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Abstract: Dimethomorph (DMM) is a broad-spectrum fungicide used globally in agricultural pro-
duction, but little is known regarding the immunotoxicity of DMM in humans. In this study, the
immunotoxicity of DMM on human Jurkat T cells was evaluated in vitro. The results indicated
that the half-effective concentration (EC50) of DMM for Jurkat cells was 126.01 mg/L (0.32 mM).
To further elucidate the underlying mechanism, transcriptomics based on RNA sequencing for ex-
posure doses of EC25 (M21) and EC10 (L4) was performed. The results indicated that compared to
untreated samples (Ctr), 121 genes (81 upregulated, 40 downregulated) and 30 genes (17 upregulated,
13 downregulated) were significantly differentially regulated in the L4 and M21 samples, respectively.
A gene ontology analysis indicated that the significantly differentially expressed genes (DEGs) were
mostly enriched in the negative regulation of cell activities, and a KEGG pathway analysis indicated
that the DEGs were mainly enriched in the immune regulation and signal transduction pathways. A
quantitative real-time PCR for the selected genes showed that compared to the high-dose exposure
(M21), the effect of the low-dose DMM exposure (L4) on gene expression was more significant. The
results indicated that DMM has potential immunotoxicity for humans, and this toxicity cannot be
ignored even at low concentrations.
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1. Introduction

With the deterioration of the environment and the growth of the population, a good
public health environment and adequate food supplies have increasingly become stumbling
blocks for the development of human society [1–3]. Pesticides play an important role in
controlling insect-borne diseases and developing agricultural production [2,4,5]. The
ideal pesticide is effective against targeted diseases and insect pests without harming
the human body; however, this seems difficult to achieve [6]. Mounting evidence has
shown that pesticide residues can impact human health through environmental and food
contamination [2], even at very low levels of exposure [4]. Therefore, a comprehensive
understanding of pesticide toxicities is essential to the rational application of pesticides.

Numerous pesticide toxicity assessments have been carried out in recent years, but
most of them are focused on general toxicity (acute toxicity, subchronic or subacute toxicity,
chronic toxicity, etc.), endocrine toxicity, neurotoxicity, and “mutagenesis, carcinogenesis,
teratogenesis” effects [7–10]. However, when a chemical compound is stated to be toxic, it does
not necessarily mean that it induces the death of cells; effects may not result in cytotoxicity but
alteration of cell function, leading to a detrimental outcome [11]. Among them, the immune
system is the first line of defense against foreign hazardous chemicals within the human
body. Thus, the immune response triggered by pesticides may be closely associated with the
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predisposition to different types of disease because the immune system mutually and closely
interacts with all body organs [12,13]. Therefore, immunotoxicity evaluations of pesticide
residues are very important for a comprehensive pesticide residue risk assessment that can
guide agricultural production. Traditional immunotoxicity is usually evaluated through
animal experiments for studying the specific antigen immune response, immune function,
and so on. However, animal experiments are time consuming and require a lot of animal
materials, and the use of animals is an important ethical and political issue [14]. Therefore,
animal alternative methods (such as in vitro cell experiment) combined with bioinformatics
has the potential to provide more comprehensive knowledge on the toxicological mechanism
of chemicals in biological systems than more traditional approaches [15].

Dimethomorph (4-[3-(4-chlorophenyl)-3-(3-4-dimethox-yphenyl) acryloyl] morpho-
line, DMM), a cinnamic acid derivative, is a broad-spectrum fungicide globally used in
agricultural production to prevent gray mold, powdery and downy mildews, crown and
root rots, and late blight [16,17]. Since the use of DMM is very extensive, some reports in
recent years have shown that the content of water, soil, and agricultural products of DMM
range from ng/kg to mg/kg [18] and pose a certain risk to living organisms, including
aquatic organisms, birds, and mammals [19,20]. Therefore, numerous studies have been
performed to determine the dissipation and residue of DMM in vegetables, fruits, and
their processed products [19–22]. More importantly, many studies have demonstrated that
DMM is toxic to some soil and water microflora, birds, and mammals, even at very low
concentrations [18,20]. Although the Environmental Protection Agency (EPA) reports show
that DMM has low toxicity to humans, there has been insufficient knowledge regarding
the toxicity and toxicity mechanisms of DMM pesticides in humans, especially immuno-
toxicity. In addition, owing to the continual and prolonged exposure of dimethomorphs,
previous studies have indicated that fungal species have developed resistance and become
insensitive to lower concentrations of DMM [16]. In order to fight fungal infection, a higher
concentration of DMM is sprayed in fields, resulting in an increase in residues within agri-
cultural products, as high as 7 mg/kg, which has been detected in vegetables. Meanwhile,
a previous study also suggested that DMM is extremely resistant to hydrolysis and has
a long half-life in the ecosystem [18]. Therefore, it is necessary to study the toxicity and
mechanism of DMM in order to provide some reference for its risk assessment.

In the present study, the in vitro immunotoxicity of DMM in humans was investigated
by using the human Jurkat T cell line, an in vitro model system frequently used in immuno-
toxicity evaluation due to its well-established reliability [23]. In addition, a comparative
transcriptome analysis was applied to reveal the underlying immunotoxicity mechanism of
DMM. To our knowledge, this is the first study to focus on the immunotoxicity of DMM to
human immune cells, and the results provide a reference for the risk assessment of DMM.

2. Materials and Methods
2.1. Chemicals and Reagents

Dimethomorph (DMM, 99.9% purity) was obtained from A Chemtek Inc. (Worces-
ter, MA, USA). The human T-lymphocyte cell line (Jurkat T cells) was obtained from the
American Type Culture Collection (ATCC, Manassas, VI, USA); this cell line was derived
from the peripheral blood of human T-lymphocyte leukemia cells. Acetone (HPLC grade)
was purchased from Merck & Co. (Darmstadt, Germany). RPMI-1640 medium, peni-
cillin/streptomycin, phosphate-buffered saline (PBS), and fetal bovine serum (FBS) were all
purchased from HyClone (Logan, UT, USA). The Cell Counting Kit-8 was purchased from
Dojindo (Kumamoto, Japan). The Annexin V-FITC/PI detection kit was purchased from
Abbkine (Wuhan, China). The Mycoplasma Stain Kit was purchased from Sigma Aldrich
(St Louis, Missouri, MO, USA), the TruSeqTM RNA Sample Preparation Kit was purchased
from Illumina (San Diego, CA, USA), and the PrimeScript RT Reagent Kit was purchased
from Beyotime Biotechnology (Shanghai, China). Unless otherwise specified, the reagents
used in this study were of analytical grade.
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2.2. Jurkat Cell Culture

As DMM has low solubility in water, an 11,000 mg/L stock solution of dimethomorph
was prepared in acetone without FBS and maintained at −20 ◦C [24]. Final concentrations
of DMM in the assay were achieved by their dilution in the culture medium. The final
acetone concentration in the medium was less than 0.1% (v/v). The Jurkat cells were
inoculated in RPMI-1640 medium containing 10% (v/v) heat-inactivated FBS, 100 U/mL of
penicillin sodium, and 100 µg/mL of streptomycin solution, and incubated in a humidified
atmosphere containing 5% CO2 at 37 ◦C. The cells were kept at the logarithmic phase by
passages at 2–3 d intervals. The absence of mycoplasma was routinely checked using the
Mycoplasma Stain Kit [25].

2.3. Cell Viability Assay

Cell viability was assayed according to a previous study with some modifications [26].
Briefly, activated Jurkat T cells were diluted to 2 × 105 cells/mL using fresh medium,
pipetted into 100 µL of the cell dilutions, seeded in a 96-well multiplate, and treated for
36 h with DMM at final concentrations of 0.5, 5, 25, 50, 100, 250, and 500 mg/L. The
final acetone concentration of each well was adjusted to the same concentration and less
than 0.1%, which exerted no effect on cell viability. A blank group (without pesticide and
cells) and a control group (containing cells, equivalent solvent but without pesticide) were
included. Cell viability was determined by the Cell Counting Kit-8 (CCK-8), according
to the manufacturer’s instructions. Absorbance was measured at 450 nm in a ReadMax
500F enzyme-labeled instrument (Shanpu Biotechnology Co., Ltd., Shanghai, China). Cell
viability was calculated using Equation (1).

Cell viability =
At − Ab
Ac − Ab

(1)

where At is the absorbance of the test group, Ab is the absorbance of the blank group, and
Ac is the absorbance of the control group. Concentration–response curves were plotted,
and the half maximal effective concentration (EC50) values were then calculated using a
sigmoidal dose–response curve equation [27].

2.4. Cell Apoptosis Analysis

Cell apoptosis was assessed by using an Annexin V-FITC/PI detection kit. Activated
Jurkat T cells were diluted to 2 × 105 cells/mL using fresh medium, pipetted into 4 mL
of the cell dilutions, seeded in a 6-well multiplate, and treated for 36 h with DMM at final
concentrations of EC50, EC25, EC10, and the control group. The cells were collected and
washed to remove the medium, resuspended in binding buffer, and incubated with Annexin
V-FITC solution and PI solution at normal temperature for 15 min. Apoptotic cells were
analyzed by a MoFlo AstriosEQ flow cytometer (Beckman Coulter, Inc., Brea, CA, USA) [28].

2.5. Transcriptome Analysis
2.5.1. RNA Extraction and High-Throughput Sequencing

The Jurkat T cells were seeded in a 75 cm2 cell culture bottle with 60 mL of medium
at an initial concentration of 1.2 × 107 cells/bottle and treated for 36 h with DMM at
final concentrations of 4 mg/L (EC10) and 21 mg/L (EC25). The cells were collected for
transcriptome analysis. Total RNA was isolated using the TRIzol® reagent (Thermo Fisher,
Waltham, MA, USA), according to the manufacturer’s protocol, and genomic DNA was
removed using DNase I (TaKaRa, Dalian, China). Then, RNA quality was determined
by a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and quantified us-
ing an ND-2000 (NanoDrop, Wilmington, DE, USA). Only high-quality RNA samples
(OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5, 28S:18S ≥ 1.0, >1 µg) were used to
construct a sequencing library.

The RNA transcriptome library was prepared following the TruSeqTM RNA sample
preparation kit. Libraries were size selected for cDNA target fragments of 300 bp on 2% Low
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Range Ultra Agarose, followed by PCR amplification using Phusion DNA polymerase (NEB,
Ipswich, MA, USA) for 15 PCR cycles. After quantification by TBS380, a paired-end RNA
sequencing library was obtained by using a Nova Seq 6000 sequencer (2 × 150 bp read length).

2.5.2. Read Mapping and Differential Expression Analysis

The raw paired-end reads were clipped and quality controlled by SeqPrep https:
//github.com/jstjohn/SeqPrep (accessed on 10 January 2022) and Sickle https://github.
com/najoshi/sickle (accessed on 10 January 2022) with the default parameters. The
clean reads of each sample were sequenced and aligned with the specified reference
genome Homo_sapien, http://asia.ensembl.org/Homo_sapiens/Info/Index (accessed
on 23 January 2022). The mapped reads of each sample were assembled by StringTie
https://ccb.jhu.edu/software/stringtie/index.shtml t = example (accessed on 23 January
2022) in a reference-based approach [29].

To identify the differential expression genes (DEGs) between the two different samples,
the expression level of each transcript was calculated according to the fragments per kilobase
of exon per million mapped fragments (FPKM) method. RSEM http://deweylab.biostat.
wisc.edu/rsem/ (accessed on 20 March 2020) [30] was used to quantify gene abundances.
A differential expression analysis was performed using DESeq2 [31] with |log2FC| > 1.3,
and a Qvalue ≤ 0.05 was considered to indicate significantly differentially expressed genes.
Functional enrichment analyses, including gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses, were implemented to find significantly enriched
DEGs in GO terms and metabolic pathways at a Bonferroni-corrected Pvalue ≤0.05 compared
with the whole-transcriptome background [32].

2.6. Quantitative Real-Time PCR

Four genes that were significantly differentially expressed were selected for QRT-
PCR analysis, and GAPDH was used as the reference gene. The primers were designed
with Primer-BLAST http://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on
3 November 2020) and are presented in Supplementary Table S1. Total RNA was reverse-
transcribed using the PrimeScript RT Reagent Kit with gDNA Eraser. The reactions were
prepared on a StepOne PlusTM Real-time PCR detection system (ABI, Boston, MA, USA)
with a total volume of 10 µL: 3 µL of 1:2 diluted template, 1 µL of each primer (5 µM), and
5 µL of 2× Fast SYBR® Green Master Mix (ABI, Boston, MA, USA). Baseline, threshold
cycles (Ct), and statistical analyses were automatically determined using the StepOne
PlusTM Software version 2.3 (ABI, Boston, MA, USA).

2.7. Statistical Analysis

The cell viability assay was tested in three independent experiments with five biologi-
cal replicates; the cell apoptosis analysis was tested in three independent experiments; the
transcriptome analysis was tested in three independent experiments with three biological
replicates. Data are expressed as the mean ± SD of three independent experiments. All
statistical analyses were performed using SPSS version 18.0 software (IBM). The values
were compared with a one-way ANOVA followed by Duncan’s test. p < 0.05 was considered
statistically significant.

3. Results and Discussion
3.1. Effect of Dimethomorph on Cell Viability

The action mechanism of DMM is to destroy the cell wall membrane, causing the
decomposition of the sporangium wall and inducing pathogen death [33]. However, the
immunotoxicity of DMM on the human body and its mechanism has not received much
attention. In the process of in vitro cytotoxicity evaluation, cell proliferation is an important
marker for the evaluation of cytotoxicity [34]. The assessment of cellular activity was
based on the ability of these cells to metabolize water-soluble tetrazole-8 (WST-8) of CCK-8
and convert it to orange formazan via mitochondrial dehydrogenase. Cell viability was

https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://asia.ensembl.org/Homo_sapiens/Info/Index
https://ccb.jhu.edu/software/stringtie/index.shtml
http://deweylab.biostat.wisc.edu/rsem/
http://deweylab.biostat.wisc.edu/rsem/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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determined by the extent of WST-8 cleavage by mitochondrial dehydrogenases in DMM-
exposed cells and controls [35]. Figure 1A shows the viability of Jurkat cells after exposure
to different concentrations of DMM. Compared to the control group (with 0.1% acetone
but without DMM addition), the cell activity decreased with an increasing DMM concen-
tration, showing a concentration-dependent trend. In the EC50, EC25, and EC10 treatment
groups, the Jurkat cells calculated by nonlinear curve fitting were 126.01 mg/L (0.32 mM),
21.37 mg/L (0.06 mM), and 4.12 mg/L (0.01 mM), respectively (Figure 1B). When the
cells were exposed to the EC50, EC25, and EC10 treatment groups, the cell activities were
consistent with the expected results (97.8%, 81.8%, and 53.4%, respectively) (Figure 1C),
which could be used in subsequent apoptosis experiments.
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Figure 1. Effect of dimethomorph on Jurkat T cells viability. (A) Jurkat cells exposed for 36 h at
different DMM concentrations or controls. (B) Nonlinear curve fitting results of different effective
concentration (EC) using the results of (A). (C) Jurkat T cells exposed for 36 h to EC50, EC25, EC10

DMM, or controls. Cell viability is presented as a percentage compared to the control. The results
shown are the mean ± SD from triplicate exposures.

3.2. Effect of DMM on Cell Apoptosis

Previous studies have indicated that cell apoptosis or programmed cell death is closely
linked to cell proliferation in mammalian cells [36], and the Annexin-V/PI staining assay is
a simple and effective method to detect apoptosis at a very early stage [3]. From the results
of Figure 2A–D, there was no significant change in apoptosis between EC10 and the control
group, but with the increasing DMM concentration, the ratio of the late apoptotic cells
for the EC25 and EC50 treatments increased 1.93-, 4.37-fold higher than that of the control.
The results indicated that DMM caused the apoptosis of Jurkat T cells in a concentration-
dependent manner, which is consistent with the results predicted in the cell viability
experiment, and could be used in subsequent experiments.

3.3. RNA Extraction and Quality Evaluation

In the in vitro immunotoxicity screening test using Jurkat T cells, DMM was found
to have significant immunotoxicity. Therefore, we further systematically evaluated the
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immunotoxicity of DMM on human Jurkat T cells, and the mechanism of action was also
expounded by using comparative transcriptomics. To fully elucidate the underlying mech-
anism, a transcriptome analysis based on RNA-seq was performed. During transcriptomic
studies, selecting a proper pesticide exposure concentration is very important, because
too high a concentration could cause cell death, and too low a concentration might not be
cytotoxic [37]. As shown in Figure 3A and Table 1, when the exposure concentration was
EC50, the RNA bonds were unclear, and the RIN was below 8, which indicated that the total
RNA degraded to a degree that it was not suitable for transcriptome analysis [38]. The RNA
bonds under the EC25 treatment (named M21), the EC10 treatment (named L4), and the
control (named Ctr) were clear, and there was no contamination of other impurities. The
RIN values were higher than 9.5, which indicates good RNA quality. Moreover, according
to the procedure of the ISO 10993-5 standard, a tested material that is incubated for at least
24 h with precultured cells and has a decreased viability of under 70% of the control is
considered cytotoxic [39]. As shown in Figure 1, the cell viability under the EC10 and EC25
treatments exposure was 97.8% and 81.8%, respectively, which indicated that samples M21
and L4 could be used in the following transcriptomic analysis.

Table 1. RNA quality assessment.

Samples Concentration(ng/µL) Content (µg) OD260/280 OD260/230 RIN

H126-1 115.00 4.03 2.05 2.11 7.40
H126-2 112.00 3.92 2.03 2.01 7.80
H126-3 96.20 3.37 2.04 2.10 7.60
M21-1 1545.90 54.11 2.02 2.21 10.00
M21-2 1731.70 60.61 2.01 2.18 9.90
M21-3 1678.50 58.75 2.01 2.17 10.00
L4-1 2141.30 74.95 1.99 2.14 10.00
L4-2 2090.50 73.17 1.99 2.13 10.00
L4-3 2133.00 74.66 2.00 2.13 9.50
Ctr-1 2020.60 70.72 2.00 2.15 9.90
Ctr-2 1862.20 65.18 2.01 2.17 9.60
Ctr-3 1892.30 66.23 2.01 2.18 9.90

RIN: RNA Integrity Number.

3.4. RNA Sequencing Data Assessment

In this study, a total of 77.76 Gb of high-quality clean reads were obtained after the
unqualified reads were filtered out. The clean reads of each sample in each group reached
more than 7.63 Gb, and the sequencing error rate was less than 0.025%. The Q30 base
accounted for more than 94.18% and the GC content ranged from 49.4% to 50.36% (Table 2).
The statistics indicate that the quality of the sequencing is high enough for further analysis.
As shown in Figure 3B, the correlation coefficients between samples (Ctr group, L4 group,
and M21 group) were higher than 99%, and the phylogenetic tree analysis results demon-
strated that the Ctr group was different from the L4 group and the M21 group, but there was
a high correlation between the control group and the L4 group. These results are consistent
with expectations, so the results revealed good reliability among the samples [40].

Table 2. Statistics and quality estimation of RNA-seq reads.

Sample Raw Reads Clean Reads Clean Bases Error Rate (%) Q20 (%) Q30 (%)

Ctr_1 69321808 68648290 10248272849 0.0247 98.15 94.41
Ctr_2 56231964 55657530 8295729777 0.0249 98.07 94.21
Ctr_3 62512340 61926524 9209389908 0.0245 98.25 94.67
L4_1 65369620 64580756 9635172686 0.0244 98.26 94.71
L4_2 51616818 51120046 7630992231 0.0246 98.21 94.57
L4_3 58748206 58167602 8680297728 0.0249 98.08 94.18

M21_1 52328192 51754638 7726615557 0.0249 98.07 94.23
M21_2 56519460 56045588 8350478112 0.0241 98.4 95.03
M21_3 54012066 53454568 7983424171 0.0248 98.1 94.31
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3.5. Gene Expression Overview

As shown in Figure 4A, a total of 15,721 genes were identified through RNA sequenc-
ing, and 14,193 genes were co-expressed in the Ctr, L4, and M21 samples. A principal
component analysis (PCA) was performed to assess the transcriptomics of the different
samples. Figure 4B reveals that the Ctr, L4, and M21 samples were well divided into three
characteristic groups by PCA, which indicated that there were significant differences in the
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transcriptomics between the groups [41]. Further analysis indicated that compared to the
Ctr samples, 121 genes (81 upregulated, 40 downregulated) and 30 genes (17 upregulated,
13 downregulated) were significantly differentially regulated in the L4 and M21 samples,
respectively (Figure 4C,D, Tables S2 and S3). The results indicated that DMM can signifi-
cantly interfere with the gene expression of Jurkat T cells, even at a low dose (4.12 mg/L L4
group). This result is consistent with that of the toxicity test shown in Figure 1. Previous
studies showed that the highest dimethomorph residue was 6.8 mg/kg for leafy vegetables
and stalk and stem vegetables and 6.11 mg/kg for Dendrobium officinale [42,43]. Considering
the cytotoxicity and transcriptomic results of our study, the immunotoxicological effects of
DMM should be emphasized.
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3.6. Gene Ontology (GO) Analysis of Differentially Expressed Genes (DEGs)

A GO enrichment analysis can be used to reveal the functional characteristics of dif-
ferentially expressed genes (DEGs). GO terms are widely used to classify genes into the
categories of cellular component (CC), molecular function (MF), and biological process
(BP) [44]. As shown in Figure 5A, the GO enrichment analysis indicated that the DEGs were
mostly enriched in biological processes (involving 31 BPs, Padjust ≤0.05) (Supplementary
Table S4), and many of them were involved in the negative regulation of cell activities, such
as the negative regulation of biological processes, cellular processes, and cell development,
which indicated that DMM has negative toxic effects on Jurkat T cells. Moreover, many
genes were also involved in the immune regulation of cell biological processes, such as
lymphocyte activation and differentiation, T cell activation and differentiation, leukocyte
differentiation, and negative regulation of the T cell apoptotic process. Most of the genes
were downregulated in comparison to L4 vs. Ctr or M21 vs. Ctr (such as RAG1, HDAC9,
SOX4, and CD7). However, only 12 genes (AC138035.1, AP002990.1, BMP10, CHI3L2, DNTT,
LINC01355, MME, MSH4, PAXIP1-AS1, PTPN3, SERPINB2, and TDRD9) were upregulated,
and four genes (AL121594.1, CD40LG, EGR1, and SH3BP5) were downregulated simul-
taneously in comparison to both L4 vs. Ctr and M21 vs. Ctr (Figure 5B). Among them,
two important genes, EGR1 and CD40LG, related to immune regulation were downreg-
ulated in both comparisons to L4 vs. Ctr and M21 vs. Ctr. Human CD40LG protein is a
transmembrane protein and the ligand of CD40. It belongs to the tumor necrosis factor
gene superfamily and is involved in immune-related pathways of breast cancer. The gene
CD40LG plays critical roles in the regulation of the activation and differentiation of B cells
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and the maturation of dendritic cells [45]. The gene EGR1 (early growth response 1) is an
important transcription factor that is widely expressed in many cell types and participates
in important physiological processes of human cells [46]. A previous study indicated
that EGR1 serves as a tumor suppressor in cancers, such as prostate tumors and gastric
tumors [47]. The downregulation of these genes may indicate that DMM exposure reduces
the immune resistance of the body, even at a low concentration.
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3.7. KEGG Enrichment Analysis of DEGs

KEGG is a database for the systematic analysis of gene function and genome informa-
tion, which can be used as a whole network to study gene and expression information [48].
As shown in Figure 5C and Supplementary Table S5, the significant DEGs were mainly
enriched in 11 KEGG pathways (Pvalue ≤ 0.05), and most of them were related to im-
mune regulation and signal transduction. Among them, the hematopoietic cell lineage,
hematopoietic cell lineage, the FoxO signaling pathway, and the cytokine-cytokine receptor
interaction are closely related to the occurrence of cancer in humans. Cytokines are crucial
intercellular regulators and mobilizers of cells engaged in innate and adaptive inflamma-
tory host defenses, cell growth, differentiation, cell death, angiogenesis, and development
and repair processes aimed at the restoration of homeostasis [49]. FOXO (Forkhead Box O)
is a subgroup of Fox transcription factors that are considered to play a key role as tumor
suppressors in a variety of cancers [50]. Complement and coagulation cascades could
interact with systemic lupus erythematosus (SLE), and this interaction may lead to aggra-
vation of the disease, which is more obvious in inflamed patients [51]. In the complement
and coagulation cascades pathway, the expression of the important gene SERPINB2 was
increased in both L4 vs. Ctr and M21 vs. Ctr. A previous study showed that the protein
SerpinB2 is substantially upregulated under multiple inflammatory conditions, and dys-
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regulated expression and polymorphisms are associated with several human inflammatory
diseases [52]. The above results further indicated that DMM exposure reduces the immune
resistance of the body, even at a low concentration. DMM has certain immunotoxicity to
the human body. Even low-dose exposure can cause immune reactions and cause potential
harm to the body.
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3.8. Target Gene Screening and Quantitative Real-Time PCR Validation

To validate the results obtained from the transcriptome analysis, four important genes re-
lated to immune regulation were selected. As shown in Figure 6, there was general accordance
between the RNA sequence and the real-time qPCR data for all the tested genes (CD40LG and
EGR1 downregulated, SERPINB2 and RAG1 upregulated), although the fold changes differed
between the analytical methods. Compared to the high concentration exposure (M21), the
effect of the low concentration DMM exposure (L4) on gene expression was more significant.
Therefore, the low-dose chronic toxicity of DMM needs to be further studied.
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4. Conclusions

This study demonstrated that when exposed to DMM, human Jurkat T cells’ activity
decreased with increasing DMM concentration, and the half-effective concentration (EC50)
of DMM for Jurkat cells was 126.01 mg/L (0.32 mM). There was no significant change
in apoptosis between EC10 and the control samples, but the ratio of the late apoptotic
cells for the EC25 and EC50 treatments increased 1.93-, 4.37-fold higher than that of the
control. Transcriptomics based on RNA sequencing indicated that compared to untreated
samples (Ctr), 121 genes (81 upregulated, 40 downregulated) and 30 genes (17 upregulated,
13 downregulated) were significantly regulated when exposed to EC10 (L4) and EC25 (M21),
respectively. GO and KEGG analyses indicated that the DEGs were mostly involved in
immune regulation and signal transduction pathways. The quantitative RT-PCR for the
selected genes showed that the effect of low-dose DMM on gene expression was more
significant than that of high-dose exposure. The results suggested that DMM exposure may
cause immune system disturbance, and thus, negatively affect body health. In future, the
in vivo experiments are necessary to further verify the immunotoxicity and target genes
triggered by DMM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11233848/s1, Table S1: Primer sequences of quantitative
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analysis of the DEGs.
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