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Abstract: The molecular behavior of myosin in a low-salt environment limited the production of
surimi-based products. This study aimed to investigate the effect of the combination of high intensity
ultrasound (HIU) and NaCl (0.1, 0.3, 0.5 mol/L) on the physicochemical indexes of myosin. The
changes were evaluated by solubility, ultraviolet (UV) spectroscopy, dynamic rheological properties,
water holding capacity (WHC), microstructures, etc. For control samples, the gelation properties of
myosin strengthened upon NaCl increasing. Combination of HIU and NaCl significantly improved
the solubility of myosin, which was due to the conformational changes and the exposure of reactive
groups. Meanwhile, the particle size of myosin obviously decreased when observed by atomic force
microscope, which in turn promoted the stability of myosin. Furthermore, the improvement in
solution behaviors of myosin treated by combination of HIU and NaCl contributed to the gelation
properties as well as the formation of compact microstructures, which obtained high WHC and low
cooking loss of myosin gels. In conclusion, combination of HIU and NaCl induced the unfolding
of myosin with the exposure of reactive groups, consequently facilitating the formation of denser
microstructures. Moreover, the biggest degree of improvement in gelation properties was observed
at 0.1 mol/L NaCl combined with HIU.

Keywords: myosin; combination treatment; high intensity ultrasound; low salt; gelation property;
atomic force microscope

1. Introduction

Myosin is the major functional protein responsible for the formation of surimi gels [1].
Myosin is a salt-soluble protein, which generally requires 0.47–0.68 mol/L NaCl for suffi-
cient extraction and solubilization [2,3]. The good solubility of protein prior to heating is
critical for the desirable myosin gelation [4]. During heat-induced gelling, myosin with
fine dispersion first underwent conformational changes [5], facilitating the exposure of
reactive groups, such as sulfhydryl groups, hydrophobic groups, etc. [6], followed by
inversible protein aggregations via disulfide bonds, hydrophobic interactions and other
covalent/non-covalent chemical bonds; as a result, favorable surimi gels with well textural
properties formed [7,8].

Recently, the manufacture of salt-reduced surimi products has been encouraged to
meet the rising demand of consumers for a healthy diet, as it is acknowledged that too much
salt intake can induce health problems [9]. Nevertheless, direct reduction in salt could result
in insufficient solubilization of myosin, mainly caused by formation of insoluble myosin
filaments through electrostatic interactions in the rod and irregular and coarse myosin
aggregations would form after heating, which is not beneficial to the ultimate formation
of the desired surimi products [10]. Consequently, various strategies have been reported
to produce salt-reduced surimi products with improved textural properties, such as salt
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substitutes, exogenous additives and alternative novel processing technologies [11,12].
Currently, high intensity ultrasound (HIU), a non-thermal processing technology, has been
widely explored in the production of meat products due to its advantages of safety, easy op-
eration and environmental friendliness [13,14]. During ultrasound, the mechanical effects
(microstreaming and shear force), as well as chemical effects (free radicals), resulting from
the cavitation phenomenon occurred, which were expected to disrupt protein particles [15].
Additionally, it has been reported that HIU could promote solubility as well as oxidation of
reactive groups of myosin at relatively high-salt concentration (0.5 mol/L NaCl) [16,17]. Fur-
thermore, our previous research proved that HIU improved the textural properties of sliver
carp surimi with low-salt content (1% NaCl) [18]. It was speculated that this was closely
related to the changes in the solubility of myosin in a low-salt environment combined with
HIU. Present studies mostly focus on the effect of HIU on the physicochemical properties
of myosin solutions [3] or gel properties of porcine myosin gels with 0.3 mol/L NaCl [19].
However, the changes in molecular behavior as well as the subsequent gelation properties
of fish myosin treated by combination of HIU and NaCl (especially low salt of 0.1 mol/L
NaCl) have rarely been reported.

To this end, myosin was subjected to the combination treatment of HIU and NaCl (0.1,
0.3, 0.5 mol/L). The solubility and conformational changes in myosin were characterized
by turbidity, ultraviolet (UV) spectroscopy and sulfhydryl (SH) content. At the same time,
the stability was assessed by multiple light scattering spectra. Moreover, the molecular
behavior of myosin was observed by atomic force microscopy (AFM). Besides, dynamic
rheology was used to monitor the gelation properties of myosin. On this basis, the gel
properties and microstructures of myosin gels were further analyzed. The relationship
between physicochemical indexes of myosin solution and gel properties of myosin gels
were analyzed to elucidate the mechanism behind the improvement of gelation properties
of myosin under HIU and NaCl combined treatment. The aim was to provide a data basis
for the production of salt-reduced surimi gels.

2. Materials and Methods
2.1. Materials

Silver carp (Hypophthalmichthys molitrix), about 1.5 kg, was purchased from the local
supermarket at Huazhong Agricultural University (Wuhan, Hubei, China). Trimethyl-
amino-methane (Tris) and foline phenol were supplied by Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). All the reagents used in the present research were of analyti-
cal grade.

2.2. Extraction of Myosin

The extraction of myosin was performed according to Liu et al. [20] with some modifi-
cations. Firstly, the fresh fish meat was minced and homogenized with 10 folds of buffer
A (containing 0.1 mol/L KCl, 0.2 mg/mL NaN3 and 20 mmol/L Tris-HCl, pH 7.5) for
2 min at 6000 rpm. After maintenance at 4 ◦C for 15 min, the mixture was centrifuged
at 8000 rpm for 10 min to remove the supernatant. The remaining sedimentation was
resuspended with 5 folds of buffer B (containing 0.45 mol/L KCl, 20 mmol/L Tris-HCl,
5 mmol/L β-Me, 0.2 mol/L Mg(CH3COO)2, 1 mmol/L EGTA, pH 6.8). Besides, ATP-Na2
was added to the final concentration of 5 mmol/L. Then, the mixture was incubated at 4 ◦C
for 1 h, followed by centrifuging at 10,000 rpm for 10 min. The supernatant was retained
and diluted with 6 folds of KHCO3 solution (1 mmol/L), followed by maintenance at 4 ◦C
for 1 h and centrifuging at 12,000 rpm for 10 min. Subsequently, the sedimentation was ho-
mogenized with 2.5 folds of buffer C (containing 0.5 mol/L KCl, 5 mmol/L β-Me, pH 7.5),
followed by incubating at 4 ◦C for 15 min and diluting with 2.5 folds of KHCO3 solution
(1 mmol/L). At the same time, MgCl2 was added to the final concentration of 10 mmol/L.
The homogenate was kept at 4 ◦C overnight, followed by centrifuging at 12,000 rpm for
15 min. The sedimentation was pure myosin. The concentration of myosin was measured
by referring to Lowry’s method [21] using bovine serum protein as the standard.
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2.3. Preparation of Myosin with Different NaCl Concentrations and HIU Treatments

For the preparation of myosin solution samples (control), the protein concentration
was adjusted to 5 mg/mL using 20 mmol/L Tris-HCl buffer (containing different NaCl
concentrations, pH 7.5) and the final NaCl concentration of myosin was adjusted to 0.1, 0.3
and 0.5 mol/L, respectively.

Preparation of combination-treated (HIU and NaCl) samples was performed as de-
scribed by Liu et al. [17]. Briefly, 25 mL of myosin solution with different NaCl concentra-
tions (0.1, 0.3, 0.5 mol/L) was placed in a 50 mL centrifuge tube, followed by subjecting
to HIU treatment using an ultrasound processor (Ningbo Scientz Biotechnology Co., Ltd.,
Ningbo, China) equipped with a spherical probe (0.6 cm of diameter). During HIU, the
whole sample system was surrounded with ice to prevent protein from heat-induced denat-
uration. The HIU parameters were 44% output for 9 min at 20 kHz. The total HIU power
was 250 W and the ultrasound intensity was calculated calorimetrically according to Gao
et al. [22]. In the present study, the HIU intensity was 50 W/cm2. The samples were stored
at 4 ◦C for further use within 2 days.

P =
m × cp

S
× dT

dt
(1)

where P represented ultrasound intensity, W/cm2; m indicated the sample mass, kg; cp
indicated the special heat, J/(kg·K); S indicated the HIU area, cm2; dT/dt indicated the
slope of temperature changes upon time, K/s.

For the preparation of myosin gels, the protein concentration was adjusted to 50 mg/mL
as described above. Samples without or with combination (HIU and NaCl) treatment were
stuffed into polyvinyl chloride casings with both ends tightly sealed, followed by heating
at 40 ◦C for 1 h and 90 ◦C for 0.5 h. After heating, myosin gels were transferred to cooling
water for 15 min and then kept at 4 ◦C overnight.

2.4. Determination of Solubility and Turbidity

Determination of solubility was carried out according to Li et al. [23] with minor
modifications. Myosin suspension (10 mL) was centrifuged at 8000 rpm for 10 min. Subse-
quently, the supernatant was remained and the protein concentration was determined by
Lowry’s method [21]. The solubility was calculated as the ratio of protein content in the
supernatant to the total protein content.

For the determination of turbidity, the protein concentration was adjusted to 1.0 mg/mL
using 20 mmol/L Tris-HCl buffer with NaCl concentrations of 0.1, 0.3, nd 0.5 mol/L, re-
spectively. The turbidity was measured by a UV2600 spectrophotometer (Shimadzu Co.,
Ltd., Kyoto, Japan) and was expressed as the absorption value at 320 nm.

2.5. Determination of UV Spectroscopy

UV spectroscopy was determined using the method reported by Wei et al. [24]. The
protein concentration was adjusted to 1.0 mg/mL. Thereafter, the samples were scanned in
the range of 230 to 350 nm with intervals of 1 nm using a UV2600 spectrophotometer. The
corresponding buffer was set as the blank.

2.6. Determination of SH Content

The reactive and total SH contents were measured by referring to the Ellman method [25].
For the determination of reactive SH content, 5.5 mL of myosin suspension (1 mg/mL) was
mixed with 100 µL of Ellman’s reagent (0.2 mol/L Tris-HCl buffer, containing 10 mmol/L
DTNB, pH 8.0) and the mixture was then kept at 4 ◦C for 1 h. For the determination of total
SH content, 0.5 mL of myosin suspension (1 mg/mL) was mixed with 5 mL of 0.2 mol/L
Tris-HCl buffer (pH 8.0) containing 8 mol/L urea, 10 mmol/L EDTA and 2% SDS, followed
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by the addition of 100 µL of Ellman’s reagent. The mixture was incubated at 40 ◦C for 25 min.
The absorbance at 412 nm was measured and the SH content was calculated as follows:

C0 =
A × D

c × ε (2)

where C0 indicated the reactive or total SH content, mol/g protein; A indicated the ab-
sorbance at 412 nm; D indicated the dilute fold of samples; c indicated the protein concen-
tration, mg/mL; ε indicated the molar extinction coefficient, 13,600 L/(mol·cm).

2.7. Determination of Multiple Light Scattering Spectra

Determination of multiple light scattering spectra was carried out according to Bai
et al. [26] with some modifications. Firstly, 20 mL of myosin suspension was gently
transferred into a cylindrical glass bottle (about 44 mm in height) with lid, followed by
detecting using the Turbiscan instrument (Turbiscan Tower, Formulation, Toulouse, France).
The samples were scanned every 5 min for 6 h at 4 ◦C. The Turbiscan stability index (TSI)
was analyzed by the Tower Software (Formulation, Toulouse, France).

2.8. AFM Observation

The morphology of myosin samples was observed under the instructions reported
by Gao et al. [27]. The protein concentration of myosin was adjusted to 20 µg/mL, then
6 µL of myosin sample was deposited onto the surface of fresh mica. Subsequently, the
samples were dried on the clean bench at room temperature overnight. After that, the
samples were gently washed with 6 folds of ultrapure water 5 times to remove the extra
salt and unfixed protein, followed by drying overnight. Thereafter, the myosin without or
with combination (HIU and NaCl) treatment was observed by AFM (Multimode 8, Bruke
Co., Billerica, MA, USA) equipped with the commercial probe (Tap 150-G) under tapping
mode. The corresponding images were analyzed by NanoScope Analysis Software (Bruke
Co., Billerica, MA, USA).

2.9. Determination of Dynamic Rheological Properties

The dynamic rheological properties of myosin were measured according to Gao
et al. [18] with slight modifications. Briefly, the concentration of myosin was adjusted to
40 mg/mL, followed by determination using an AR500 dynamic rheometer (TA Co., Ltd.,
Manchester, England) equipped with a 40 mm parallel plate (1 mm gap). Samples were
sealed with paraffin to prevent evaporation and then scanned from 4 ◦C to 90 ◦C under
temperature sweep mode at a rate of 2 ◦C/min. The storage modulus (G’) and phase angle
(δ) were recorded.

2.10. Determination of Water Holding Capacity (WHC) and Cooking Loss

For the determination of cooking loss, myosin sample was heated in 10 mL of cen-
trifuge tube. Before heating, the weight of myosin and tube was recorded as W1 and W2,
respectively. After two-step heating, the water loss during heating was gently wiped by
filter paper and the weight of myosin gels together with tube was recorded as W3. The
cooking loss was calculated as follows:

Cooking loss/% =
W1+W2−W3

W2
×100 (3)

WHC was determined according to Wang et al. [28] with slight modifications. Myosin
gels were cut into slices and weighed as W4. Then, the slice was wrapped with three layers
of filter paper, followed by centrifuging at 9000 rpm for 10 min. After centrifuging, the
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filter paper was removed and the weight of samples was recorded as W5. At least four
determinations were performed. WHC was calculated as follows:

WHC/% =
W5

W4
×100 (4)

2.11. Determination of Microstructures

The observation of microstructures was performed by referring to our previous
method [29]. Myosin gels were cut into small species with the dimension of 1 × 1 × 1 mm,
which were subsequently fixed with 2.5% glutaraldehyde. Next, the species were dehy-
drated using a series of ethanol solutions with intervals of 10% and transferred to tertiary
butyl alcohol for 30 min. Thereafter, the samples were dried and coated with gold, followed
by observation using a scanning electron microscope (SEM, TM 3000, Hitachi Co., Tokyo,
Japan) with a magnification of 10,000.

2.12. Statistical Analysis

Each experiment was performed at least three times unless otherwise stated and the
results were expressed as mean ± standard deviation. Origin 9.0 was used to plot figures.
SPSS 22.0 was employed to assess the significant difference following two-way analysis
of variance (ANOVA) together with Tukey’s test. p < 0.05 level indicated that there was
significant difference among samples.

3. Results and Discussion
3.1. Changes in Solubility and Turbidity of Myosin Treated by Combination of HIU and NaCl

The solubility and turbidity of myosin without or with combination (HIU and NaCl)
treatment are shown in Figure 1. It could be observed from Figure 1A that, for myosin
treated solely by NaCl (control), the solubility was very low and only obtained 1% at
0.1 mol/L NaCl. The solubility gradually increased along with increase in the NaCl con-
centration and obtained 82% at 0.5 mol/L NaCl, which was nearly 50 fold that at 0.1 mol/L
NaCl. Generally, myosin was salt-soluble protein, which easily tended to self-assemble and
form a filamentous structure in the low-salt environment, thereby resulting in low solubility.
With the further addition of NaCl, the increased negative charge repulsion originated from
the charge shielding effect (Cl− + NH3

+) prevented myosin from polymerization, which
improved the solubility.

For myosin treated by combination of HIU and NaCl, the solubility was significantly
higher than the control (p < 0.05), irrespective of NaCl concentration. Furthermore, the
solubility was improved by 30 fold at 0.1 mol/L NaCl, however, the changes were less
dramatic at 0.3 or 0.5 mol/L NaCl (p < 0.05). It was speculated that the cavitation effect
as well as the intense mechanical force induced by HIU could destroy the filamentous
structure formed in the low-salt environment, which undoubtedly reduced the particle size
and increased the ability of particle–water interactions, thereby promoting the solubility.
Besides, the solubility of those with combination treatment was near 100% at 0.5 mol/L
NaCl. Brenner et al. [30] reported that myosin existed in the form of 8–20 myosin aggregates
rather than monomers in the most suitable salt environment (0.5–0.6 mol/L). The results
suggested that HIU disrupted the myosin aggregates and the solubility of myosin with
combination treatment was further improved in a high-salt environment (0.5 mol/L NaCl).

Turbidity is usually determined to indicate the aggregation degree of myosin molecules [31].
As shown in Figure 1B, as the NaCl concentration increased, the turbidity of myosin treated
solely by NaCl (control) significantly decreased (p < 0.05), suggesting a reduction in the
aggregation degree of myosin. As mentioned above, the myosin filaments became swollen
as a result of the increased charge repulsion with the addition of NaCl, which weakened
the aggregation of myosin molecules, and thus decreased turbidity was observed. This was
consistent with the changes in solubility (Figure 1A). For combination-treated myosin, the
turbidity was slightly but significantly lower than that of the control at 0.1 mol/L NaCl
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(p < 0.05), but sharply decreased at ≥0.3 mol/L NaCl (p < 0.05). The difference in turbidity
for combination-treated myosin might derive from the difference in the existence form
of myosin with different NaCl concentrations. According to Liu et al. [17], the decreased
turbidity might be associated with the reduced particle size. HIU was expected to disrupt
the myosin assemblies in the low-salt environment (0.1 mol/L NaCl) [22], while HIU
was able to disrupt the myosin aggregates due to shear force at ≥ 0.3 mol/L NaCl; as a
result, the particles scattered light weakly. Thus, the more obvious decrease in turbidity of
combination-treated myosin was observed at ≥0.3 mol/L NaCl.

Foods 2022, 11, x FOR PEER REVIEW 6 of 17 
 

 

at 0.1 mol/L NaCl (p < 0.05), but sharply decreased at ≥ 0.3 mol/L NaCl (p < 0.05). The 

difference in turbidity for combination-treated myosin might derive from the difference 

in the existence form of myosin with different NaCl concentrations. According to Liu et 

al. [17], the decreased turbidity might be associated with the reduced particle size. HIU 

was expected to disrupt the myosin assemblies in the low-salt environment (0.1 mol/L 

NaCl) [22], while HIU was able to disrupt the myosin aggregates due to shear force at ≥ 

0.3 mol/L NaCl; as a result, the particles scattered light weakly. Thus, the more obvious 

decrease in turbidity of combination-treated myosin was observed at ≥ 0.3 mol/L NaCl. 

  

  

Figure 1. Changes in solubility (A) and turbidity (B) of myosin treated by combination of high in-

tensity ultrasound (HIU) and NaCl. Bars indicate mean values ± standard deviations (n = 3). Differ-

ent lowercase letters (a–c) indicate significant differences between different NaCl concentrations for 

control or HIU samples. Different capitals (A, B) indicate significant differences between control 

and HIU samples with the same NaCl concentration. 

3.2. Changes in UV Spectroscopy of Myosin Treated by Combination of HIU and NaCl 

UV spectroscopy could be used to reflect the conformational changes of myosin mol-

ecules [32]. Figure 2 shows the UV spectra of myosin without or with combination (HIU 

and NaCl) treatment. For all myosin samples, there was a distinct absorption peak at 

around 280 nm, which was attributed to the presence of aromatic amino, including tryp-

tophan, tyrosine and phenylalanine [24]. As exhibited in Figure 2A, the absorption peak 

of myosin treated solely by NaCl was weak at 0.1 mol/L NaCl and the addition of NaCl 

Figure 1. Changes in solubility (A) and turbidity (B) of myosin treated by combination of high
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for control or HIU samples. Different capitals (A, B) indicate significant differences between control
and HIU samples with the same NaCl concentration.

3.2. Changes in UV Spectroscopy of Myosin Treated by Combination of HIU and NaCl

UV spectroscopy could be used to reflect the conformational changes of myosin
molecules [32]. Figure 2 shows the UV spectra of myosin without or with combination
(HIU and NaCl) treatment. For all myosin samples, there was a distinct absorption peak
at around 280 nm, which was attributed to the presence of aromatic amino, including
tryptophan, tyrosine and phenylalanine [24]. As exhibited in Figure 2A, the absorption
peak of myosin treated solely by NaCl was weak at 0.1 mol/L NaCl and the addition
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of NaCl increased the peak value, implying that the myosin became unfolded with the
exposure of more aromatic amino residues. Additionally, the UV spectra of myosin treated
by combination of HIU and NaCl were obviously higher than those of the corresponding
control samples (Figure 2B–D); particularly, a larger extent in increase of absorbance was
observed at 0.1 mol/L NaCl (Figure 2B). A possible reason was that the myosin filamentous
structure (spontaneously formed in the low-salt environment) was largely disrupted by
intense mechanical effect and thereby exposed more amino acid residues, while part of HIU
energy might cause the protein degradation [18], as myosin tended to be more dispersed
in the high-salt environment (0.3, 0.5 mol/L NaCl). Thus, a higher UV absorbance was
obtained for myosin treated by HIU and 0.1 mol/L NaCl. These results suggested that the
combination treatment further induced the exposure of aromatic amino residues originally
embedded inside the myosin due to the mechanical effects, indicating the unfolding of
myosin. Furthermore, this process was salt-dependent and was more prominent at low-salt
concentration (0.1 mol/L NaCl). The changes in UV spectra and solubility (Figure 1A)
corresponded to each other.
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3.3. Changes in Reactive and Total SH Contents of Myosin Treated by Combination of HIU and NaCl

The reactive and total SH contents of myosin with different treatments are illustrated
in Figure 3. For control sample, the reactive SH content significantly increased upon salt
increasing (p < 0.05) and obtained a maximum value at 0.5 mol/L NaCl (Figure 3A), indi-
cating that the myosin became more unfolding with part of reactive groups exposed. The
result was consistent with Zhang et al. [33] who reported that the rate of myosin solubiliza-
tion and the subsequent exposure of SH groups was enhanced at high-salt concentration.
Compared to the control, the combination of HIU and NaCl significantly improved the
reactive SH content of myosin, irrespective of NaCl concentration (p < 0.05). Notably, the
biggest improvement degree was obtained for myosin at 0.1 mol/L NaCl. The combina-
tion effect contributed to the conformational changes of myosin (Figure 2), especially at
0.1 mol/L NaCl, which probably facilitated the exposure of reactive groups.
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Figure 3. Changes in reactive (A) and total (B) sulfhydryl (SH) contents of myosin treated by
combination of HIU and NaCl. Bars indicate mean values ± standard deviations (n = 3). Different
lowercase letters (a–c) indicate significant differences between different NaCl concentrations for
control or HIU samples. Different capitals (A, B) indicate significant differences between control and
HIU samples with the same NaCl concentration.

As displayed in Figure 3B, the total SH content of untreated myosin (control) remained
constant as the NaCl concentration increased. Combined with the reactive SH results, it
could be concluded that the addition of NaCl was conductive to the structural changes of
myosin, while rarely involving the formation of disulfide bonds. In contrast to the control,
the combination treatment (HIU and NaCl) had few effects on the total SH content of
myosin at 0.1 mol/L NaCl (p > 0.05), while significantly decreasing the total SH content
of myosin at ≥0.3 mol/L NaCl (p < 0.05), demonstrating the conversion from -SH groups
to -S-S bonds occurred at high-salt concentration (0.3, 0.5 mol/L NaCl). HIU not only
generated intense mechanical effects but could also produce free radicals through the
degradation of water molecules [34]. As discussed, the myosin existed as assemblies with
lower solubility (Figure 1) in the low-salt environment, and it was thus speculated that the
HIU energy mainly disrupted the myosin assemblies, while part of HIU energy could be
saved for the oxidation of SH groups to disulfide bonds of myosin with increased solubility
at high-salt concentration (0.3, 0.5 mol/L NaCl).
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3.4. Changes in Stability of Myosin Treated by Combination of HIU and NaCl

Turbiscan multiple light scattering can be used to detect the stability of samples by
monitoring the changes in transmission light intensity during standing period [26]. The
spectral lines are undoubtedly altered if the system is unstable, resulting in three typical
unstable phenomena, namely, sedimentation, creaming and aggregation/flocculation [35].
The transmission light spectra of myosin without or with combination treatment are
displayed in Figure 4. At the top of the myosin sample treated solely by 0.1 mol/L NaCl,
the transmission light intensity increased over time, while the decreased transmission light
intensity was observed at the bottom of the same sample (Figure 4A1), indicating that
the myosin was physically unstable with particle sedimentation phenomenon occurring.
This was considered to be caused by the highly ordered filamentous structure formed
in the low-salt environment. As the NaCl concentration increased (Figure 4(B1,C1)), the
transmission light spectra of myosin were almost steady over 6 h, reflecting that the myosin
was relatively stable in the high-salt environment (0.3, 0.5 mol/L). Moreover, the more
stable phenomenon was observed for myosin treated by 0.5 mol/L NaCl, as evidenced by
the smallest range of transmission light spectra (Figure 4(C1)). The results were consistent
with the increased solubility of myosin as the NaCl concentration increased (Figure 1). In
addition, the combination treatment (HIU and NaCl) improved the stability of myosin,
irrespective of NaCl concentration, as indicated by the smaller and smoother transmission
light spectra compared to the corresponding control. It was reported by Degrand et al. [36]
that the transmission light intensity depended on the particle sizes to some extent. Based
on the above results, it was speculated that the combination of HIU and NaCl treatment
possessed the ability to convert the myosin aggregates into smaller particles under the high
shear force and turbulence derived from the instant collapse of cavitation bubbles, and
thereby the improved stability of myosin was obtained.
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TSI is an effective tool to estimate the stability of system: the smaller the TSI value,
the more stable the system [37]. As plotted in Figure 4D, the TSI value of control samples
continuously increased over time, reflecting the decreased stability of myosin. Notably, the
plot of myosin treated by 0.1 mol/L NaCl differed a little from that at 0.3 or 0.5 mol/L NaCl,
whose slope was high in the initial of 0.25 h but gradually slowed later. Unexpectedly, the
ultimate TSI value was the smallest among control samples. Combined with the changes
in transmission light spectra (Figure 4(A1)), a high slope probably suggested a high rate
of protein sedimentation in the low-salt environment. After the protein setting down at
the bottom of the bottle, it was speculated that the whole system (myosin with 0.1 mol/L
NaCl) became stable. Compared to the control, the combination treatment decreased the
TSI values, demonstrating that the stability of samples was largely improved. The well
dispersion state would prevent protein from sedimentation due to the steric hindrance [38].
It was suggested that the myosin polymers could be disrupted by the combination effect,
thus improving the dispersion and solubilization, as well as the stability.

3.5. Changes in Morphology of Myosin Treated by Combination of HIU and NaCl

Figure 5 shows the surface morphology of myosin without or with combination
treatment. The corresponding three-dimension structure of samples is also depicted
(Figure 5(a1–c2)). For samples without combination treatment, myosin distributed un-
evenly on the surface of mica and assembled into filaments in the low-salt environment
(0.1 mol/L NaCl) and some patches even appeared (Figure 5(A1)). The height of filaments
ranged from 0 to 12.1 nm (Figure 5(a1)). This explained its poor solubility discussed in
Section 3.1. It could be observed from Figure 5(B1) that the morphology of myosin treated
by 0.3 mol/L NaCl was mainly composed of short strands, which was a little different from
that of 0.1 mol/L NaCl. These strands had a smaller range of heights from 0 to 8.6 nm
(Figure 5(b1)). As the NaCl concentration further increased to 0.5 mol/L, myosin presented
in the form of oligomer rather than monosome, which overlapped on the surface of mica
(Figure 5(C1)). Furthermore, the height of the oligomer (Figure 5(c1)) was apparently
lower than those of samples treated by 0.1 or 0.3 mol/L NaCl. This result was in line with
Brenner et al. [30] who reported that pure myosin still consisted of 8–20 monosomes under
the most suitable ionic environment. In the present study, the pH of sample system was 7.5,
which was higher than the isoelectric point of protein (pI = 5.5), hence, the whole sample
system was dominated by many negative charges. Subsequently, the electrostatic repulsion
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increased while increasing the NaCl concentration, resulting in the suppression of myosin
aggregation; thus, improved morphology was observed.
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In contrast to the control, it could be observed that the uniform distribution of particles
with obviously decreased heights formed when the sample was treated by combination of
HIU and NaCl, regardless of NaCl concentration. This confirmed that the combination of
HIU and NaCl disrupted the myosin assemblies into small subunits, which might relate
to the rupture of non-covalent bonds of myosin aggregates. This corresponded to the
improved stability of myosin after combination treatment.

3.6. Changes in Dynamic Rheological Properties of Myosin Treated by Combination of HIU and NaCl

Dynamic rheology is a useful tool to evaluate the gelation properties of protein, as
it recorded the changes in viscoelastic during heating [39]. Figure 6 shows the thermal
gelation profiles of myosin with different treatments in terms of G’ and δ. For control
samples, G’ of myosin with all NaCl concentrations initially decreased as the temperature
increased from 4 ◦C to 32 ◦C. Myosin tended to aggregate via ionic bonds, hydrogen bonds,
etc., at low temperature (4 ◦C) [40], which could be easily disrupted by high temperature,
leading to the increased fluidity of samples. Thereafter, G’ of all control samples (except
for samples with 0.1 mol/L NaCl) started to increase and reached the first peak at about
40 ◦C (setting phenomenon). This might be related to the formation of preliminary network
structure cross-linked by myosin heads [20]. As a result, the samples transferred from a
viscous sol to an elastic network and the increased G’, together with decreased δ, were
observed. Nevertheless, myosin existed in a filamentous structure with low solubility in the
low-salt environment (Figure 1), which was not beneficial for protein interactions, therefore
weak setting phenomenon was observed for myosin with 0.1 mol/L NaCl. Subsequently,
G’ dramatically dropped as the temperature further increased. This might derive from the
disruption of preliminary structure caused by the heat-induced rupture of hydrogen bonds
as well as the dissociation of myosin tails [18]. Above 50 ◦C, G’ continuously increased,
which was considered to be owing to the formation of gel structure. Moreover, the biggest
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G’ value at the end of heating was obtained for myosin with 0.5 mol/L NaCl. This was
consistent with its improved dispersion (Figure 1).
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It is worth mentioning that the setting phenomenon occurred in myosin samples with
combination of HIU and 0.1 mol/L NaCl. This might relate to the improved dispersion
of myosin after combination treatment. In addition, at the end of heating, G’ of myosin
with combination treatment (HIU and NaCl) was somewhat lower than the corresponding
control. Combined with the similar δ of control and combination-treated samples (all lower
than 5◦), it was believed that the elastic gel formed for myosin after combination treatment.

3.7. Changes in Cooking Loss and WHC of Myosin Gels Treated by Combination of HIU and NaCl

The cooking loss and WHC of myosin gels without or with combination treatment are
illustrated in Figure 7. The myosin gels with 0.1 mol/L NaCl alone obtained the highest
cooking loss and the smallest WHC and the cooking loss was nearly 40%. Based on the
solubility results (Figure 1), it was considered that the high cooking loss was caused by
the smaller release of salt-soluble proteins in the low-salt environment; as a result, the
protein–water interaction was weak, leading to mass water loss during cooking. As the
NaCl concentration increased, the cooking loss decreased by 40% and 45%, respectively, for
myosin gels treated solely by 0.3 and 0.5 mol/L NaCl, and the WHC significantly increased
(p < 0.05), which was attributed to the increased interactions between more dispersed
proteins and water molecules.

Additionally, compared to the control, the combination treatment significantly de-
creased the cooking loss of myosin gels at 0.1 mol/L NaCl (p < 0.05). Likewise, the WHC
of myosin gels treated by combination treatment significantly increased compared to the
control (p < 0.05), irrespective of NaCl concentration. As mentioned above, the increased
solubility of myosin after combination of HIU and NaCl prior to heating was expected
to facilitate the exposure of more water binding sites and the subsequent water–protein
interactions during heating, thus improving the WHC.
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3.8. Changes in Microstructures of Myosin Gels Treated by Combination of HIU and NaCl

The microstructures of myosin gels obtained by different treatments are presented in
Figure 8. For myosin gels treated solely by 0.1 mol/L NaCl, the filamentous and coarser
microstructures with large pores were observed, which explained the higher cooking loss
and poor WHC (Figure 7). In the low-salt environment, myosin obtained lower solubility
(Figure 1) with subsequent insufficient unfolding during gelation, leading to the disordered
aggregation and irregular gel network. As NaCl concentration increased, smooth mi-
crostructures with small cavities and continuous gel matrix were obtained (Figure 8(B1,C1)).
This was attribute to the increased solubility of myosin at higher NaCl concentrations (0.3,
0.5 mol/L NaCl), which facilitated the formation of more chemical bonds [18], thus forming
the dense microstructures. In addition, the microstructures of myosin gels treated by com-
bination of HIU and 0.1 mol/L NaCl became more homogenous compared to that of the
control, although some filamentous aggregations remained. During HIU, part of myosin
dissociated from the myosin assemblies formed in the low-salt environment (0.1 mol/L
NaCl) under the cavitation effect and the protein interactions as well as chemical bonds
were thus strengthened during heat-induced gelation, forming the denser gel network.
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Similarly, the microstructures became denser and more compact for myosin gels treated by
combination treatment at 0.3 or 0.5 mol/L NaCl compared to those of the control. Notably,
the biggest degree of improvement in the microstructures was observed for myosin gels
with 0.1 mol/L NaCl after the combination treatment.
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3.9. Discussion

In the present study, the changes in gelation properties of myosin treated by HIU
combined with different NaCl concentrations were elucidated. For control sample (myosin
solely treated by NaCl), as the NaCl concentration increased, myosin gradually dissociated
and solubilized and exposed some reactive groups (i.e., amino acid residues, SH groups).
During heating, dispersed myosin tended to be unfolded with further exposure of more re-
active groups [41], which strengthened the subsequent protein interactions [8], contributing
to the formation of compact microstructures [18]. The gelation properties of myosin were
thus improved. In addition, compared to the control, combination of HIU and NaCl further
improved the gelation properties of myosin, irrespective of the NaCl concentration. This
was expected to be due to the cavitation effect originated from HIU, which could improve
the solubility of myosin by disrupting myosin aggregates prior to heating and would in
turn promote the heat-induced gelation properties. However, there was a little difference
in the mechanism behind the improvement in gelation properties for myosin with solely
increased-NaCl treatment and with combination treatment (the present results). It was
speculated that the reason for the former (myosin with solely increased-NaCl treatment)
was due to the dissociation of myosin molecules from filaments, while the reason for the
latter was considered to be the disruption of myosin assemblies or aggregates prior to
heating. Moreover, the biggest degree of improvement in gelation properties was observed
for myosin treated by HIU and 0.1 mol/L NaCl, which further confirmed the above specu-
lation, since the myosin assembled into filamentous structure in the low-salt environment
(0.1 mol/L NaCl) and could be largely disrupted by HIU [42]. The present study might
provide the theoretical basis for the production of low-salt surimi-based products.

4. Conclusions

For myosin treated solely by NaCl, the gelation properties were improved as the
NaCl concentration gradually increased. Compared to the control, the combination of
HIU and 0.1 mol/L NaCl promoted the unfolding of myosin with the exposure of more
reactive groups, such as aromatic amino acid residues and SH groups, characterized by
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UV spectra and SH content determination. Meanwhile, the morphology observed by
AFM showed that the particle size of myosin obviously decreased, which contributed to
the improved solubility and stability, as supported by multiple light scattering detection.
The improvements of above physicochemical indexes further contributed to the gelation
properties as well as the formation of compact microstructures with smaller pores, which
was beneficial for trapping more water during heat-induced gelling, thus obtaining the
myosin gels with higher WHC and lower cooking loss compared to the control. In addition,
the combination of HIU and NaCl also improved the gelation properties of myosin with 0.3
or 0.5 mol/L NaCl. In summary, the physicochemical and gelation properties of myosin
were improved by the combination of HIU and NaCl and the largest extent of improvement
was observed at low-salt environment (0.1 mol/L NaCl). This was expected to provide the
data basis to guide the production of salt-reduced surimi products.
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