-
tioning); instead, it makes use of cameras mounted on off-the-shelf mobile devices, and it
does not require any calibration or additional physical infrastructure. The only requirement,
purely restricted to the size estimation, is to put a piece of graph paper in the acquired
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image of seeds. All the algorithmic steps do not rely on fixed thresholds, and unexpected
situations are self-checked and controlled. This system works in a broad range of lighting
conditions, but it can check if extreme conditions arise. Dark or saturated images are
discarded at the beginning by checking lightness, as well as images not in focus are imme-
diately notified to the user when squares on the graph paper are not visible enough. As
described in the previous section, several checks were also performed in each algorithmic
step to reduce uncertainty in measurement and classification (e.g., only seeds whereon a
contour is visible are considered, as shown in Figure 6).

5. Conclusions

Farmers and other custodians of in situ lentil diversity play a critical role in the sus-
tainable management of agriculture and food security. Simplified and reliable computer
vision systems can support them in the characterization and maintenance of local lentil
varieties being particularly important for smallholder farmers and farming communities
in rural and marginal areas. Conserving the diversity in local lentil varieties is impor-
tant in avoiding crop failure under the ongoing climate changes while contributing to
a healthy diet.

In summary, the present method was developed to give rise to fast and reliable
computer-based systems for the automatic recognition of lentils based on the grain size,
ground color, and testa texture. This can represent the algorithmic core of a mobile app
that can allow any user (not skilled) to acquire seeds and to provide it with an esti-
mated seed size and testa class, thereby allowing users to perform fast and accurate
lentil species cataloguing. On the other hand, an online web service could also be imple-
mented to provide a labeling tool accessible from all over the world by uploading images
of lentils seeds.

Future works will deal with more stressful tests on more lentil genotypes and with
different acquisitions per each genotype. This could lead to a systematic investigation
of the possible classification bias (e.g., color and geometric artefacts) introduced by dif-
ferent devices. The resulting large database of images and data could finally bring deep-
learning-based approaches for describing lentil morphology and differentiating between
the genotypes.
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Appendix A

Table A1. List of ICARDA-Lebanon lentil lines used in this work.

Entry_NO Line Name Year of Release Country ID Pedigree

1 IG358 1984 Ethiopia PI 299127 NEL358
3 IG481 1989 Canada PI 300561 Lebanese landrace NEL481
2 IG590 1998 Australia PI 339319 Selection from PI339319
4 IG784 1991 USA GIZA 9 Egyptian local, Giza 9
5 IG854 1991 Turkey 60 Egyptian germplasm, 60
7 IG1005 1973 Chile 33-032-10403 -
6 IG2580 2004 Nepal L 1278 Selection from L1278
8 IG4399 1987 Turkey Lebanese Local Selection from L1278
9 IG4400 1988 Algeria SYRIAN Selection from landrace

10 IG4605 1989 ICARDA PRECOZ Selection from landrace
13 IG5562 1999 Morocco 76TA 66005 ILL 1 selection
14 IG5582 1987 Syria 78S 26002 ILL 8 selection
15 IG5588 1995 Australia 78S 26013 ILL 16 selection
16 IG5722 2001 Turkey FLIP 84-51L ILL 883 X ILL 470
17 IG5748 1995 Ethiopia FLIP 84-78L ILL 883 X ILL 470
18 IG5769 2000 Lesotho FLIP 84-99L ILL 101 X ILL 445
19 IG69492 2000 Syria 81S15 UJL 197 X ILL 4400
20 IG69497 1991 Bangladesh L-15 Selection from Pabna local (L15)
21 IG70043 1995 Lebanon FLIP 86-2L ILL 466 X ILL 212
23 IG70076 2003 Morocco FLIP 86-35L ILL 4354 X ILL 922
25 IG70092 2012 Iran FLIP 86-51L ILL 4349 X ILL 4605
26 IG71144 1999 Iran FLIP 87-22L ILL 4349 X ILL 4605
28 IG71178 2000 Lebanon FLIP 87-56L ILL 2129 X ILL 13
11 IG73661 2001 Syria FLIP 89-39L ILL 223 X 79SH4901
30 IG73685 1998 Ethiopia FLIP 89-63L ILL 4225 X ILL 4605
32 IG73858 2002 Syria FLIP 90-25L ILL 5588 X ILL 99
33 IG73874 2006 Turkey FLIP 90-41L Sel. 80S42188 X ILL 223
22 IG73979 1989 USA WH-80 -
34 IG75896 2009 Iran FLIP 92-12L ILL 5582 X ILL 707
36 IG75920 2002 Syria FLIP 92-36L ILL 5879 X ILL 5714
37 IG75932 2000 Lesotho FLIP 92-48L ILL 5583 X ILL 5726
12 IG76027 1990 Nepal LN0077 -
38 IG76232 2007 Syria FLIP 93-12L ILL 5538 X ILL 5782
39 IG114687 2015 Syria FLIP 95-29L -
40 IG114688 2006 Turkey FLIP 95-30L ILL5604 X ILL6015
41 IG114713 1999 Portugal FLIP 95-55L -
27 IG117646 1999 Syria FLIP 96-14 L ILL 6209 X ILL 5671
43 IG117647 2007 Azerbaijan FLIP 96-15 L ILL 6209 X ILL 5671
29 IG117679 1996 ICARDA FLIP 96-47 L -
44 IG117680 2004 Ethiopia FLIP 96-48 L -
45 IG117682 2009 Nepal FLIP 96-50 L Laird X VW000412
46 ILL8006 1996 Bangladesh - ILL7888 X ILL5782
48 ILL8009 1990 Nepal - Local land race, LG7
49 IG122878 2007 Uzbekistan FLIP 97-4L ILL 6002 X ILL 6435
50 IG122880 1997 ICARDA FLIP 97-6L ILL 5582 X ILL 5845
31 IG122918 1998 Pakistan 91516 -
35 IG122934 1998 ICARDA FLIP 98-15 L ILL 6243 X ILL 1939
42 IG129136 2000 ICARDA FLIP 00-13 L ILL 7163 X ILL 7554
47 IG129142 2000 ICARDA FLIP 00-19 L ILL 5883 X ILL 6994
51 IG142268 2006 ICARDA FLIP 07-57L ILL 5883 X ILL 590
53 IG143547 2007 Turkey AKM 302 -
54 IG156514 2018 Syria 97-39L, 98S029 -
55 IG156631 1995 ICARDA 95S 36115-01 ILL 7620 X 88522
52 IG156670 2006 Bangladesh BARIMASUR 5 ILL 2501 X ILL 7616
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Table A1. Cont.

Entry_NO Line Name Year of Release Country ID Pedigree

56 IG156693 - Ethiopia ALEMAYA -
24 IG156736 2014 Afghanistan 95S 35195-17 ILL 7949 X ILL 7686
57 IG156695 1998 India SUBRATA WBL
58 10867/10174/6SPS 2018 ICARDA - ILL 10867 X ILL 10174

59 F1X2011S-132/F1X2011S-
110/23-10 2018 ICARDA - F1X2011S-132 X F1X2011S-110

60 8114/7663/2SPS 2018 ICARDA - ILL 8114 X ILL7663

61 F1X2011S-132/F1X2011S-
110/6-2 2018 ICARDA - F1X2011S-132 X F1X2011S-110

62 7978/DPL 62/10-8 2018 ICARDA - ILL 7978 X DPL 62
63 4605/3596/2SPS 2018 ICARDA - ILL 4605 X ILL 3596
64 10072/1712/10-3 2018 ICARDA - ILL 10072 X ILL1712
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