
Citation: González-Domínguez, R.;

Sayago, A.; Fernández-Recamales, Á.

An Overview on the Application of

Chemometrics Tools in Food

Authenticity and Traceability. Foods

2022, 11, 3940. https://doi.org/

10.3390/foods11233940

Academic Editors:

Antonio González-Casado and Ana

María Jiménez Carvelo

Received: 3 November 2022

Accepted: 5 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Perspective

An Overview on the Application of Chemometrics Tools in
Food Authenticity and Traceability
Raúl González-Domínguez 1,2,3,* , Ana Sayago 2,3 and Ángeles Fernández-Recamales 2,3,*

1 Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar,
Universidad de Cádiz, 11009 Cádiz, Spain

2 Agrifood Laboratory, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain
3 International Campus of Excellence CeiA3, University of Huelva, 21007 Huelva, Spain
* Correspondence: raul.gonzalez@inibica.es (R.G.-D.); recamale@dqcm.uhu.es (Á.F.-R.)

Abstract: The use of advanced chemometrics tools in food authenticity research is crucial for man-
aging the huge amount of data that is generated by applying state-of-the-art analytical methods
such as chromatographic, spectroscopic, and non-targeted fingerprinting approaches. Thus, this
review article provides description, classification, and comparison of the most important statistical
techniques that are commonly employed in food authentication and traceability, including meth-
ods for exploratory data analysis, discrimination, and classification, as well as for regression and
prediction. This literature revision is not intended to be exhaustive, but rather to provide a general
overview to non-expert readers in the use of chemometrics in food science. Overall, the available
literature suggests that the selection of the most appropriate statistical technique is dependent on the
characteristics of the data matrix, but combining complementary tools is usually needed for properly
handling data complexity. In that way, chemometrics has become a powerful ally in facilitating the
detection of frauds and ensuring the authenticity and traceability of foods.

Keywords: chemometrics; food authenticity; food traceability; multivariate analysis

1. Introduction

The authenticity of foods and beverages is an issue of utmost importance for all actors
participating in the food chain [1]. Whereas producers must ensure the quality and added
value of their products, food authorities are responsible for controlling the safety and
traceability of the foods and beverages that can be found in the market. The awareness
of consumers has also significantly increased over recent years, demanding safe, honest,
and properly labeled foods as well as the promotion of local/organic products and the
implementation of environmentally friendly and animal welfare-conscious production
methods. Nevertheless, this market niche of healthier, safer, autochthonous, and environ-
mentally friendly foods, which consequently are more expensive, is highly susceptible to
adulterations and frauds. In this vein, food authentication encompasses many different
issues revolving around adulteration, mislabeling, and misleading statements about origin
(e.g., geographical origin, cultivar/breed), production method (e.g., organic/conventional
production) or processing techniques (e.g., conservation, stabilization) [2]. In particular,
traceability issues regarding geographical origin are one of the most important food au-
thenticity problems in Europe, especially considering that the European quality policy has
strict regulations to recognize and protect the names of products related to certain locations
and/or to specific processing methods [3]. Among the geographical indications, the Pro-
tected Designation of Origin (PDO) indicates the area where food products were produced,
whereas the Protected Geographical Indication (PGI) recognize territories where at least
one of the three manufacturing processes (production, transformation, or elaboration) oc-
curred. On the other hand, the Traditional Specialties Guaranteed (TSG) indication protects
traditional production methods. Accordingly, the implementation of reliable, cost-effective,
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and powerful analytical methods has emerged as an urgent need in the food industry to
ensure the authenticity and traceability of food products and, consequently, to evaluate
their organoleptic, nutritive, and nutraceutical properties [4,5].

The large and complex datasets that state-of-the-art analytical methods usually gener-
ate make the implementation of advanced chemometric techniques, aimed at extracting as
much valuable information as possible from the raw data, mandatory. Thus, chemometrics
refers to the application of statistical and mathematical tools for identifying the underlying
relationships between variables. This enables the construction of statistical models able to
interpret the characteristics of the system on the basis of available chemical data, which can
subsequently be employed for classification, discrimination, and prediction purposes. In
this review article, we provide a description, classification, and comparison of the most
commonly employed chemometric techniques in food authentication and traceability. Fur-
thermore, we also discuss some relevant issues that are sometimes underestimated in this
field, such as the importance of data preprocessing and further validation of the models
obtained.

2. Analytical Approaches in Food Authenticity Research

Two complementary analytical strategies are available nowadays for food authen-
tication and traceability, namely targeted and non-targeted approaches [6,7]. Targeted
methods are based on the analysis of the components that are expected to be present in
the sample, whereas the non-targeted approach relies on comprehensive chemical analysis
with the aim of simultaneously detecting as many substances as possible [7,8]. Among
omics-based methods, metabolomics is one of the most potent techniques for food au-
thentication purposes, since it provides holistic information about the global metabolite
composition derived from metabolism and interactions with the environment [9]. In this
respect, chromatographic, spectroscopic, spectrometric, and molecular biology methods
are currently the most widely employed techniques to investigate the authenticity of food
products (Table 1).

Table 1. Summary of analytical approaches commonly employed in food authenticity and traceability.

Analytical Approach Advantages

Chromatographic methods
Quantitative and qualitative analysis
Versatility
Accuracy and precision

Multi-elemental methods Geographical origin (e.g., rare earths)
Production conditions (e.g., isotopic ratios)

Metabolomics methods Wide coverage
High-throughput analysis

Spectroscopic methods

Simplicity and rapidity
High-throughput analysis
Non-destructive nature
Low cost

Molecular biology methods Specificity and sensitivity

Chromatography coupled with spectroscopic or spectrometric detection has been
proven to be a suitable tool for determining and quantifying individual components or
compound classes in food samples [10]. Liquid chromatography coupled with ultraviolet-
photodiode array detection (DAD) or mass spectrometry (MS) is routinely employed for the
analysis of a wide range of analytes because of its precision, low cost, and versatility [11–13].
In this respect, the boom in ultra-high-performance liquid chromatography (UHPLC) has
further improved its resolution and sensibility performance, thereby reducing the time
needed for accomplishing qualitative and quantitative analyses and consequently enabling
the simultaneous determination of different compound classes in a single run [14]. On the
other hand, gas chromatography is frequently applied for profiling volatile substances (e.g.,
aroma-related compounds, lipid fractions) [15–17].
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As minerals are mainly absorbed by plants and animals through soil and water
resources, multi-elemental techniques have demonstrated great utility for assessing geo-
graphical origin, environmental conditions of the growing/breeding area, and crop man-
agement [18,19]. Furthermore, the measurement of isotopic ratios has also been proposed
as a candidate authenticity marker [20]. For instance, oxygen-18 (δ18O) and deuterium
(δ2H) are strongly impacted by hydrological factors, so they can serve to differentiate
food samples according to their origin. The carbon isotopic ratio (13C/12C) is affected by
climatic conditions, plant type, and agricultural practices. Finally, nitrogen isotopic analysis
(δ15N) allows the differentiation of conventional from organic farming because the nitrogen
isotope content in synthetic fertilizers is much lower than in organic ones [21].

Regarding non-targeted fingerprinting, it should be noted that various analytical plat-
forms have been proposed over recent years for analyzing complex metabolomes. However,
as each one of these techniques has their own advantages and limitations, the combination
of various approaches is nowadays the common practice for performing comprehensive
analysis [22]. The use of MS-based platforms is nowadays widespread because of their
ability to identify and (semi)quantitate a multitude of compounds with high sensitivity and
high-throughput capabilities. Although high-resolution mass spectrometry is the gold stan-
dard for non-targeted metabolomics, the implementation of large-scale targeted platforms
has emerged in recent years for comprehensive and quantitative metabolomics fingerprint-
ing [23]. Alternatively, spectroscopic techniques, such as near-infrared spectroscopy (NIR),
mid-infrared spectroscopy (MIRS), RAMAN spectroscopy, ultraviolet-visible (UV-Vis) spec-
troscopy, and nuclear magnetic resonance (NMR), have also demonstrated great potential
for food fingerprinting due to their capacity to simultaneously detect many compounds in
a fast, non-destructive, and cost-moderate manner [24–26].

Finally, a variety of molecular biology approaches are also well-established for the
analysis of nucleic acids, proteins, and peptides as markers of adulteration and authenticity.
In particular, as the DNA sequence is unique to each living organism, DNA-based meth-
ods have traditionally been employed to track raw materials across the whole industry
process. These molecular techniques range from traditional molecular marker-based meth-
ods (e.g., single nucleotide polymorphisms) to more recent single region approaches (e.g.,
DNA barcoding, isothermal amplification-based methods) and next-generation sequencing-
based methods (e.g., DNA metabarcoding) [27]. However, although these tools have been
demonstrated to be highly specific and sensitive, they are largely qualitative in nature.
Accordingly, great efforts have been made recently to develop quantitative PCR-based and
proteomics assays [28].

3. Chemometric Approaches in Food Authenticity Research

As a result of the large amount of data that the abovementioned analytical techniques
generate, the use of advanced multivariate chemometric tools is mandatory for extracting
as much valuable information as possible (Figure 1). Multivariate statistical analysis can be
performed either by using unsupervised or supervised methods. Unsupervised analysis is
based on the identification of sample interrelationships without prior information about
class membership [29], whereas supervised methods use a training stage, in which samples
are assigned to known groups to build mathematical models [30]. In turn, the most common
multivariate methods that are used in food authentication research can be divided into
three classes: (i) exploratory data analysis; (ii) discrimination and classification; and (iii)
regression and prediction.
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Figure 1. Classification of the chemometric techniques commonly used in food science.

3.1. Data Preprocessing

Prior to performing any statistical analysis, the application of preprocessing tools is
usually mandatory for enhancing the quality of the data matrix via removing unwanted
variability sources (e.g., analytical variation, experimental artifacts). This is typically
accomplished by applying various sequential steps, including data cleaning (i.e., imputation
of missing values, removal of outliers), scaling, and transformation [31]. Missing values
are normally handled in two complementary ways. First, variables with a proportion of
missing values above a certain cutoff (e.g., 20%) are discarded and the remaining ones
are then imputed, for which different methods are available. The simplest imputation
methods rely on substitution (e.g., mean, median, minimum value, limit of detection), but
other multivariate methods have been proposed over recent years (k-nearest neighbors,
kNN). On the other hand, outliers are a serious source of distortion in statistical results,
which makes the implementation of powerful techniques for their proper detection and
removal necessary. For this purpose, some statistical methods can be employed to quantify
the boundary and amount of data outliers (e.g., Euclidean distances). However, when
the number of variables under investigation is large, other multivariate approaches (e.g.,
principal component analysis, clustering analysis) represent a suitable strategy to easily
detect outlier samples. Then, data scaling is often needed when the input variables have
different scales (e.g., wide range of concentrations). Thus, the aim of this step is to use
a scaling factor to adjust for the dissimilarities in fold differences between the different
analytes. To this end, the scaling factor can be a measure of the data dispersion (e.g., the
standard deviation) or a size measure (e.g., the mean). Finally, different transformation
algorithms are usually applied to correct heteroscedasticity issues, to convert multiplicative
relations into additive relations, and to increase the symmetry of skewed distributions.

3.2. Exploratory Data Analysis

Exploratory data analysis (EDA) is normally employed as a first step to visualize the
main characteristics of the dataset. For this purpose, unsupervised pattern recognition
techniques are normally applied to reduce the dimensionality of complex data matrices
without losing information. This enables projecting samples into a low-dimensional space
(e.g., scatter plots, dendrograms) with the aim of inspecting sample groupings, detect
outliers, etc.

3.2.1. Principal Component Analysis

Principal component analysis (PCA) is a powerful and commonly used tool for reduc-
ing the dimensionality of vast sets of data [32]. Accordingly, the most important application
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of PCA is compressing the n-dimensional data structure into a lower number of compo-
nents, normally fewer than three, which are named principal components (PCs). The PC is
a new variable describing the samples (objects), which is calculated as a linear combination
of the primal ones. The selection of the first PC is carried out in such a way that it retains
as much information as possible. The rest of the PCs are chosen to be orthogonal to the
previous ones and to explain as much as possible the variation left unexplained before.
The eigenvalues that are generated during PCA indicate the extent of information that is
explained by each of the computed PCs. The most widely implemented criteria for selecting
the optimum number of PCs is to solely preserve those combinations with eigenvalues
above 1 (i.e., Kaiser criterion). The projections of the objects in the plane defined by the
computed components are named scores plots, which are weighted sums of the original
variables. The magnitude and sign of these weights, or loadings (coefficients of the com-
bination linear of original variables), are indicative of their importance in explaining the
data’s complexity.

3.2.2. Cluster Analysis

Cluster analysis (CA) enables the grouping of similar observations into a number
of clusters based on the observed values of several variables for each individual. These
subclasses may reveal patterns related to the phenomenon under study. To conduct CA,
similarity measures must be first computed between observations and between clusters
once observations begin to be grouped into clusters. The clustering procedure is usually
based on Euclidean distance (d), although other metrics may also be adopted to measure
distances between objects, such as the squared Euclidean distance, the Manhattan distance,
the Pearson coefficient of correlation, or user-defined distances. Clustering methods can
in turn be categorized into four subtypes: hierarchical, optimizing, density-seeking, and
clumping techniques. In hierarchical methods, classes are subclassified into groups by
repeating the modeling in iterative steps to yield a tree, where study groups are repre-
sented as branches. Optimizing techniques are based on the construction of clusters by
selecting the optimal grouping criteria. The obtained classes must be mutually exclusive,
where the observations are plainly divided in different sets. In density-seeking (also called
mode-seeking clustering), the clusters are detected and generated by searching areas on a
graphical representation containing concentrations of data measures. Finally, clumping
methods use a modification of the density-seeking approach based on weighting specific
variables to assign the clusters in a manner where obtained groups can be overlaid on
graphic projections. Among them, the most common form of analysis is the hierarchical
cluster analysis (HCA) tool [32], for which two distinct algorithms can be applied, agglom-
erative (grouping observations) or divisive (dividing the data set), the former being the
most widely used in practice. In the agglomerative case, different linkage functions can
be employed, including single, average, complete, and Ward’s linkage, which may yield
distinct clusters with specific properties. The outcome from HCA is normally represented
as clustering dendrograms or heat maps.

3.3. Discrimination and Classification

Discrimination and classification methods are employed for predicting an object’s
belonging to a given category based on its characteristics [33]. For this purpose, the model is
first built using a training set, which must be composed of a set of objects whose categories
and values for the predictor variables are known a priori. The assignment of objects to
categories must be exhaustive (i.e., every observation is included in one category) and
mutually exclusive (i.e., there is no observation belonging to various categories). Then, the
model is applied to predict the category of new objects. The aim of discriminant analysis
techniques, also known as ‘hard modelling’, is to discriminate between classes based on
splitting the data dimensionality in different regions, each one corresponding to a class. On
the other hand, class-modelling analysis, or ‘soft modelling’, is based on creating a separate
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model for every category and identifying a defined area of the data space for each class
(i.e., class space).

In this respect, it should be noted that supervised methods that are normally employed
for classification and discrimination purposes are prone to overfitting, especially when the
number of variables exceeds the number of observations, which makes the implementation
of validation tools mandatory [29]. External validation is the most powerful approach, but
it is only applicable when the sample size is large enough to be split into separate and
independent training, calibration, and test sets. When a validation set is not available,
cross-validation is a reliable strategy for checking model performance. To conduct a cross-
validation, the dataset must be divided into two groups containing the same percentage of
samples from each class, a training set for model construction and a test set for goodness
assessment. This procedure is repeated several times to avoid conclusions by chance, in
which samples are randomly split to ensure that they all have the same probability of
belonging to the training set. Thereby, the model performance can be evaluated by com-
puting the percentage of correctly classified samples within the training (i.e., recognition
capacity) and validation (i.e., prediction capacity) sets. A third validation approach consists
in calculating the sensitivity and specificity of the models using the confusion matrix. Here,
sensitivity is computed as the percentage of cases belonging to a determinate class that are
correctly classified, whereas the specificity refers to the percentage of cases not belonging
to a class that are not classified in this class.

3.3.1. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised tool where a number of orthogonal
discriminant functions (DF) equal to the number of categories minus one are generated.
Discriminant functions are computed as linear combinations of the predictor variables
and used to differentiate study groups by controlling the within-class and between-class
ratios. The discriminant capacity of DFs can be assessed through the measurement of
the Wilks’ lambda parameter, which is calculated for the global model after excluding
the selected variable. Afterward, a forward stepwise algorithm is applied to retain the
functions that must be considered in the final model. Accordingly, the assessment F values
are regarded as suitable criteria for including or removing predictors in LDA. Furthermore,
Wilks’ lambda and F values can be employed for testing the importance of each variable in
the model. Once the DFs are computed, the groups can be differentiated by hyperplanes
contained inside the space defined by DFs, and samples can be classified depending on
their belonging to these subspaces (classification rule).

3.3.2. Partial Least Square Discriminant Analysis

Partial least square discriminant analysis (PLS-DA) is a pattern recognition tool that
relies on identifying an adequate number of latent variables/components with the aim of
discriminating between previously established groups [34]. This technique is based on a
classical PLS regression, which uses a category as the dependent variable to define class
membership, of great utility in the case that the total of study variables is lower than the
number of observations. The principle of PLS is finding the latent variables in the predictor
matrix (X) that explain, as much as possible, the variability in the original data, and at
the same time show strong association with the target value in the response matrix (Y). In
other words, PLS-DA is intended to identify latent variables that enable simultaneously
decomposing X and Y matrices, taking into consideration their covariance. The optimal
number of components is usually assessed by cross-validation methods, so that the global
performance of PLS-DA models is represented by the parameters RY

2, RX
2, and Q2. RY

2

and RX
2 are the proportion of Y and X variances explained by the model, respectively. Q2

is a measurement of the model prediction capacity. Furthermore, PLS models also enable
obtaining an indicator of the discriminant ability of each variable by computing the variable
importance for the projection (VIP) parameter. This is a weighted sum of squares of the PLS
loadings that considers the proportion of Y-variance that is described by each component.
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Those variables showing VIP values larger than 1 can be regarded as the most discriminant
ones, whereas values below 0.5 indicate little influence in the model.

3.3.3. Soft Independent Modeling of Class Analogy

Soft independent modeling of class analogy (SIMCA) calculates significant PCs to
classify samples based on their distance from the model representing each category. For
this purpose, a training set is used to determine the number of PCs needed to describe the
structure and boundaries of each class. Accordingly, objects are included within a certain
class if they fall into the n-dimensional class-box limited by these boundaries. As each
category is modeled independently of the rest, it is common to find overlapping between
the spaces of each class. Therefore, three situations are possible: (1) the object falls within
the boundaries of only one class, so it is unequivocally classified into that class; (2) the
object is not located in any of the class boxes, so it is considered as an outlier; (3) the object
falls in the overlapped region, so it is assigned as belonging to the overlapping classes
(Massart). The classification results can be assessed by Coomans’ plots, a graphical tool
for visualizing pairwise groupings, in which the axes depict the normalized orthogonal
distance of the objects with respect to each individual model.

3.3.4. K-Nearest Neighbors

K-nearest neighbors (kNN) is a simple method that does not require any distribution
assumption and can be used when the number of samples is small. This algorithm is based
on calculating the distances (e.g., Euclidean distance) from each object to the rest of the
samples within a training set to select the k nearest neighbors. This kNN algorithm enables
classifying new objects, considering that an increased k value reduces the impact of errors
whereas its decrease worsens classification.

3.3.5. Support Vector Machine

The support vector machine (SVM) is a non-parametric machine learning tool that
can be applied for both classification and regression purposes [35]. This technique is
based on computing a decision boundary (optimal hyperplane) able to distinguish groups
by maximizing the separation between classes. The maximum margin is defined as the
double minimum distance from support vector points to the hyperplane. To train SVMs,
a supervised learning tool is needed, which is based on an iterative algorithm aimed at
minimizing the error of the output. In turn, SVM models can be categorized into two groups
according to the form of the error function: SVM type 1 and type 2, also called C-SVM and
ν-SVM, respectively. The parameters C (capacity constant) and ν can be estimated by cross-
validation algorithms to avoid overtraining, and thereby control the model complexity.
Moreover, SVM is also useful in non-linear modeling, when the best separation between
classes cannot be achieved with a hyperplane. In that situation, different mathematical
functions (i.e., kernel functions) can be used to accomplish the linear discrimination of
the original data by means of their projection in a new higher-dimensional space. Here,
the Gaussian and polynomial functions are the most commonly employed algorithms,
which enable finding a linear solution to a non-linear dataset. Accordingly, an efficient
SVM modeling requires carefully optimizing various parameters, including the training
constants (i.e., C or ν) and kernel parameters (i.e., γ, which controls the shape of the
separating hyperplane), to obtain optimal SVM models able to classify new samples.

3.3.6. Chemometric Approaches Based on Decision Trees

Decision trees are powerful machine learning algorithms based on the use of a tree-
like model of decisions and their possible consequences, which can be applied for both
classification and regression tasks [36]. Some of the most common decision tree-based
techniques include classification and regression tree (CART) analysis, chi-square automatic
interaction detection (CHAID), and random forest (RF). CART analysis can be used to
predict outcomes based on predictor variables. This algorithm relies on the application



Foods 2022, 11, 3940 8 of 13

of automatic stepwise variable selection to calculate the importance rank of the variables.
In this decision tree, nodes are split into sub-nodes on the basis of a threshold value of
an attribute. This iterative splitting is repeated until no further desirable sub-nodes are
available. Similarly, CHAID also enables discovering relationships between a categorical
response variable and categorical predictor variables. To this end, the chi-square test of
independence is employed with the aim of identifying significant independent variables in
the dataset. Furthermore, the Bonferroni correction is applied for significance adjustment.

In recent years, modern variations of these classical approaches based on decision
trees have been developed, RF being the most widely employed. RF is a non-parametric
and non-linear tool that relies on a learning strategy known as ensemble learning, which is
based on generating decision trees by combining individual trees that are determined by
the values of a random vector sampled independently and with the same distributions for
all the trees in the forest [37]. These trees are divided into numerous nodes using subsets of
randomly selected input variables (m). Accordingly, the most important parameters to be
optimized during RF modelling are the value of m and the number of decision trees. The
optimum value of these model parameters can be found by k-fold cross-validation as a
balance between model complexity and fitness. However, it is well-known that the m value
is not critical, so the square root of the total number of attributes is routinely used as the
default value in practice. Moreover, the model quality is evaluated by the accuracy rates
in the training and testing sets and/or by out-of-bag (OOB) error, which is the prediction
error computed from the prediction of the original data that is not employed to build the
classification trees. In practice, other measurements such as the Gini index can be applied
for assessing the quality of a particular node, since this index can be regarded as a measure
of node purity (i.e., a small value indicates that a node is mainly composed of objects from a
unique class). The Gini index can also be employed for evaluating the discriminant capacity
of each variable, i.e., the relevance of each feature in the model. Thus, the mean decrease of
the Gini index (MDGI) is useful for selecting the most important variables for inter-class
discrimination.

3.3.7. Artificial Neural Networks

An artificial neural network (ANN) is a nonlinear pattern recognition technique
based on imitation of the functioning of biological nervous systems, which is capable of
predicting categorical and quantitative variables [38]. In general, an ANN is made up
of neurons that are organized in different layers (one input layer, one or more hidden
layers, and one output layer), with unidirectional connections from input to output. These
synaptic connections (the connections to and from neurons) indicate the flow of the signal
through the network and are associated with the corresponding synaptic weight. To imitate
the functioning of the neural networks of living organisms, the artificial neural network
uses two algorithms, one for calculating the weighted sum of the input values (predictor
variables) and another called the activation function that generates the response or output,
which in classificatory analysis would be the probability that a sample belongs to each of the
categories. Through an iterative trial-and-error procedure, the parameters that characterize
the neural network are established, such as the number of neurons, hidden layers, their
arrangement or architecture, synaptic weights, etc. The most common ANN approach is the
multi-layer perceptron (MLP), successfully used for classification and pattern recognition.
ANNs need data learning in order to be trained with the aim of functioning properly. For
this, the links between inputs and outputs are first identified in a training set and a test set
is then employed to evaluate the prediction ability. ANN training is normally achieved by
back propagation, a method aimed at reducing the error committed by the neural network
on the training step. Once the ANN algorithm learns the idiosyncrasies of the training
set, the model is prone to overfitting. To avoid this, a third sample set (validation set) is
needed to estimate the generalization ability in order to make accurate predictions of new
objects. The weights of the hidden layers can be adjusted to minimize the training error;
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this optimization is finished when the validation error begins to rise. The efficacy of the
training step can be evaluated by the root-mean-squared (RMS) errors.

3.4. Regression and Prediction

Multivariate calibration techniques, based on statistical regression and prediction, are
aimed at determining relationships between response and independent variables [39]. To
this end, these methods are based on estimating efficient mathematical models able to
interpret the performance of the system and to accurately predict the characteristics of
future samples.

3.4.1. Multiple Linear Regression

Multiple linear regression (MLR) is commonly employed for calibration and regression
in chemistry. The association between the response and the input variables is measured
by standardized regression coefficients that are obtained by the method of least squares.
The application of MLR requires the following conditions: dependent and independent
variables must be linearly inter-related, the observations must be independent, normality
and homoscedasticity of the residuals, absence of influential points (i.e., outliers), and
no multicollinearity. Multicollinearity occurs when the explanatory variables are highly
intercorrelated, which may consequently provoke imprecision or instability during the
estimation of the model parameters, thereby affecting the accuracy of the model prediction.
This can be evaluated by computing the correlation between pairs of independent variables
or by calculating the variance inflation factor (VIF). The VIF parameter is indicative of the
variance increase of an estimated regression coefficient with respect to the ideal situation
where the explanatory variables are strictly independent. Therefore, a high VIF value
denotes the presence of multicollinearity, being usually employed a threshold equal to
5 or 10, depending on the domain. A simpler way to minimize the VIF parameter is to
discard highly intercorrelated variables or, eventually, to standardize the data. To confirm
the statistical validity of the model, the coefficient of determination (R2), an estimate of the
proportion of the global variation in the data that is explained by the model, is used as an
indicator of the goodness of fit.

3.4.2. Principal Component Regression

Principal component regression (PCR), based on classical PCA, applies linear regres-
sion modeling to predict the outcome on the basis of the covariates, for which the PCs of
the explanatory variables are employed as regressors. Accordingly, PCR transforms a set of
correlated variables into a set of uncorrelated PCs. Therefore, one major application of PCR
is to solve multicollinearity issues. PCR overcomes the collinearity problem by excluding
low-variance PCs in the regression step.

3.4.3. Partial Least Squares Regression

This is a widely used multivariate statistical technique whose objective is to find latent
variables by projecting the X and Y variables in a new space where their covariance is
maximized. A PLS model will try to find the multidimensional direction in the X space able
to explain the maximum variance direction in the Y matrix. PLS regression is of particular
utility in avoiding overfitting when the number of explanatory variables is large and they
are intercorrelated. This is because during PLS modeling most of the variance is explained
by the first latent variables, whilst the remaining variance mostly describes random noise
or linear relationships between dependent and independent variables. The optimal number
of components is usually obtained using cross-validation tools by calculating a statistic for
lack of prediction accuracy called prediction residual sum of squares (PRESS). Thus, the
optimum number of components will be the one that produces the lowest PRESS value.
Furthermore, their predictive ability can also be evaluated by calculating the regression
correlation coefficient (R2) and the residual predictive deviation (RPD).
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3.4.4. Orthogonal Partial Least Squares Regression

Orthogonal partial least squares regression (OPLS) is a supervised method that is
commonly employed to find the relationship between a set of predictor variables (X) and
one or more responses (Y). Basically, OPLS is intended to extract the maximum information
that reflects the variation in the original dataset, while assuming the existence of a small
subset of hidden variables able to predict the response variables. These subsets are formally
known as latent variables. The OPLS method uses orthogonal signal correction to maximize
the explained covariance between X and Y on the first latent variable, while the remaining
components capture variance in X orthogonal to Y.

4. Application of Chemometrics to Olive Oil Authenticity Research

To contextualize the above-provided overview on the application of chemometrics in
food authenticity and traceability research, in this section we review some recent literature
considering olive oil as an example.

Using an LC-MS platform, Becerra-Herrera et al. characterized the phenolic profile of
extra-virgin olive oil (EVOO) samples and then applied various chemometric approaches to
discover chemical descriptors to differentiate between different PDOs [40]. An exploratory
PCA revealed that only eight of the variables under investigation accounted for most of the
variability in the PCs that were obtained, namely tyrosol, hydroxytyrosol, p-HPEA-EDA,
3,4-DHPEA-EDA, 3,4-DHPEA-EA, pinoresinol, secoiridoids, and total phenolic compounds.
Afterward, LDA modeling enabled the accurate classification of EVOOs according to their
geographical origin (cumulative variance = 93.4%). In another study, traditional chromato-
graphic methods aimed at characterizing the unsaponifiable fraction were combined with
NMR fingerprinting to investigate the influence of variety and geographical origin in the
chemical composition of olive oils collected from different Andalusian locations [17]. Then,
complementary supervised pattern recognition procedures (i.e., LDA, PLS-DA, SIMCA)
and machine learning algorithms (i.e., RF, ANN, SVM) were employed to build classification
and predictive models. The most discriminant variables between the study groups were
found to be tocopherols, squalene, a few sterols (campesterol, stigmasterol, β-sitosterol),
aliphatic alcohols (heptacosanol, octacosanol), and NMR signals associated to fatty acid
chains. Furthermore, the statistical models that were built with these data provided a clear
discrimination according to the variety and to a lesser extent the geographical origin.

Multi-elemental analysis, in combination with advanced chemometric techniques, has
also demonstrated great utility in evaluating the geographical origin of Spanish EVOO
samples [19]. Preliminary modelling using PCA and LDA showed that the samples under
investigation could be grouped into three major clusters: Atlantic coast (Huelva province),
Mediterranean coast, and inland regions. Then, various multivariate models (i.e., PLS-DA,
SVMs, RF) were developed and validated using minerals as candidate markers. The results
evidenced that EVOO samples collected in the province of Huelva have a distinctive multi-
elemental profile because of the characteristic geochemistry of this area. On the other hand,
EVOOs produced in the Mediterranean and inland regions were more similar, only slight
differences being detected in terms of iron and titanium.

As a complement to conventional chromatographic profiling approaches, metabolomics
stands out as a very powerful tool to comprehensively characterize the phytochemical
profile of olive oil. In this vein, Senizza et al. recently applied untargeted LC-MS-based
metabolomics to 408 Italian EVOO samples, corresponding to different varieties, origins,
and blends [41]. Multivariate discriminant analysis by means of OPLS-DA enabled iden-
tifying specific markers of authenticity, cholesterol derivatives and phenolic compounds
(tyrosols, oleuropeins, stilbenes, lignans, phenolic acids, and flavonoids) being the best
discriminant variables. Finally, ANN modelling provided a satisfactory performance in
discriminating authentic Taggiasca samples (sensitivity = 100%). On the other hand, other
non-targeted fingerprinting approaches based on spectroscopy have also been proven
to represent a suitable analytical strategy in olive oil research. For instance, González-
Domínguez et al. employed a rapid luminescent method to characterize edible oils and
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detect adulterations [25]. In this study, a regression model was successfully built on the
basis of five luminescent frequencies related to minor oil components. Interestingly, this
model provided excellent performance in the detection of virgin olive oil adulterated with
hazelnut oil.

5. Conclusions

Multiple factors (e.g., geographical origin, variety/breed, manufacturing practices)
may influence the chemical composition of foods and therefore have a considerable im-
pact on their organoleptic, nutritional, and bioactive properties. For this reason, reliable,
cost-effective, and powerful analytical methods are needed to ensure the authenticity and
traceability of food products. However, the importance of properly addressing data pro-
cessing and analysis steps is often underestimated in this field. In this respect, the use
of advanced chemometric tools is mandatory in building multivariate models for classi-
fication, discrimination, and prediction, and for identifying candidate authenticity and
traceability markers.

The choice of the most appropriate statistical tool to apply depends on several fac-
tors related to the nature of the dataset, including the definition of the class criteria, the
homogeneous distribution of the sample, the number of input variables, and the number of
samples. However, it is common practice to apply various classification techniques and
evaluate their fitness for the problem under study [42]. This is usually accomplished by
combining unsupervised pattern recognition methods for a first exploration of the data,
with subsequent application of supervised learning approaches [43]. In this respect, PCA
and HCA stand out as the most commonly employed unsupervised multivariate tools,
whereas LDA and PLS-DA have demonstrated suitable performance for discrimination
purposes in food science. Nevertheless, the use of state-of-the-art machine learning tools
(e.g., RF, SVM, ANN) has rapidly emerged in recent years. Regardless of the multivariate
approach, another crucial factor to be considered is the proper preprocessing of the data
matrix, with the aim of enhancing data quality and removing unwanted variations prior to
statistical analysis. Furthermore, after statistical modelling, the implementation of reliable
validation tools is of utmost importance in evaluating model performance and checking
the absence of overfitting.
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