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Abstract: Considering the hazards of high salt intake and the current status of research on low-sodium
meat products, this study was to analyze the effect of ultrasound combined with glycerol-mediated
low-sodium salt curing on the quality of pork tenderloin by analyzing the salt content, water activity
(aw), cooking loss, and texture. The results of scanning electron microscope (SEM) analysis, Raman
spectroscopy, ultraviolet fluorescence, and surface hydrophobicity were proposed to reveal the
mechanism of the effect of combined ultrasound and glycerol-mediated low sodium salt curing
on the quality characteristics of pork tenderloin. The results showed that the co-mediated curing
could reduce salt content, aw, and cooking loss (p < 0.05), improve texture and enhance product
quality. Compared with the control group, the co-mediated curing increased the solubility of the
myofibrillar protein, improved the surface hydrophobicity of the protein, increased the content of
reactive sulfhydryl groups (p < 0.05), and changed the protein structure. The SEM results showed
that the products treated using a co-mediated curing process had a more detailed and uniform
pore distribution. These findings provide new insights into the quality of ultrasonic-treated and
glycerol-mediated low-salt cured meat products.

Keywords: ultrasound; glycerol; low-sodium; water activity; mediated curing

1. Introduction

Salt is an indispensable seasoning and food preservative in the curing process of
meat products, which can improve their texture and sensory properties and give them
characteristic flavor [1]. Additionally, it reduces the moisture content of products, lowers
aw [2], inhibits microbial growth [3], and plays an important role in food storage [4].
Currently, the salt content of salt-cured products is generally high, and millions worldwide
die each year from diseases such as hypertension, coronary heart disease, and stroke caused
by excessive sodium intake [5]. Numerous studies have shown that reducing sodium intake
can reduce the risk of related cardiovascular diseases [6,7]. The World Health Organization
has recommended a reduction in sodium intake to less than 2 g/day (5 g/day of salt) for
adults by 2025. Hence, a frenzy of studies on low-salt meat products has ensued in recent
years. However, low-salt curing reduces the overall quality of meat products, increases
their water activity (aw), and enhances microbial and enzymatic activities [8], and the
decrease in salt has a substantial effect on protein solubility in meat products [9].

Mediated curing (MC) refers to the systematic construction of low-sodium curing of
meat products using exogenous food additives as a medium or using physical methods
by affecting the behavior of salt permeation diffusion pathways and water migration in
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the matrix [10]. Food-grade glycerin is a colorless, sweet-tasting, and viscous additive
that reduces aw and extends the shelf life of food when used with other food additives,
such as sorbitol and phosphate complexes [11]. The addition of glycerol significantly
increases the antibacterial effect caused by the reduction in aw and has great value in food
preservation [12]. The proper amount of glycerol addition not only improves the lipid
structure of meat but also enhances its quality characteristics [13]. Liu et al. [14] found
that glycerol has a bidirectional regulatory effect on the ability to remove water from the
meat and inhibits the diffusion of sodium chloride (NaCl) into the meat during the dry
curing process.

Ultrasound is an innovative green processing technology widely used in the food
industry processes, including emulsification, extraction, and physicochemical modification.
The principle of action of ultrasound is mainly attributed to the cavitation effect [15].
Ultrasound propagates through the liquid by a series of compressions and expansions
generated by the probe, leading to the formation of cavitation bubbles. These bubbles
grow to a critical size and then collapse violently. These effects further generate strong
shear, turbulence, and cavitation forces, which change the physicochemical and functional
properties of the protein dispersion [16]. Compared with traditional techniques, it has
the advantages of being highly efficient, instantaneous, safe, environment-friendly, and
having low economic cost. Studies have shown that ultrasound treatment (UT) accelerates
the diffusion process, shortens the curing time, positively affects mass transfer during
the curing process [17,18], reduces the salt content, and improves the quality of low-salt
cured meat products [19]. Moreover, UT can improve protein properties by reducing
particle size and promoting the de-folding of secondary structures, thus improving product
characteristics [20]. Furthermore, these changes may alter the exposure of internal groups,
such as hydrophobic amino acids and sulfhydryl groups, and further lead to changes in the
binding sites on the protein surface, such as hydrophobic binding and hydrogen bonding
sites [21].

However, ultrasound and glycerol improve the quality of low-sodium meat products to
a limited extent, and there are few studies on UT combined with glycerol-mediated curing.
This study aimed to reveal the effect of ultrasound combined with glycerol-mediated
low-sodium curing (co-mediated curing) on the quality characteristics of pork tenderloin.
Additionally, this work investigated the effect of co-mediated curing on the structural and
functional properties of myofibrillar proteins (MPs) to explore the mechanism of action.

2. Materials and Methods
2.1. Materials

Pork longissimus dorsi muscle (Guizhou local pig breed, China) was provided at 24 h
postmortem by Huimin Fresh Supermarket in Huaxi District (Agricultural Investment
Huimin Fresh Management Co., Ltd., Guizhou, China). Food-grade NaCl was purchased
from the local market (Chongqing Hechuan Salt Chemical Co., Ltd., Chongqing, China).
Food-grade glycerol was purchased from distributors (Tyco Palm Chemical Co., Ltd.,
Zhangjiagang, China). Other chemicals used were of analytical grade, such as 5,5′-Dithiobis
(2-nitrobenzoic acid) (DTNB) and 8-anilino-1-naphthalenesul-fonic acid (ANS) were ob-
tained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Treatment of Pork Loin and Preparation of MP Extracts

After removing the fascia and connective tissue from the surface of the pork loin, it was
cut into 50× 40× 10 mm3 pieces (50± 1 g), followed by the addition of 3% salt and different
concentrations of glycerol (0, 1%, and 4%) (denoted as C, G1, and G4, respectively), and then
vacuum-packed. These samples were placed in a beaker containing an appropriate amount
of ultrapure water and treated using ultrasound (Ultrasonic Homogenizer SCIENTZ-IID,
Ningbo Xinzhi Biotechnology Co., Ltd., Zhejiang, China) (denoted as U, UG1, and UG4,
respectively). The ultrasound probe (Φ = 6) was immersed in the water, 2 cm from the meat
surface. The meat was treated at a fixed ultrasound frequency of 25 kHz and 320 W power



Foods 2022, 11, 3798 3 of 14

for 30 min (10 s of ultrasound with 5 s intervals) at a strictly controlled temperature of less
than 10 ◦C. After sonication, all samples were marinated at 4 ◦C for 24 h.

Myofibrillar protein extraction was performed by referring to the method reported by
Jiang et al. [22]. The fat and connective tissues were removed, and approximately 50 g of
meat was homogenized in 4 volumes (w/v) of protein extraction buffer (0.1 mol/L NaCl,
2 mmol/L MgCl2, 10 mmol/L sodium phosphates, and 1 mM EGTA, pH 7.0) for 1 min. The
homogenate was centrifuged at 2000× g for 15 min. The supernatant was discarded, and
the procedure was repeated twice. Next, the precipitated samples were washed thrice with
4 volumes (w/v) of protein washing buffer (0.1 mol/L NaCl) under the same conditions.
Finally, the suspension was filtered through four layers of gauze, adjusted to pH 6 with
0.1 mol/L HCl, and then centrifuged. The extracted MP was dissolved in 15 mmol/L
piperazine-N, N′-bis (2-hydroxypropanesulfonic acid) buffer (pH 6.25) for subsequent use,
and the MP concentration was determined using the bicinchoninic acid method.

2.3. Measurement of Quality Traits

The salt content was measured by weighing 1 g of meat sample diluted 10 times
with deionized water, homogenized, and measured using a digital salinity meter (ES-421,
ATAGO, Tokyo, Japan) [23].

The aw was measured using a previously described method with some modifica-
tions [24]. Five milligrams of meat samples were weighed and measured using an aw
measuring instrument (Huake HD-4B, Wuxi, China).

To measure the cooking loss, tenderloin samples (5 g) were immersed in an 80 ◦C
water bath for 20 min and then quickly placed in flowing water, cooled to about 24 ◦C,
surface water drained off, and weighed. The weight of the sample before cooking (M1)
and after cooking (M2) was recorded, and the following formula was used to calculate the
percentage of cooking loss value [25]:

Cooking loss (%) =
M1 −M2

M1
× 100

The samples were cut into cubes (10 × 10 × 10 mm3) and then subjected to texture
profile analysis (TPA) using a TOUCH texture analyzer (Bao Sheng Technology Co., Ltd.,
Shanghai, China). The probe used was TA/36 (36 mm diameter column probe), and the
test conditions used were: test speed: 1 mm/s, interval time: 2 s, target mode, and value:
deformation 50%, and contact point type and value: load 5 gf [26].

2.4. Low-Field Nuclear Magnetic Resonance (LF-NMR)

To analyze the degree of binding and distribution of water molecules in pork loin
under different curing conditions, the transverse relaxation time (T2) of the samples was
determined using an LF-NMR analyzer (NMI20-040 VI, Niumag Analytical Instrument
Corporation, Suzhou, China). The samples (1 g) were placed in a vial and then in an NMR
tube for analysis [27]. The Carr-Purcell-Meiboom-Gill pulse sequence parameters for T2
measurements were set to SF = 22 MHz, ns = 8, TW = 3000 m, and NECH = 2000.

2.5. Solubility

The solubility of the samples was determined using the method described by Zhao et al. [28]
with slight modifications. The above protein solution was diluted to 5 mg/mL (pH 6.25),
centrifuged at 10,000× g, 4 ◦C for 30 min, and the protein concentration of the supernatant
was determined using the method mentioned in Section 2.1. Solubility is defined as the
percentage of protein concentration in the supernatant before centrifugation relative to the
protein concentration in the protein solution. The assay was repeated five times.

Protein solubility (%) =
Protein content insupernatant solution

Total protein content in protein suspension
× 100
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2.6. Reactive Sulfhydryl Groups (R-SH)

The reactive sulfhydryl groups in the samples were determined according to the
method described by Kang et al. [29] with modifications. The protein solution was diluted
with phosphate buffer (0.6 M NaCl, pH 6.5) to contain 1 mg/mL protein. Next, 4 mL
of diluted protein solution was added to 50 µL of DTNB solution, mixed well, and then
reacted thoroughly for 20 min under the light. The absorbance (A412) was measured at
a wavelength of 412 nm using an enzyme marker (SpectraMax 190, Molecular Devices,
Sunnyvale, CA, USA). The assay was repeated three times. The sulfhydryl content was
calculated using the following equation:

R–SH content (µmol/100 mg) =
A412 × 105 ×D

13, 600×C0

where A412: absorption; D: dilution multiple; C0: protein concentration.

2.7. Surface Hydrophobicity (S0-ANS)

The surface hydrophobicity of samples was determined according to the method of
Zhang et al. [30] with some modifications. The protein solution was diluted with phosphate
buffer (0.6 M NaCl, pH 6.5) to contain 1 mg/mL of protein, and 2 mL of protein dilution
was added to 10 µL of 15 mM ANS solution, mixed thoroughly for 5 min, and left at room
temperature (20 ◦C) for 20 min. The fluorescence intensity (a.u.) was measured at the
excitation and emission wavelength of 380 and 470 nm, respectively, using an ELISA. The
assay was repeated three times.

2.8. Raman Spectra Measurements

A Raman spectrometer/microscope (Lab RAM HR EVO, Horiba Jobin Yvon S.A., Paris,
France) with a 532 nm laser source was used to collect the Raman spectra. The laser was
focused on the sample with a 50 mm long focal length lens before acquiring Raman signals
in the 400–2000 cm−1 range. The measurement parameters were 2 cm−1 resolution, 60 s
exposure time, and five scans for each sample. To remove the fluorescent background,
the spectra were smoothed using Labspec6 analysis software and multi-point baseline
correction. The spectra were normalized to the vibrational intensity of the phenylalanine
ring at a wave number of 1003 cm−1 [31].

2.9. UV Second Derivative Absorption Spectra

A UV spectrophotometer was used to measure the UV absorption spectra of MP
under various treatments in the range of 200–400 nm [32]. The scan accuracy of the UV
absorption spectrometer was set to 10, the sampling interval to 1 nm, and the corresponding
buffer was used as a blank. The second derivative absorption spectrum was obtained
using the OriginPro 2021 program. The letter ‘r’ represents the peak-to-valley ratio of the
two main peaks.

2.10. Scanning Electron Microscope (SEM)

The microscopic structures of MP samples were determined according to the method
described by Wu et al. [33] with slight modifications. The samples were cut into blocks of
2 × 5 × 5 mm3 perpendicular to the direction of the myofibers, fixed with 2.5% glutaralde-
hyde for 48 h at room temperature, washed with 0.1 M phosphate buffer (pH 7.0), and then
eluted twice with gradients of 25%, 50%, 75%, and anhydrous ethanol, respectively, each
time for 1 h. Next, they were lyophilized for 48 h, plated with gold, and then observed and
photographed using an SEM (COXEM EM-30, Seoul, Korea) at an accelerating voltage of
20 kV and a magnification of 300X.
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2.11. Statistical Analysis

Each experiment was performed in triplicate. Data analysis and visualization of
correlations were performed using Origin and Statistical Products and Services Solutions
(SPSS) statistical software (version 20.0), and the results were presented as mean± standard
deviation (SD). One-way analysis of variance (ANOVA) and Duncan’s test (p < 0.05) were
performed to determine differences between samples.

3. Results and Discussion
3.1. Quality Indicators
3.1.1. aw

As summarized in Table 1, the differences in aw between the groups G4, U, UG1,
and UG4 were significant (p < 0.05) compared to group C. As the addition of glycerol
increased, a more significant decrease in aw was observed. The lowest aw was observed in
the UG4 group. This observation was consistent with the study results of Liu et al. [24],
reporting that glycerol-mediated curing decreased the aw of ground pork, probably because
glycerol contains three hydroxyl groups that could bind to proteins and fats to increase the
polarity of certain groups and convert some free water into bound water, thus decreasing
aw. The decrease in aw by UT can be attributed to the mechanical effect of microbubble
rupture, which increases NaCl transfer and decreases aw [34]. Thus, co-mediated curing
was most effective in reducing aw, showing the synergistic effect of both methods during
the curing process.

Table 1. Aw, salt content, cooking loss, and TPA under different treatment conditions.

Samples aw Salt Content Cooking Loss (%)
TPA

Hardness (gf) Chewiness (gf) Springiness

C 0.967 ± 0.007 a 0.277 ± 0.006 b 19.233 ± 1.150 a 8406.980 ± 397.972 a 3421.360 ± 145.948 a 0.902 ± 0.478 a

G1 0.962 ± 0.002 ab 0.267 ± 0.006 bc 18.410 ± 0.577 a 7129.688 ± 235.097 bc 2784.278 ± 278.093 ab 0.893 ± 0.465 a

G4 0.954 ± 0.003 bc 0.263 ± 0.006 c 16.307 ± 0.670 b 6751.389 ± 125.456 cd 2318.975 ± 309.291 bc 0.584 ± 0.496 b

U 0.952 ± 0.004 cd 0.327 ± 0.006 a 16.973 ± 0.468 b 7555.964 ± 458.378 a 2885.084 ± 321.206 ab 0.682 ± 0.163 ab

UG1 0.946 ± 0.002 d 0.263 ± 0.006 c 16.746 ± 0.783 b 6176.572 ± 370.174 de 2284.247 ± 512.911 bc 0.760 ± 0.196 ab

UG4 0.944 ± 0.002 d 0.243 ± 0.006 d 14.637 ± 0.389 c 5575.223 ± 415.194 e 1736.976 ± 445.675 c 0.547 ± 0.056 b

a–e means the significant differences (p < 0.05) in the same column under different treatment conditions. C: 3%
NaCl; G1: 3% NaCl and 1% glycerol; G4: 3% NaCl and 4% glycerol; U: 3% NaCl with UT; UG1: 3% NaCl and 1%
glycerol with UT. UG4: 3% NaCl and 4% glycerol with UT.

3.1.2. Salt Content

During the meat curing process, the substances are continuously exchanged, and the
salt and water contents constantly change due to osmotic pressure. As summarized in
Table 1, the salt content of the U group was significantly higher than those of the other
groups. Ultrasound treatment could promote salt diffusion and shorten the curing time,
which could be attributed to the cavitation effect-induced ultrasonic waves, causing the
microchannels and micro vibrations at the object interface to improve the diffusion mecha-
nism and promote salt transportation [35]. The salt content decreased with the increase in
the added glycerol amount and significantly differed (p < 0.05) from the control group when
the amount of glycerol added was 4%. Notably, the salt content was significantly reduced
in the ultrasound combined with different glycerol concentration-mediated curing groups.
This could be attributed to the increasing glycerol viscosity, leading to osmotic resistance of
salt in the meat and hindering salt diffusion [36]. The hydroxyl group of glycerol combines
with the hydroxyl group in water through hydrogen bonds, transforming free water into
bound water and thus inhibiting salt diffusion. In addition, the glycerol molecules can
cause ultrasound-induced microchannel congestion during the curing process, resulting in
slow salt diffusion.
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3.1.3. Cooking Loss

Regarding the effect of mediated curing on the cooking loss of pork tenderloin, the G1
group did not show statistically significant differences compared to the C group. However,
the cooking loss in the G4 group was significantly reduced than in the control group.
Glycerol, as a polyol, poses a good water retention capacity. Its three hydroxyl groups
combine with water molecules to form hydrogen bonds, thus absorbing large amounts of
water and trapping them in a three-dimensional network, which significantly improves the
water-holding capacity of the product [14]. The ultrasound-mediated curing reduced the
cooking loss of the product probably because UT disrupted the muscle structure of the meat,
promoted the dissolution of salt-soluble proteins on the meat surface, prevented water
runoff, and improved water retention, which was consistent with the findings of Kang
et al. [37]. In the present study, the samples that underwent co-mediated curing had lower
cooking losses than the other groups. This result can be attributed to the presence of NaCl,
showing denser swelling spaces between the muscle fibers and the microchannels created
by the UT, inducing a uniform distribution of glycerol in the sample. With the penetration
of glycerol, the charged particles bound to the myofibrils induce electrostatic shielding
and increase electrostatic repulsion between myofibril filaments, leading to swelling of
myofibrils and retention of more water, thereby improving the water-holding capacity of
the product.

3.1.4. Analysis of Texture Parameters

As summarized in Table 1, among the six treatment groups, there were no significant
differences in the hardness values, chewiness, and elasticity between the U and C groups
(p > 0.05), while the elasticity, chewiness, and hardness of the meat showed a significant
reduction in the G1, G4, UG1, and UG4 groups, with the lowest value being found in
the UG4 group. Sorapukdee et al. [38] found that glycerol curing led to the disruption of
cellular structure and altered the MP structure integrity, thereby improving the tenderness
of pork tenderloin. Another study by Yeung et al. [39] showed that the treatment of the
meat with appropriate ultrasonic intensity reduced its hardness values. This could be
attributed to the formation of local hot spots during bubble collapse, cavitation-induced
shear, and shock waves [40]. Furthermore, the hardness values observed in this study
were lower in the UG groups than in the other groups, confirming the synergistic effect
of ultrasound-assisted penetration of glycerol solution on the meat mass. Overall, the
co-mediated curing reduced the hardness value and promoted meat tenderization.

3.2. LF-NMR

LF-NMR was used to determine the distribution and binding of water in the samples.
As depicted in Figure 1a, three peaks were observed in the T2 spectrum. T2b (1–10 ms)
indicates that the water is tightly bound to the macromolecules or protons located on
macromolecular structures plasticized by water; T21 (10–100 ms) is mainly the water
located within the dense myofibrillar protein matrix; T22 (100–1000 ms) is the free water
present outside the myofibrils [41].

The ratios of bound water, immobilized water, and free water are depicted in Figure 1b.
The addition of glycerol and UT showed different degrees of reduction in T21 and T22,
indicating that glycerol or ultrasound-mediated curing reduced the free water content
and increased the bound water, which could affect the water-binding ability of molecules
within the system. Co-mediated curing significantly decreased T21 and T22, probably due
to the structural changes in the myofibrils caused by the action of ultrasound, and the
further action of glycerol impeded salt diffusion, resulting in the weakening of electrostatic
repulsion within the myofibrils, transformation of immobilized water to bound water, and
a decrease in free water content [42]. This conclusion also explains the changes observed in
aw, as mentioned in Section 3.1.1 (Table 1).
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3.3. Solubility

As the most abundant protein in muscle, the solubility of MP can directly reflect the
functional properties of the protein. The effect of different treatments on the solubility of
MPs in porcine loin is depicted in Figure 2a. The groups containing glycerol and treated
with ultrasound exhibited higher solubility than the control group, with the greatest solu-
bility observed in the co-mediated group. The solubility of MPs increased with increasing
glycerol concentration, mainly because glycerol could localize the protein molecules to
the protein surface, forming an additional hydrophilic layer that acted as an amphiphilic
interface between the hydrophobic surface and the polar solvent to improve protein sta-
bility and increase protein hydration. Preferential interactions between the molecules on
the protein surface, in the solvent, and the solution surrounding the protein can alter the
protein’s structural stability [43]. Ultrasound treatment can increase protein solubility
by its cavitation effect, exposing the internal hydrophilic groups of proteins and causing
conformational changes and the formation of soluble protein aggregates. Previous studies
have reported that disrupting hydrophobic interactions due to UT-induced turbulence and
shear can promote the intermolecular association between the protein molecules, thereby in-
creasing the solubility [44]. Thus, co-mediated curing enhances protein solubility, probably
due to the improved unfolding of protein molecules in the presence of ultrasound, which
promotes the exposure of internal groups and facilitates the interaction of polyhydroxy
groups in glycerol with proteins, leading to increased solubility.

3.4. R-SH Content

The R-SH can form disulfide bonds by oxidizing two cysteine residues on the adjacent
protein chains and are often regarded as essential indicators for assessing the degree
of protein denaturation and refolding and a key factor in maintaining the tertiary and
quaternary structure of proteins [45].

Figure 2b depicts the changes in the R-SH content after different curing methods.
Moreover, the R-SH content of the G4, U, UG1, and UG4 groups significantly increased
than the control group (p < 0.05). The increase in the R-SH content caused by the addition of
glycerol could be attributed to the non-uniform distribution of glycerol on the surface of the
protein molecules, with several hydroxyl groups preferentially interacting with the protein,
leading to the exposure of the sulfhydryl groups. The R-SH content significantly increased
after UT (p < 0.05), and the results suggested that UT caused MPs to unfold, exposing
the bound sulfhydryl groups to the molecular surface. Jiang et al. [22] found that the free
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sulfhydryl group and the total sulfhydryl group contents in the ultrasound-treated samples
were significantly higher than those in the control samples due to subunit dissociation,
disulfide bond breakage, and exposure of internal sulfur hydroxyl groups caused by protein
unfolding. The significant increase in the R-SH content in the co-mediated curing groups
could be attributed to the interaction between the polyhydroxy groups in glycerol and
protein molecules facilitated by their conformational change and subsequent disulfide
bond breakage during the UT process.
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3.5. S0-ANS

S0-ANS is an important structure-related factor affecting protein function, such as
the surface properties of proteins associated with the exposure of hydrophobic amino
acid residues on protein molecules’ surface [46]. As depicted in Figure 2c, no significant
difference was observed between the C and G1 groups (p > 0.05), and the S0-ANS was
significantly higher in the G4 group than in the C group (p < 0.05). These results suggested
that the addition of 4% glycerol caused the exposure of hydrophobic amino acid residues,
and these hydrophobic groups were aggregated together with hydrophobic interaction,
leading to an increase in surface hydrophobicity. The S0-ANS of the U group also showed
significant differences from the C group (p < 0.05). The results indicate that UT disrupts the
hydrogen bonds between the protein molecules and electrostatic interactions and hydration,
rearranges large primary protein aggregates, relocates some bound hydrophobic groups
to the surface, and finally forms a new surface, following which the hydrophobic core
migrates outward from the protein interior, enhancing the binding of MPs to ANS [47]. The
combination of ultrasound and glycerol-mediated curing significantly increased S0-ANS,
which could be attributed to the exposure of ultrasound-induced hydrophobic regions,
which could compensate for the embedded glycerol molecules, increase the reaction ability
of protein and glycerol, and lead to more significant changes in surface hydrophobicity.

These results correspond to the increased sulfhydryl groups, confirming that the
physical modification induced by mediated curing using ultrasound and glycerol could
lead to conformational changes in MPs.

3.6. Secondary Structure

Raman spectroscopy can provide information on the conformation of the protein-
peptide backbone, amino acid side chains, and the microenvironment around the peptide
chain. It can be used to analyze the protein’s secondary structure changes and explore the
relationship between protein conformation and quality changes [48].
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Figure 3 depicts the Raman bands (Figure 3a) and the relative content of the secondary
structures (Figure 3b) of the groups that have undergone different curing methods after
baseline calibration and normalization. The results showed that the addition of glycerol
and the ultrasound-mediated curing methods led to the transition of α-helix to β-sheet in
different degrees, respectively. This might be due to the unfolding of the protein molecules,
where the protein structure changes from an ordered to a disordered state due to the
disruption of the protein molecules, partial weakening of hydrogen bonds, and formation
of β-turn and random coil [15]. Co-mediated curing further promoted the structural
changes in MPs, probably because UT exposed more protein surface area, changing the
spatial entanglement of protein molecules, structure, and proteolysis, thus improving
the ability of these proteins to bind glycerol, enhancing ionic and hydrogen interactions
between the protein molecules, and preventing protein denaturation [49]. Generally, the
secondary structure of MPs is closely related to the changes in surface hydrophobicity [50].
The exposure of the hydrophobic groups leads to a decrease in intramolecular hydrogen
bonding and an increase in surface hydrophobicity.
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Figure 3. Raman spectra (a) and the corresponding secondary structure under different treatment
conditions (b). C: 3% NaCl; G1: 3% NaCl and 1% glycerol; G4: 3% NaCl and 4% glycerol; U: 3% NaCl
with UT; UG1: 3% NaCl and 1% glycerol with UT. UG4: 3% NaCl and 4% glycerol with UT.

3.7. UV Second Derivative Absorption Spectra

The second derivative of the UV spectrum between 280 and 300 nm was used to
illustrate the subtle differences in the amino acid microenvironment. As depicted in
Figure 4, the peak at 296 nm was caused by the tryptophan residues, while a combination of
tryptophan and tyrosine resides caused that at 287 nm. The distance between the first peak
and the first valley is considered ‘a’ while the distance from the second peak to the second
valley is considered ‘b’. The ‘r’-value (r = a/b) indicates the ratio of peak to trough position.
The higher the ‘r’-value, the greater the surface exposure of tyrosine residues [51]. The
‘r’-values for all mediated cured samples were higher than the control values, indicating
that the tyrosine and tryptophan residues were exposed to a hydrophobic environment,
which might be due to proteolytic depolymerization. The increase in ‘r’-values indicated
that mediated curing led to a change in protein conformation and the exposure of bound
tyrosine residues within the MPs to the surface due to protein unfolding. Additionally, UT
could expose more hydrophobic amino acids to the surface of the protein molecule, at which
point the increased hydrophobic interactions caused the protein to re-condense and re-
embed some hydrophobic amino acids [52]. Under UT conditions, the interaction between
glycerol and protein molecules was altered due to the change in protein conformation and
subsequent bond formation.
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3.8. SEM

As depicted in Figure 5a, the MPs in the control group showed a loose and rough
structure, probably due to the electrostatic interactions caused by low ionic strength to
form myosin filaments [53]. There was no significant change in the microstructure of
MPs in the group with 1% glycerol addition (Figure 5b) compared to the control group.
The experimental group with 4% glycerol addition (Figure 5c) showed smaller myofibril
diameters, indicating an increased myofibril density with increasing glycerol concentration.
After UT (Figure 5d), the surface of the myofibrils was flat and uniform, but the structure
was looser, which might be related to the structural changes in the protein. Moreover,
the changes in the pore ratio after UT could be attributed to the strong cavitation effect
of ultrasound and its ability to induce protein de-folding [54]. Notably, the ultrasound-
mediated glycerol-cured MPs showed the most delicate and tight distribution, and the
UG4 group (Figure 5f) samples were relatively smoother, with smaller particles, and were
neatly arranged. Therefore, it can be inferred that the entanglement of proteins with the
hydroxyl groups in the surrounding environment after UT provided a stable environment
for improving the protein content. This improved microstructure can be attributed to the
synergistic effect of glycerol and ultrasound treatment.
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4. Conclusions

In this study, the addition of glycerol and UT reduced aw, cooking loss, and hardness
values in the pork loin samples to different extents The LF-NMR results showed that the
free water content of the samples was reduced, the immobilized water was converted to
bound water, and the water holding capacity of the samples was improved. UT changed
the structure of MPs, while glycerol changed their conformational stability through major
molecular forces, such as hydrophobic and electrostatic interactions. Under co-mediated
curing conditions, the Raman spectroscopy results showed a shift from α-helix to β-sheet,
indicating the unfolding of the protein’s secondary structure. This promoted proteolysis at
low ionic strength and allowed more hydrophobic groups to be exposed and the content
of reactive sulfhydryl groups to increase, leading to hydrophobic aggregation of MP
and the formation of a dense network structure. Notably, co-mediated curing has some
potential in developing low-salt meat products due to its ability to improve their quality
and protein structure.
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