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Abstract: Pesticide residues directly or indirectly threaten the health of humans and animals. We
need a rapid and nondestructive method for the safety evaluation of fruits. In this study, the feasibility
of visible/near-infrared (Vis/NIR) spectroscopy technology was explored for the discrimination
of pesticide residue levels on the Hami melon surface. The one-dimensional convolutional neural
network (1D-CNN) model was proposed for spectral data discrimination. We compared the effect
of different convolutional architectures on the model performance, including single-depth, sym-
metric, and asymmetric multiscale convolution. The results showed that the 1D-CNN model could
discriminate the presence or absence of pesticide residues with a high accuracy above 99.00%. The
multiscale convolution could significantly improve the model accuracy while reducing the model-
ing time. In particular, the asymmetric convolution had a better comprehensive performance. For
two-level discrimination, the accuracy of lambda-cyhalothrin and beta-cypermethrin was 93.68%
and 95.79%, respectively. For three-level discrimination, the accuracy of lambda-cyhalothrin and
beta-cypermethrin was 86.32% and 89.47%, respectively. For four-level discrimination, the accuracy
of lambda-cyhalothrin and beta-cypermethrin was 87.37% and 93.68%, respectively, and the average
modeling time was 3.5 s. This finding will encourage more relevant research to use multiscale
1D-CNN as a spectral analysis strategy for the detection of pesticide residues in fruits.

Keywords: safety detection; pesticide residues; convolutional neural network; visible/near-infrared
spectroscopy; Hami melon

1. Introduction

Hami melon is one of the famous and special products in Xinjiang, tasting delicious
and enjoying the reputation of “the king of melons” [1]. The safety of fruits and vegetables
has always been the focus of society. In recent years, the problem of pesticide residues
in Hami melon has become more and more serious [2]. Pyrethroid pesticides are often
used for pest control during Hami melon planting [3]. The residual pesticides attach to the
surface of Hami melon and continue to contaminate the fruit. The rind of the Hami melon
is often fed to the livestock [4], and could also be prepared as dietary fiber [5]. In addition,
Hami melon is a fresh-eating food, and we consume its pulp. When we cut the Hami melon,
the knife touches the surface with pesticide residues, which could contaminate the pulp and
pose a potential food safety risk. Pesticide residues not only cause food safety problems,
but also directly or indirectly threaten the health of humans and animals. Therefore, it
is urgent to achieve rapid discrimination of pesticide residue levels on the Hami melon
surface to ensure its quality and safety in the market [6].
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Conventional chemical methods for the detection of pesticide residues in fruits and
vegetables mainly include gas chromatography (GC), high-performance liquid chromatog-
raphy (HPLC), gas/liquid chromatography–mass spectrometry (GC/LC-MC), and so
forth [7]. These detection methods have high accuracy and sensitivity, but the detection
steps are complex and costly [8]. As a rapid modern detection technique without sample
pretreatment, visible/near-infrared (Vis/NIR) spectroscopy has been gradually applied
in the quality and safety detection of fruits and vegetables [9–11], especially in qualitative
discrimination, including type and level. Sun et al. [12] established an optimized support
vector machine (SVM) model using near-infrared transmission spectroscopy (950–1650 nm),
which could identify two pesticide residue types (fenvalerate and chlorpyrifos) in lettuce
leaves, and the prediction accuracy was 98.33%. Zhou et al. [13] used Vis/NIR polarization
spectroscopy (300–1000 nm) to identify five pesticide residue types (avermectin, dichlor-
vos, dimethoate, phoxim, and acephate) in lettuce leaves, achieving a prediction accuracy
of 97.78%. Ndung’u et al. [14] used principal component analysis (PCA) to reduce the
dimensionality of Vis/NIR spectra (325–1075 nm), and established a machine learning
model to identify pesticide residues (mixtures of beta-cyfluthrin and chlorpyrifos, mix-
tures of metalaxyl and mancozeb) in spinach. The model obtained a perfect prediction
accuracy of 100.00%. Li et al. [15] proposed an all-band average grouping integration
preprocessing method based on Vis/NIR spectra (350–2500 nm), which could realize the
four-level discrimination of chlorpyrifos residues in cabbage leaves. This method outper-
formed spectral-sensitive band selection, and achieved a higher prediction accuracy of
96.67%. Nazarloo et al. [16] demonstrated the feasibility of using Vis/NIR spectroscopy
(400–1050 nm) and multivariate analysis for the two-level discrimination of profenofos
residues in tomatoes, and the prediction accuracy was 91.66%. Recent studies mainly focus
on the identification of the presence or absence of pesticide residues and the residue types.
There are few studies on the discrimination of pesticide residue levels in fruits.

Generally, model accuracy can be improved by combining various methods, such
as preprocessing, feature selection, and modeling. However, it could increase the model
complexity, and modeling time [17]. It is always a great challenge to extract and use
Vis/NIR spectral features effectively. Deep neural networks can automatically learn crit-
ical patterns from massive raw data by end-to-end analysis, which reduces the need for
feature engineering [18]. Recent developments in spectral analysis have demonstrated
that deep learning combined with spectroscopic sensing techniques for the quality and
safety evaluation of agro-products increases attention [19], and the deep learning algorithm
has shown great potential for pesticide residue discrimination of fruits and vegetables.
The deep brief network (DBN) was used to select and extract spectral features, achiev-
ing the identification of fenvalerate and triazoline residues in lettuce leaves [20]. The
residual neural network (ResNet) was shown to have a good effect on three-level residue
discrimination in grapes [21]. Moreover, the one-dimensional convolutional neural net-
work (1D-CNN) achieved the identification of pesticide residues on garlic chive leaves
(λ-cyhalothrin, trichlorfon, phoxim, mixtures of trichlorfon and phoxim) [22], and also
worked well on Hami melon (chlorothalonil, imidacloprid, and pyraclostrobin) [23]. To the
best of our knowledge, the use of multiscale convolutional architecture for the discrimina-
tion of pesticide residue levels has not been investigated yet.

The objectives of this study were (1) to explore the feasibility of Vis/NIR spectroscopy
combined with 1D-CNN models for the discrimination of pesticide residue levels on the
Hami melon surface; (2) to evaluate the impact of multiscale convolutional architecture on
model performance; and (3) to explore the effect of increasing complexity (more levels) on
model performance for the discrimination of pesticide residues.

2. Materials and Methods
2.1. Sample Preparation

A total of 140 Hami melons (variety: Xizhoumi No. 25), with a weight of (2.8 ± 0.4) kg,
were obtained from a local agricultural product trading center in Shihezi, Xinjiang, China.
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The lambda-cyhalothrin (2.5%, microemulsion, Shandong Caoda Chemical Co., Ltd., Heze
China) and beta-cypermethrin (4.5%, emulsifiable concentrate, Jinan Yinong Chemical
Co., Ltd., Jinan, China), as pesticides commonly used during Hami melon planting, were
obtained from a local agricultural material market in Shihezi, Xinjiang, China. Figure 1
shows the chemical molecular structures of two pesticides.
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Figure 1. The chemical molecular structures of pesticides. (a) Lambda-cyhalothrin; (b) Beta-
cypermethrin.

In order to reduce the impact of environmental factors on this experiment, Hami
melons were wiped clean and then placed in a laboratory with constant temperature (25 ◦C)
and relative humidity (30%) for 24 h. A total of 140 Hami melons were divided into four
groups. Compound pesticide solutions of beta-cyhalothrin (A), beta-cypermethrin (B), and
water (C) were prepared with a ratio of 1:200, 1:400, and 1:800. Three groups of Hami
melons were evenly sprayed with compound pesticide solutions. The remaining 35 Hami
melons were used as a control group sprayed with clean water. The treated samples were
allowed to dry and ventilated at the same temperature and relative humidity for 10 h.

2.2. Spectral Data Acquisition

The spectra of pesticide residues on the Hami melon surface were collected by a
Vis/NIR (380–1100 nm) spectral data acquisition system, which consisted of a miniature
fiber optic spectrograph with a spectral resolution of 0.69 nm (QE Pro-FL, Ocean Insight,
Inc., Dunedin, FL, USA), a fiber optic probe (QP600-2-VIS-NIROOS-00-5172-11, Ocean
Insight, Inc., Dunedin, FL, USA), an illumination unit consisting of two halogen light
sources (MR16, Signify(China) Investment Co., Ltd., Shanghai, China), a loading platform
and a computer installed with spectrometer operating software (OceanView v1.6.7, Ocean
Insight, Inc., Dunedin, FL, USA), as shown in Figure 2. The distance from the optical
fiber probe to the Hami melon surface was about 3 cm. Before acquiring the spectra, the
integration time was set at 100 ms, and the moving average width and average number
of scans were set at 4 and 10, respectively. In this experiment, the original spectra were
collected at the equator position, and the interval angle between each sampling point
was 90◦.
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2.3. Pesticide Residue Content Measurement

After the spectral data acquisition, all Hami melons were sent to the Food Qual-
ity Supervision and Testing Center (Shihezi), Ministry of Agriculture and Rural Affairs.
The method of GC combined with QuEChERS (acronym of quick, easy, cheap, effective,
rugged, and safe) was followed to measure pesticide residues (lambda-cyhalothrin and
beta-cypermethrin) in Hami melon, according to Chinese Standard (NY/T 761-2008) and
British Standard (BS EN 15662: 2008) [24,25]. There were five steps to measure pesticide
residue contents.

(1) Standard preparation
The certified pesticide standard solution, with a concentration of 1000 mg/L and

purities greater than 98.0%, was purchased from the Agro-Environmental Quality Su-
pervision and Testing Center, Ministry of Agriculture and Rural Affairs (Tianjin, China).
Standard mixture intermediate and working solutions were prepared in n-hexane (chro-
matographically pure) (CAS 110-54-3, Duksan Pure Chemicals Co., Ltd., Ansan-si, Korea)
at a concentration of 20.0 mg/mL and 1.0 mg/mL, respectively. The solutions were stored
in brown reagent bottles at 4 ◦C, and placed at room temperature before use.

(2) Sample Preparation
The pulps and rinds of each Hami melon were cut into samples with a thickness of

about 1.50 cm. And samples were crushed in a food processor. Then the treated samples
were transferred to the marked sample bottles. They were stored at −18 ◦C, and placed at
room temperature before measurement.

(3) Extraction
A 7.5 g amount of the crushed sample was weighed by an electronic balance (BSA4202S-

CW, Sartorius Inc., Gottingen, Germany), and was transferred to a 50 mL centrifuge tube.
Then, 15 mL of acetonitrile (chromatographically pure, ANPEL Scientific Instrument (Shang-
hai) Co., Ltd., China) was added. The mixture was vortexed at a speed of 3000 r/min by a
vortex shaker (MS 3 Control, IKA Inc., Staufen, Germany) for 40 s. After homogenization
for 1 min, 5 g of NaCl was added to the mixture and again vortexed at a speed of 3000 r/min
for 40 s. Subsequently, the tubes were centrifuged by a high-speed centrifuge (TG16-WS,
Xiangyi Centrifuge Instrument Co., Ltd., Changsha, China) at a speed of 7000 r/min for
5 min to separate the two layers. An 8 mL volume of the supernatant was removed for
clean-up.

(4) Clean-up
An 8 mL volume of the supernatant was transferred to a 15 mL QuEChERS clean-

up centrifuge tube (5982-0029, Agilent Technologies Inc., Santa Clara, CA, USA), which
contained 400.1 mg PSA, 400.1 mg C18 EC, 45.0 mg bulk carbograph, and 1199.8 mg
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magnesium sulfate (purity from 98.5% to 101.5%). Then, the mixture was vortexed at a
speed of 3000 r/min for 40 s and centrifuged at a speed of 7000 r/min for 5 min. A 4 mL
volume of the supernatant was transferred to a glass tube and evaporated to dryness by a
nitrogen evaporator (N-EVAP-112, Organomation Associates, Inc., Burlington, VT, USA).
Finally, the extract was redissolved in 2 mL of n-hexane and measured by GC.

(5) GC conditions
The gas chromatograph (Agilent 7890A, Agilent Technologies Inc., Santa Clara, CA,

USA) was equipped with a micro electron capture detector (µ-ECD). Separation of the
pesticides was achieved on a fused silica capillary tubing column (HP-5, Agilent Technolo-
gies Inc., Santa Clara, CA, USA) with a size of 30 m × 0.320 mm × 0.25 µm (length inner
diameter film thickness). Nitrogen gas (purity of about 99.999%) was used as a carrier
gas at a flow rate of 2.0 mL/min. The temperatures of the inlet and detector were 220 ◦C
and 320 ◦C, respectively. The flow rates of septum purge and makeup were 3.0 mL/min
and 60 mL/min, respectively. The oven temperature was kept at 100 ◦C for 1 min, then
increased to 190 ◦C at a rate of 15 ◦C/min and held for 2 min, and finally increased to 280 ◦C
at a rate of 6 ◦C/min and held for 2 min. The injection volume was 1µL in splitless mode.
The pesticide residue content was obtained by calculating the peak area ratio between the
sample and the standard solution.

2.4. 1D-CNN Model Implementation and Evaluation
2.4.1. Environment

The computations were performed on a Lenovo computer with a Windows 10 (64-bit)
operating system, an Intel (R) Core (TM) I7-8700 @3.20 GHz CPU, an NVIDIA GeForce
RTX2060 graphics card with 16.0 GB of RAM. For GPU acceleration, a computing platform
(NVIDIA CUDA Toolkit 10.1) and a deep neural network acceleration library (NVIDIA
cuDNN v7.6.5) were used. All models were implemented on TensorFlow 2.1.0 framework
and deep learning library Keras 2.3.1 using Python 3.7.3 in Spyder IDE (v. 3.3.3).

2.4.2. Architecture

Generally, the 1D-CNN model architecture has the convolution layer (labeled as Conv),
the pooling layer (labeled as Pooling), the flatten layer (labeled as F), the fully connected
layer (labeled as FC), and the input and output layer. In order to improve the high-level
feature extraction capability, we often increase multiple processing layers. As the network
depth increases, the model accuracy could be improved, but it will face the challenge
of increasing the computational complexity. An Inception architecture was proposed to
have width and depth while keeping the complexity constant [26]. To further optimize
the network, improved Inception architectures were proposed to capture various features
while balancing the width and depth [27]. In this study, we designed three 1D-CNN models
to analyze spectral data, including two multiscale networks based on Inception architecture
and a single-depth network. The input was the 1D spectral preprocessing data, and the
output was the object class (pesticide residue levels) to be discriminated.

The single-depth 1D-CNN architecture included three convolution layers, a pooling
layer, a flatten layer, and a fully connected layer, as shown in Figure 3a. The symmetrical
multiscale 1D-CNN architecture included two convolution layers with five convolution
modules (labeled as C) and a pooling module (labeled as P), a merging layer (labeled
as M) with concatenate merging (labeled as CM), a flatten layer, and a fully connected
layer, as shown in Figure 3b. The asymmetric multiscale 1D-CNN architecture included
four convolution layers with eight convolution modules and a pooling module, a merging
layer with concatenate merging, a flatten layer, and a fully connected layer, as shown
in Figure 3c. The concatenate merging layer achieved multiscale feature fusion by the
concatenation of the feature vectors. The fusion feature length was the sum of the feature
vector lengths extracted by the parallel convolution modules, and the width and depth
were kept constant [28].



Foods 2022, 11, 3881 6 of 17

Foods 2022, 11, x FOR PEER REVIEW 6 of 17 
 

 

feature vector lengths extracted by the parallel convolution modules, and the width and 

depth were kept constant [28]. 

 

(a) 

 

(b) 

Figure 3. Cont.



Foods 2022, 11, 3881 7 of 17Foods 2022, 11, x FOR PEER REVIEW 7 of 17 
 

 

 

(c) 

Figure 3. 1D-CNN model architecture. (a) Single-depth convolution; (b) Symmetric multiscale 

convolution; (c) Asymmetric multiscale convolution. Here, 782 × 1 represents the model input as 

1D spectral vector with a length of 782; Kernel 16@1 represents the convolution operation, the 

number of convolution filters is 16, the length of the 1D convolution window is 1; MaxP 2 repre-

sents the max pooling operation, the size of the max pooling window is 2; l × d represents the di-

mensionality of the feature vector as a network layer output, the length and depth of the feature 

vector are l and d, respectively; n represents the number of neurons in layer FC. 

2.4.3. Hyperparameters 

Table 1 shows the hyperparameters used in the different network layers in three 

1D-CNN models. The 1 × 1 convolution kernel was used for reducing the data dimen-

sions. The features of different scales were captured by n × 1 convolution kernels. The 

padding strategy was selected to keep the size of the feature map. According to previous 

studies [21–23], the activation, objective, and loss functions were commonly used as rec-

tified linear unit (ReLU), softmax, and multiclassification cross-entropy, respectively. 

The stochastic gradient descent (SGD) optimizer, with a momentum of 0.6 and decay of 

1 × 10−5, was used to improve the training process. According to the exponential scale 

(10−𝑛 and 2𝑛) [29], the learning rate and batch size were selected as 0.01 and 64, respec-

tively. Dropout with a rate of 0.2 was adopted to reduce the number of parameters and 

prevent overfitting. 

  

Figure 3. 1D-CNN model architecture. (a) Single-depth convolution; (b) Symmetric multiscale
convolution; (c) Asymmetric multiscale convolution. Here, 782 × 1 represents the model input as 1D
spectral vector with a length of 782; Kernel 16@1 represents the convolution operation, the number of
convolution filters is 16, the length of the 1D convolution window is 1; MaxP 2 represents the max
pooling operation, the size of the max pooling window is 2; l × d represents the dimensionality of
the feature vector as a network layer output, the length and depth of the feature vector are l and d,
respectively; n represents the number of neurons in layer FC.

2.4.3. Hyperparameters

Table 1 shows the hyperparameters used in the different network layers in three 1D-
CNN models. The 1 × 1 convolution kernel was used for reducing the data dimensions. The
features of different scales were captured by n × 1 convolution kernels. The padding strat-
egy was selected to keep the size of the feature map. According to previous studies [21–23],
the activation, objective, and loss functions were commonly used as rectified linear unit
(ReLU), softmax, and multiclassification cross-entropy, respectively. The stochastic gradient
descent (SGD) optimizer, with a momentum of 0.6 and decay of 1 × 10−5, was used to
improve the training process. According to the exponential scale (10−n and 2n) [29], the
learning rate and batch size were selected as 0.01 and 64, respectively. Dropout with a rate
of 0.2 was adopted to reduce the number of parameters and prevent overfitting.
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Table 1. Hyperparameters used in network layers.

1D-CNN
Model Layer

Hyperparameters

Filter Number Filter Size Stride Padding Activation

Single depth

Conv1

16

1 × 1

2 same
ReLUConv2 3 × 1

Conv3 5 × 1

Pooling — 2 × 1 —

Symmetric
multiscale

Conv1

C11
16

1 × 1

2 same

ReLU
C12 1 × 1

P13 — 2 × 1 —

Conv2

C21

16

3 × 1

ReLUC22 5 × 1

C23 1 × 1

Asymmetric
multiscale

Conv1

C11
16

1 × 1

2 same

ReLU
C12 1 × 1

P13 — 2 × 1 —

C14

16

1 × 1

ReLU
Conv2

C21 3 × 1

C22 3 × 1

C23 1 × 1

Conv3
P31 — 5 × 1 —

C32
16

5 × 1
ReLUConv4 7 × 1

2.4.4. Evaluation

The model performance was evaluated using a normalized confusion matrix based
on the test dataset [30]. Table 2 shows an illustration of normalized confusion matrix in
two-class discrimination.

Table 2. An illustration of normalized confusion matrix in two-class discrimination.

Normalized Confusion Matrix
Predicted Class

Positive Negative

Actual Class
Positive TPR FNR

Negative FPR TNR

The accuracy, true positive rate (TPR), true negative rate (TNR), false negative rate
(FNR) and false positive rate (FPR) are calculated in Equations (1)–(5).

Accuracy =
TP + TN

TP + FN + TN + FP
(1)

TPR =
TP

TP + FN
(2)

TNR =
TN

TN + FP
(3)

FNR =
FN

TP + FN
(4)

FPR =
FP

TN + FP
(5)
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where TP is true positive (samples with the actual positive label were predicted to be
positive); TN is true negative (samples with the actual negative label were predicted to be
negative); FN is false negative (samples with the actual positive label were predicted to
be negative); FP is false positive (samples with the actual negative label were predicted to
be positive).

3. Results and Discussion
3.1. Data Statistics and Division

Due to individual differences, the measurement contents of pesticide residues in
five Hami melons were abnormal, and their corresponding 20 spectra were not used. In
addition, 20 abnormal spectra were manually removed. Thus, a total of 520 spectral data
were used in this study, including 380 samples with pesticide residues and 140 samples
without pesticide residues. In order to evaluate the 1D-CNN model performance with
the level increases, we removed outliers and made spectral data as uniformly distributed
as possible. Tables 3–5 show the spectral data distribution in two-, three- and four-level
discrimination of pesticide residues, respectively. The measurement results showed that the
residual content of lambda-cyhalothrin on the Hami melon surface was higher than that of
beta-cypermethrin. The max and min residual contents of lambda-cyhalothrin were 32.36
and 0.96 µg/mL, respectively. The max and min residual contents of beta-cypermethrin
were 12.74 and 0.37 µg/mL, respectively.

Table 3. Spectral data distribution in two-level discrimination of pesticide residues.

Pesticide Residue
Level

Residue Content/(µg·mL−1) Spectral
DataRange Max Min Mean

Lambda-
Cyhalothrin

1 ≤8.50 8.38 0.96 3.79 191
2 >8.50 32.36 8.60 17.26 189

Beta-
Cypermethrin

1* ≤2.20 2.04 0.37 1.18 191
2* >2.20 12.74 2.34 6.19 189

Table 4. Spectral data distribution in three-level discrimination of pesticide residues.

Pesticide Residue
Level

Residue Content/(µg·mL−1) Spectral
DataRange Max Min Mean

Lambda-
Cyhalothrin

1 <5.00 4.96 0.96 2.32 121
2 5.00~12.50 12.50 5.02 8.24 130
3 >12.50 32.36 12.81 21.01 129

Beta-
Cypermethrin

1* < 1.56 1.55 0.37 0.84 128
2* 1.56~3.75 3.72 1.56 2.40 127
3* >3.75 12.74 3.77 7.73 125

Table 5. Spectral data distribution in four-level discrimination of pesticide residues.

Pesticide Residue
Level

Residue Content/(µg·mL−1) Spectral
DataRange Max Min Mean

Lambda-
cyhalothrin

1 <3.00 2.73 0.96 0.51 93
2 3.00~8.50 8.38 3.36 1.37 98
3 >8.50~14.60 14.57 8.60 1.87 92
4 >14.60 32.36 14.63 5.62 97

Beta-
cypermethrin

1* <1.10 1.09 0.37 0.20 97
2* 1.10~2.20 2.04 1.11 0.29 94
3* >2.20~5.00 4.91 2.34 0.77 99
4* >5.00 12.74 5.71 2.08 90
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In order to eliminate noise and baseline shift in the raw spectra, the first-order deriva-
tive computation using the Savitzky–Golay algorithm was used to preprocess the spectral
data [31]. The number of points in the filter and the order of the polynomial were five
and two, respectively. The spectral data were then divided into training and test sets in a
3:1 ratio.

3.2. Interpretation of Vis/NIR Spectra

Figure 3 shows the Vis/NIR spectral average reflectance of pesticide residues on the
Hami melon surface. The pesticide residue content shown in Figure 4 was min, three-
quantile, and max, respectively. It can be seen that the overall trends of the spectra were
almost similar. The spectral reflectance of the Hami melon without pesticide residues
was visibly higher after 760 nm. As can be observed, there were two slight absorbance
peaks around 420 and 675 nm, which were possibly related to the carotenoids and chloro-
phylls [32]. The surface colors of the Hami melon were caused by a combination of
pigments, the most visible of carotenoids and chlorophylls. The spectral reflectance showed
a rapidly increasing trend at 690–760 nm due to the “red edge” of the plant [33]. The weak
absorbance peak at approximately 835 nm was associated with the third overtone of the
C-H functional group [34]. The obvious absorbance peak around 980 nm was closely related
to the second overtone of the O-H group [35]. This was attributed to the moisture change in
the Hami melon. The pesticide residues did not change the position of the spectral feature
absorbance peaks, and it agreed with previous studies such as Ye et al. [21], Yu et al. [23],
and Sun et al. [36]. The spectral curves of different pesticide residue contents in different
mature periods overlapped partially, and the difference was not obvious. Therefore, the
pesticide residue levels on the Hami melon surface cannot be directly distinguished by
the raw Vis/NIR spectral reflectance. It is necessary to carry out further spectral analysis
through the deep learning approach.
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Figure 4. Vis/NIR spectra of different compound pesticide residue content on the Hami melon
surface. A is lambda-cyhalothrin; B is beta-cypermethrin.

3.3. 1D-CNN Model
3.3.1. Pesticide Residue Discrimination

Figure 5 shows the results of different 1D-CNN models for pesticide residue discrimi-
nation. Three 1D-CNN models could accurately discriminate the samples with pesticide
residues. However, the prediction of the single-depth 1D-CNN model was not perfect,
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3.00% of the samples without pesticide residues were miscategorized. The results indicated
that 1D-CNN models could discriminate the presence or absence of pesticide residues on
the Hami melon surface. Compared with the single-depth convolution, the multiscale
convolution had a slight advantage.
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3.3.2. Two-Level Residue Discrimination

Figures 6 and 7 show the results of different 1D-CNN models for two-level discrimina-
tion of lambda-cyhalothrin and beta-cypermethrin residues, respectively. The prediction
for the three models was similar at high accuracy. In particular, the residue concentration
of below 8.50 µg/mL labeled as 1 and 1* was predicted quite well. This was probably due
to the spectral depth feature of the two-level pesticide residues being obvious. Moreover,
the two-level residue discrimination of beta-cypermethrin was better than that of lambda-
cyhalothrin. It indicated that 1D-CNN models might be more appropriate for the detection
of beta-cypermethrin residues. For model performance, two multiscale 1D-CNN models
outperformed the single-depth model. For the asymmetric multiscale 1D-CNN model, the
accuracy for low-level (labeled as 1 and 1*) residues was 96.00% and 98.00%, respectively.
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1D-CNN.
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residues. (a) Single-depth 1D-CNN; (b) Symmetric multiscale 1D-CNN; (c) Asymmetric multiscale
1D-CNN.

3.3.3. Three-Level Residue Discrimination

Figures 8 and 9 show the results of different 1D-CNN models for three-level discrimi-
nation of lambda-cyhalothrin and beta-cypermethrin residues, respectively. It can be found
that the overall prediction accuracy was reduced. The actual medium level (labeled as
2 and 2*) was predicted into low and high levels. This phenomenon could be caused by
the similarity of the spectral features. The asymmetric multiscale convolution was able to
improve the model accuracy. Almost none of the low level was predicted as high level, and
only 3.00% of the high level was predicted as low level. However, the accuracy of lambda-
cyhalothrin residues was still below 85.00% for the discrimination of medium and high
level. The results showed that the three-level residue discrimination of beta-cypermethrin
was better than that of lambda-cyhalothrin.
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residues. (a) Single-depth 1D-CNN; (b) Symmetric multiscale 1D-CNN; (c) Asymmetric multiscale
1D-CNN.



Foods 2022, 11, 3881 13 of 17Foods 2022, 11, x FOR PEER REVIEW 13 of 17 
 

 

    

(a) (b) (c)  

Figure 9. The normalized confusion matrix for three-level discrimination of beta-cypermethrin res-

idues. (a) Single-depth 1D-CNN; (b) Symmetric multiscale 1D-CNN; (c) Asymmetric multiscale 

1D-CNN. 

3.3.4. Four-Level Residue Discrimination 

Figures 10 and 11 show the results of different 1D-CNN models for four-level dis-

crimination of lambda-cyhalothrin and beta-cypermethrin residues, respectively. For the 

discrimination of lambda-cyhalothrin residues, the misclassification was serious in Lev-

els 3 and 4, which was similar to three-level discrimination results. The overall results 

showed that the model could perfectly differentiate the low (labeled as 1 and 1*) and 

high (labeled as 4 and 4*) levels a misclassification of 0%. The discrimination of beta-

cypermethrin residues was better with an accuracy of more than 90.00%. The four-level 

discrimination of beta-cypermethrin was better than that of lambda-cyhalothrin, which 

was consistent with two- and three-level discrimination. 

    

(a) (b) (c)  

Figure 10. The normalized confusion matrix for four-level discrimination of lambda-cyhalothrin 

residues. (a) Single-depth 1D-CNN; (b) Symmetric multiscale 1D-CNN; (c) Asymmetric multiscale 

1D-CNN. 

Figure 9. The normalized confusion matrix for three-level discrimination of beta-cypermethrin
residues. (a) Single-depth 1D-CNN; (b) Symmetric multiscale 1D-CNN; (c) Asymmetric multiscale
1D-CNN.

3.3.4. Four-Level Residue Discrimination

Figures 10 and 11 show the results of different 1D-CNN models for four-level dis-
crimination of lambda-cyhalothrin and beta-cypermethrin residues, respectively. For the
discrimination of lambda-cyhalothrin residues, the misclassification was serious in Levels
3 and 4, which was similar to three-level discrimination results. The overall results showed
that the model could perfectly differentiate the low (labeled as 1 and 1*) and high (labeled
as 4 and 4*) levels a misclassification of 0%. The discrimination of beta-cypermethrin
residues was better with an accuracy of more than 90.00%. The four-level discrimination of
beta-cypermethrin was better than that of lambda-cyhalothrin, which was consistent with
two- and three-level discrimination.
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residues. (a) Single-depth 1D-CNN; (b) Symmetric multiscale 1D-CNN; (c) Asymmetric multiscale
1D-CNN.
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3.3.5. Comprehensive Evaluation

Table 6 shows the overall test results of 1D-CNN models for the discrimination of
pesticide residue levels on the Hami melon surface. For the discrimination of the presence
or absence of pesticide residues, the multiscale 1D-CNN models achieved better accuracy of
100.00%. Based on NIR spectroscopy, Xie et al. [37] proposed the SVM model with Hodrick–
Prescott decomposition, achieving an accuracy of 71.18%. Chen et al. [38] achieved a good
result that the chlorpyrifos residues could be clearly discriminated in apples and pears. In
contrast, the 1D-CNN models proposed in this study had better discrimination ability.

Table 6. Results of different models for the discrimination of pesticide residue levels on the Hami
melon surface.

Pesticide 1D-CNN Model
Discrimination Accuracy/% Average Modeling

time/sResidues Two-Level Three-Level Four-Level

Lambda-
cyhalothrin

Single depth 99.25 92.63 81.05 81.05 6.0
Symmetric multiscale 100.00 93.68 84.21 85.26 3.3

Asymmetric multiscale 100.00 93.68 86.32 87.37 4.0

Beta-
cypermethrin

Single depth 99.25 92.63 84.21 89.47 5.8
Symmetric multiscale 100.00 94.74 86.32 91.58 2.8

Asymmetric multiscale 100.00 95.79 89.47 93.68 3.5

For two-level discrimination, the accuracy of the three models was higher than 92.00%.
Jamshidi et al. [39,40] and Nazarloo et al. [16] used Vis/NIR spectroscopy combined with
partial least-squares discriminant analysis (PLS-DA) to discriminate pesticide residues
(safe and unsafe) on cucumber and tomato surfaces. The training accuracy of the PLS-DA
model was less than 100.00%, which was inferior to the multiscale 1D-CNN model, and its
test accuracy of 92.31% and 91.66% was slightly lower than that of 1D-CNN. This showed
that the model performance of 1D-CNN was better than PLS-DA without the feature
selection. For three-level discrimination of lambda-cyhalothrin and beta-cypermethrin
residues, the accuracy of the asymmetric multiscale 1D-CNN model was 86.32% and
89.47%, respectively. This result was obviously better than other models. However, it was
lower in comparison to Ren et al. [41], who used the chisquare test combined with linear
discriminant analysis, and Ye et al. [21], who used ResNet or logistic regression. However,
they did not measure the actual residue contents, and divided residue levels according
to the ratio of pesticides to water. Thus, our experimental design was more reasonable.
For four-level discrimination, the 1D-CNN model accuracy was improved. Sun et al. [36]
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proposed a method based on piecewise discrete wavelet transform and SVM, achieving
an accuracy of 90.63% for the discrimination of dimethoate residues on lettuce leaves.
Compared with their findings, the discrimination capability of multiscale 1D-CNN models
was weaker for lambda-cyhalothrin residues and stronger for beta-cypermethrin residues.
The results demonstrated that the choice of a suitable spectral feature selection method
may strongly affect the analysis performance of the conventional modeling methods. The
1D-CNN model reduced the need for human effort in feature selection.

As can be seen, the multiscale convolution provided a higher accuracy and a lower
modeling time. The 1D-CNN model architecture increased the width and depth by stacking
parallel n × 1 convolutions, which can improve the model accuracy while reducing the
computational complexity. It was consistent with the findings of Zhang et al. [42]. The
overall results showed that the asymmetric multiscale 1D-CNN model provided better
performance. This could be due to the asymmetric convolution module having a stronger
capability to capture various spectral features.

4. Conclusions

This study presented 1D-CNN models of Vis/NIR spectral analysis for rapid discrimi-
nation of compound pesticide residues on the Hami melon surface. The 1D-CNN model
could discriminate the presence or absence of pesticide residues with high accuracy. For
two-level residue discrimination, the model results were acceptable with an accuracy of
above 92.00%. However, the 1D-CNN model performance decreased obviously for multi-
level residue discrimination. It was found that the multiscale convolution could improve
the 1D-CNN model performance. In particular, the asymmetric multiscale convolution
had the highest accuracy while keeping a short modeling time. In addition, the model
showed a better capability to discriminate beta-cypermethrin than lambda-cyhalothrin.
The asymmetric multiscale 1D-CNN model could not accurately differentiate the medium
and high contents of lambda-cyhalothrin residues. In addition, the model discrimination
accuracy of four-level discrimination was higher than that of three-level discrimination.
The overall studies indicated that the model architecture is an important factor affecting
its performance. The increase in classification complexity could reduce the model accu-
racy. But this may also be related to the statistical characteristics of the data. It needs
further study.

In general, 1D-CNN algorithms were effective as a spectral analysis strategy. The
Vis/NIR spectroscopy combined with multiscale convolution appeared promising for
discriminating pesticide residue levels in fruits. In the future, we will collect more samples
to eliminate the effect of individual differences and enhance model versatility, and the
portable detection devices of pesticide residues will also be focus.
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