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Abstract: The increase in food allergies and diabetes leads to the assumption that they are related.
This study aimed to (1) verify the interaction between food allergy and diabetes and (2) explore the
potential mechanisms by which food allergy promotes diabetes. Female BALB/c mice were grouped
into a control group (CK), an ovalbumin-sensitized group (OVA), a diabetes group (STZ), and a
diabetic allergic group (STZ + OVA) (Mice were modeled diabetes with STZ first, then were given
OVA to model food allergies), and an allergic diabetic group (OVA + STZ) (Mice were modeled food
allergies with OVA first, then were given STZ to model diabetes). The results showed that OVA + STZ
mice exhibited a more serious Th2 humoral response, and they were more susceptible to diabetes.
Furthermore, when the OVA + STZ mice were in the sensitized state, the intestinal barrier function
was severely impaired, and mast cell activation was promoted. Moreover, we found that the effect
of food allergy on diabetes is related to the inhibition of GLP-1 secretion and the up-regulation of
the PI3K/Akt/mTOR/NF-κB P65 signaling pathway in the jejunum. Overall, our results suggest
that food allergies have interactions with diabetes, which sheds new light on the importance of food
allergies in diabetes.
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1. Introduction

Food allergy is an excessive response of the immune system to food allergens [1]. These
allergies affect various organs, including the skin, digestive tract, and respiratory system [2].
Food allergies are reported to affect approximately 5% of infants and 3–4% of adults in
Western countries [3]. The symptoms of food allergy vary from mild itching, diarrhea, and
cough to severe life-threatening throat edema and anaphylactic shock [4]. Food allergies
can cause chronic inflammation [5–7], and many studies have shown that inflammation can
be linked to the pathogenesis of diabetes [8–10]. Diabetes occurs when islet β-Cells cannot
secrete insulin or the body cannot use insulin efficiently [11] and its prevalence is increasing
year by year [12], affecting approximately 8.3% of the global population [13]. Diabetes
can be classified as type 1 diabetes (T1D), type 2 diabetes (T2D), maternal diabetes (MD),
and other types of diabetes, with T2D accounting for 90–95% of diabetes [14]. Diabetes
can lead to multiple complications, such as diabetic nephropathy [15], diabetic cardio-
cerebrovascular complications, diabetic foot, and diabetic retinopathy [16]. The immune
system is involved in the occurrence and development of these diseases and increases the
overall risk of premature death [17].

Previous epidemiological studies have found that MD may increase the risk of allergic
diseases, including food allergy, asthma, and atopic dermatitis [18–20]. Insulin resistance
has also been shown to be associated with aeroallergen sensitization and allergic asthma, but
not nonallergic asthma [21]. Children with cow’s milk allergy (CMA) may have an increased
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risk of T1D [22]. Moreover, Klamt and collaborators suggested that T1D was associated with
a higher risk of the self-reported presence of immunoglobulin (Ig) E-mediated allergies [23].
However, a reduction in the frequency of allergic symptoms has been observed in children
with T1D [24]. In addition, a previous study showed a higher prevalence of T2D in patients
with atopic dermatitis (AD) than in the general population [25]. These findings suggest a
possible interaction between diabetes and food allergies.

Food allergies and diabetes are associated with intestinal barrier function [26,27].
The intestinal barrier is one of the main defense mechanisms against harmful external
substances, and the breakdown or dysfunction of this barrier is associated with local and
systemic consequences [26]. During the effector phase of food allergies, mast cell threshing
releases inflammatory mediators that increase intestinal permeability [28]. The destruction
of mast cells and the transport of M cells aggravate food allergies [29]. Intestinal barrier
leakage causes the translocation of bacterial products such as lipopolysaccharide, which
induces an inflammatory response that becomes a risk factor for diabetes and intestinal
barrier dysfunction [16].

Glucagon-like peptide-1 (GLP-1) is a hypoglycemic hormone derived from small
intestinal L cells that increases the sensitivity of glucose to insulin-secreting beta cells [30].
It has been suggested to be a positive regulator of the gut-barrier function that can decrease
inflammation and protect against intestinal damage. [31]. In that regard, both endogenous
and exogenous GLP-1 have been shown to improve intestinal permeability and maintain
intestinal barrier integrity [32,33]. GLP-1 receptor agonists are currently prescribed for
diabetes [34]. Moreover, they have been found to reduce airway inflammation and airway
mucus hypersecretion in allergic asthma patients by modulating interleukin signaling and
inhibiting airway smooth muscle cell contraction [35,36]. A pilot observational cohort
study has shown the efficacy of GLP-1 agonists to treat concomitant asthma in obese T2D
patients [37]. mTOR in the intestine may link energy supply with the production of GLP-1
in L cells [38]. The proposed mechanism of action of GLP-1 is believed to occur through
activation of the PI3K/AKT signaling pathway and downstream of the mechanistic target of
rapamycin (mTOR) kinase [4,5,8]. GLP-1 protects insulin-secreting cells against apoptosis
and restrains high glucose-induced apoptosis by impeding oxidative stress through PI3K-
dependent signaling pathways [1,9]. The PI3K/AKT/mTOR pathway has been shown to
play a key role in allergic diseases and diabetes [39–41]. In addition, the nuclear factor kappa
B (NF-κB) is a transcription factor that mediates several immunological, inflammatory,
and metabolic processes. Altogether, these observations suggest that GLP-1 could activate
the PI3K/Akt/mTOR/NF-κB P65 pathway and act as a bridge between diabetes and
food allergy.

To date, the interaction and mechanism between food allergies and diabetes have not
been reported. Therefore, it is important to clarify whether food allergies enhance the oc-
currence of diabetes. There are different murine animal models to study food allergies and
diabetes. Ovalbumin (OVA), the major egg white allergen, is a 45-kDa protein constituting
about 54% of all egg white proteins [42]. However, OVA is not intrinsically immunogenic
and therefore must be injected into the systemic circulation in the presence of adjuvants
(substances that increase the immunogenicity of an antigen) [43,44]. Nevertheless, OVA is
a T cell-dependent antigen that is commonly used as a model protein for studying antigen-
specific immune responses such as food allergy or allergic asthma in mice. On the other
hand, streptozotocin (STZ) inhibits insulin secretion and causes insulin-dependent diabetes
mellitus due to its specific chemical properties, namely, alkylating potency [45]. STZ is
commonly used to induce TID and T2D in mice. High-fat diet/streptozotocin-treated
(HFD/STZ) animal model involves a combination of an HFD to bring about hyperinsu-
linemia, IR, and/or glucose intolerance followed by subsequent injection of STZ, which
results in a severe reduction in functional β-cell mass. Altogether, these two stressors are
designed to mimic the pathology of T2D [46]. HFD feeding followed by STZ injection can
often be reported to be dyslipidemic, similar to the metabolic profile of type 2 diabetes
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in humans [47,48]. In mice, the combination of HFD and high-dose STZ is common for
modeling T2D [49,50].

In this study, we investigated the interaction between food allergy and diabetes by
delivering different combinations of OVA and STZ to mice. Furthermore, we explored
potential mechanisms by which food allergies promote diabetes.

2. Materials and Methods
2.1. Animals

In this study, 4-week-old female BALB/c mice were purchased from Vital River
laboratory in Beijing, China, and admitted to the special pathogen-free Animal Laboratory
of the School of food science and Nutritional Engineering, China Agricultural University in
Beijing, China (Reg.no. SCXK (Beijing)-2016-006). The animal room was kept at 22 ± 1 ◦C,
55 ± 5% humidity, 12 h of light/dark cycle, and 15 times/h air exchange. All animal
experiments were carried out under the scheme approved by the animal experiment
welfare and ethics Inspection Committee of China Agricultural University (No. 20193765)
and in accordance with the ethical standard guidelines of China Agricultural University.
All the efforts aim to minimize the pain of experimental animals.

2.2. Establishment of the Animal Model

To verify the potential mechanism between food allergy and diabetes, 4-week-old
female BALB/c mice were selected to establish a model. There were five groups in this
experiment. Female BALB/c mice were divided into the control group (CK), the OVA-
sensitized group (OVA), the diabetes group (STZ), the diabetic allergic group (STZ + OVA),
and the allergic diabetic group (OVA + STZ). Mice were fed adaptively for one week. The
CK and OVA group were fed with normal diet (Standard diet, SD). The STZ, OVA + STZ,
and STZ + OVA groups were fed high fat diet (HFD). SD and HFD were obtained from
Beijing HFK Bioscience Co. (Beijing, China). In HFD (D12492), 60% of the calories are
provided by fat (lard), 20% by protein, and the remaining 20% by carbohydrate. We used
OVA (Sigma Aldrich, St. Louis, MO, USA) to build a food allergy mice model and used
STZ (Sigma Aldrich, St. Louis, MO, USA) to build a diabetes mice model.

The twelve CK group mice were randomly selected by their body weight on day 0.
Mice were given 100 µL of PBS on days 0, 7, 14, 21, 28, and 42 (Figures 1A and 2A).

The twelve OVA group mice were randomly selected by their body weight on day 0.
Mice were given 100 µL of normal saline dissolved 1 mg OVA and 10 µg cholera toxin (CT)
(substances that increase the immunogenicity of OVA) [43,44] (Sigma Aldrich, St. Louis, MI,
USA) adjuvant orally on days 0, 7, 14, 21, and 28, then mice were given 100 µL of normal
saline dissolved 70 mg OVA intragastric administration on day 42 (Figure 1A).

The STZ group mice were given STZ solution with an injection volume of 10 mL/kg
and a dose of 130 mg/kg after fasting for 12 h and fasting for 4 h after injection on day 28.
After the injection, fasting blood glucose (FBG) of mice was monitored and twelve stable
FBG at 11.1 mmol/L or above mice were chosen from 30 mice in the group [51] (Figure 2A).

The OVA + STZ group mice were given 100 µL of normal saline dissolved 1 mg OVA
and 10 µgCT on day 0, 7, 14, 21, and 28. On day 30, STZ solution with an injection volume of
10 mL/kg and a dose of 130 mg/kg after fasting for 12 h, and fasting for 4 h after injection,
then twelve stable FBG at 11.1 mmol/L or above mice were chosen from 30 mice in the
group. On day 42, mice were given 70 mg OVA (Figure 2A).

The STZ+ OVA group mice were given the same dose of STZ (STZ solution with an
injection volume of 10 mL/kg and a dose of 130 mg/kg after fasting for 12 h and fasting
for 4 h after injection) on day 28, then twelve stable FBG at 11.1 mmol/L or above mice
were chosen from 30 mice as samples. On days 30, 37, 44,51, and 58, mice 100 µL of normal
saline dissolved 1 mg OVA and 10 µg CT. Then, mice were given 100 µL of normal saline
dissolved 70 mg OVA intragastric administration on day 72 (Figure 1A).
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Figure 1. Establishment of diabetic allergy (STZ + OVA) mice model. (A), schematic figure of the
effect of diabetes on food allergy: mice were divided into CK, OVA, and STZ + OVA group mice.
OVA group mice were given OVA and CT on day 0, 7, 14, 21, 28, and 42. The STZ+ OVA group
mice were given STZ on day 28. On day 30, 37, 44, 51, 58, and 72, mice were given OVA and CT.
i.g., intragastric. (B), Body weight. (C), Dietary intake. (D), Dietary water. (E), Fasting glucose.
(F), Glucose tolerance. (G), Area under curve (AUC) of glucose tolerance. (H), Insulin tolerance.
(I), AUC of insulin tolerance. (J), H&E staining of spleen (scale bar = 100 µm). (K), H&E staining of
visceral adipose tissue (scale bar = 50 µm). The error bars indicated the mean ± SEM. n = 6. Different
lowercase letters in the figure represent significant differences between the groups (p < 0.05 by
one-way ANOVA followed by SNK).

Mice weight, food intake, and water intake were recorded once a week. The rectal
temperature was measured by a digital thermometer at 0.5 h after the challenge. (At
challenge stage, OVA enters the body again, it interacts with the IgE molecules on the target
cells to mediate the bridging reaction, activating the downstream signal pathway, causing
the target cells to degranulate and release the mediators, resulting in an allergic reaction).

The scoring criteria of allergic symptoms were recorded 30 min after the challenge.
Allergic scores were subsequently graded following an adapted pre-established scale. More
precisely, as follows: 0, no symptoms; 1, scratching at nose and head; 2, puffiness around
eyes and mouth; 3, wheezing, labored respiration, display liquid diarrhea, cyanosis around
mouth and tail; 4, no activity after stimulation or convulsion; 5, death [28].

CK, OVA, STZ, and OVA + STZ mice were sacrificed on day 42 and STZ + OVA mice
were sacrificed on day 72. CK, OVA, STZ, and OVA + STZ groups just need 42 days to
model successfully. Thus, CK, OVA, STZ, and OVA + STZ animals were sacrificed on
day 42. According to our purpose, we just changed the model of the order of OVA in which
food allergies occur in diabetes. To test whether diabetes could influence food allergy.
We modeled diabetes first (These models with STZ and HFD need 30 days), then mice
were given OVA and CT to model food allergies (STZ + OVA) (This model with OVA and
CT need another 42 days) mice model, compared to the CK and OVA groups. Thus, the
STZ + OVA model took 72 days to build, and mice were sacrificed on day 72. In this section,
although the STZ + OVA group took much longer time to model than the other groups,
we found that STZ treatment could not further disrupt the immune balance induced by
OVA administration.
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Figure 2. Establishment of allergic diabetic (OVA + STZ) mice model. (A), Schematic figure of the
effect of food allergy on diabetes: mice were divided into CK, STZ, and OVA + STZ group mice. The
STZ group mice were given STZ on day 28. The OVA + STZ group mice were given OVA and CT
on day 0, 7, 14, 21, 28, and 42. On day 30, mice were given STZ. i.g., Intragastric. (B), Body weight.
(C), Dietary intake. (D), Dietary water. (E), H&E staining of pancreas, liver, and subcutaneous fat
(scale bar = 50 µm). (F), Fasting glucose. (G), Glucose tolerance. (H), AUC of glucose tolerance.
(I), Insulin tolerance. (J), AUC of insulin tolerance. The error bars indicated the mean ± SEM. n = 6.
Different lowercase letters in the figure represent significant differences between the groups (p < 0.05
by one-way ANOVA followed by SNK).

2.3. Pathological Section and Mast Cell Staining Analysis

After the mice were sacrificed, the jejunum, spleen, Visceral adipose (mesentery fat),
pancreas, liver, and subcutaneous fat were removed and subsequently fixed in phosphate-
buffered 10% formalin, and then embedded in paraffin blocks. A section from each paraffin
block was stained with hematoxylin and eosin (H&E) to examine the pathologic structures
of the tissues. At the same time, the mast cells of the jejunum of each group were stained
with toluidine blue, and the number of mast cells and the degranulation reaction were
observed. Images were obtained from fluorescence microscopy.

2.4. Glucose and Insulin Tolerance Test

Glucose and insulin tolerance tests were tested on day 41 in CK, OVA, STZ, and
OVA + STZ groups and on day 71 in STZ + OVA group mice. For the glucose tolerance
test, mice were fasted for 16 h and were given an intragastric administration of glucose
(1.5 mg/g) in purified water. Blood samples were drawn from the tail before and 15, 30, 60,
90, and 120 min after the injection. For the insulin tolerance test, mice were fasted for 4 h
and were given an intraperitoneal injection of insulin (1.0 U/kg) (11011018, Novo Nordisk,
DEN). Blood samples were drawn from the tail before and 15, 30, 45, and 60 min after the
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injection. Blood glucose levels were determined using a glucometer (Abbott Laboratories,
St. Louis, MI, USA).

2.5. ELISA

The blood of female mice in each group was collected 45 min after the last OVA
intragastric administration (CK, OVA, STZ, and OVA + STZ mice were collected on day 42,
and STZ + OVA mice were collected on day 72), and centrifuged at 4 ◦C, 5000 rpm/min to
separate the plasma or serum, the stored at −20 ◦C. Plasma samples collected from orbital
sinus were used to quantify OVA-specific IgE, IgG1, and IgG2a (reported out as OD450 nm
mean ± standard) and histamine (ng/mL) by using commercial mouse ELISA kit (Neogen
Corporation, Lexington, KY, USA). In the meantime, serum samples collected from the
orbital sinus were used to quantify cytokines (IL-4, IL-5, IL-6 (pg/mL)), interferon (IFN)-
γ (pg/mL), zonulin (ng/mL), GLP-1 (pg/mL), tumor necrosis factor (TNF)-α (pg/mL),
and insulin (mIU/L) levels by using commercial mouse ELISA kit (Neogen Corporation,
Lexington, KY, USA).

2.6. Real-Time PCR

Jejunum tissues in different groups were cut into small pieces and homogenized.
The total RNA was extracted from jejunum by Trizol (Invitrogen Corp., Carlsbad, CA,
USA) reagent, and reverse transcribed into cDNA by One-Step gDNA Removal and cDNA
Synthesis Supermix kit (TransScript, Beijing, China). Quantitative real-time PCR analysis
(qRT-PCR) was carried out with SuperReal PreMix Plus kit (SYBR Green, Shanghai, China)
following the manufacturer’s protocol. All samples were tested in triplicate, and the relative
quantification was calculated by 2−∆∆Ct method, which calculated the relative expression
changes in the target gene, normalized to the endogenous reference β-actin. The target
genes including ZO-1, Claudin-1, occluding, mMCP-1, IL-6, SGLT1, GLUT2, PI3K, Akt,
Mtor, and NF-κb p65 and their primer sequences are shown in Table 1.

Table 1. List of primer pairs used for real-time quantitative PCR.

Gene Name Forward (5′-3′) Reverse (5′-3′)

β-actin GATTACTGCTCTGGCTCCTAGC GACTCATCGTACTCCTGCTTGC
ZO-1 TTTTTGACAGGGGGAGTGG TGCTGCAGAGGTCAAAGTTCAAG

Claudin-1 CGGGTTGCCTGCAAAGT ATGTCCGGCCGATGCTCTC
occludin CTTTGGCTGCTGTTGGGTCTG AGCCAGGAGCCTCGCCCCGCAGCTGCA
mMCP-1 CAGATGTGGTGGGTTTCTCA GCTCACATCATGAGCTCCAA

IL-6 CGTGGAAATGAGAAAAGAGTTGTGC ATGCTTAGGCATAACGCACTAGGT
SGLT1 CGGAAGAAGGCATCTGAGAA AATCAGCACGAGGATGAACA
GLUT2 TCTTCACGGCTGTCTCGTG AATCATCCCGGTTAGGAACA
mTOR ACCGGCACACATTTGAAGAAG CTCGTTGAGGATCAGCAAGG
PI3K CACTCAGCCCATCTATTTCCAG TCTTGGATCTTCACCTTCAGC
AKT GACTGACACCAGGTATTTCGATGA CTCCGCTCACTGTCCACACA

NF-κB p65 GCATTCTGACCTTGCCTAT ACCGCCACTACCGAACAT

2.7. Western Blot

Total proteins from the jejunum (50–70 mg) were isolated using a RIPA buffer sup-
plemented with a protease inhibitor PMSF and quantified by the BCA protein assay kit
(Dakewe, Shenzhen, China). Proteins were subjected to SDS-PAGE using a 10% acry-
lamide gel, the proteins were transferred onto polyvinylidene fluoride (PVDF) membranes
(MilliporeSigma, Merck KGaA, Darmstadt, Germany), and the electroblotted membranes
were incubated with specific primary antibody (PI3K (1:1000), Akt (1:1000), p-Akt (1:1000),
mTOR (1:500) and NF-κB p65 (1:1000) were purchased from Abcam (Burlingame, CA, USA))
at 4 ◦C overnight. Immune complexes were detected using HRP-conjugated anti-rabbit IgG
(1:1000) (Abcam Inc., Cambridge, MA, USA) and enhanced chemiluminescence (ECL) plus
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reagent (Pierce ECL Western blotting Substrate, Thermo Fisher Scientific Inc., Waltham,
MA, USA). The films were scanned and quantified by Image J (NIH, Bethesda, MD, USA).

2.8. Statistical Analysis

All data from fasting glucose, AUC of GTT/ITT, the rectal temperature, the scoring
criteria of allergic symptoms, leucocyte component distribution, ELISA, Real-time PCR,
and Western Blot were expressed as mean ± standard error of the mean (SEM) and de-
termined by Student’s t-test (unpaired, two-tailed). Comparison among the groups was
analyzed statistically using one-way ANOVA followed by the Student–Newman–Keuls
(SNK) multiple comparison test. A p-value of <0.05 was considered statistically significant.

The weight, food intake, and water intake of mice were expressed as mean ± SEM.
The chi-square analyses were performed to compare the differences between the three
groups in the success rate of animal experimental models. GraphPad Prism 5.01 was used
for the graphical presentation.

‘Wu Kong’ platform (Omicsolution Company, Sichuan, China) was used for the graphi-
cal presentation of the proportion of leucocyte (Lymphocytes, monocytes, and granulocytes)
component distribution.

3. Results
3.1. Establishment of Diabetic Allergic (STZ + OVA) Mice Model

To test whether diabetes could influence food allergy, as shown in Figure 1A, mice
were modeled into the STZ + OVA group, compared to the CK and OVA groups. After being
injected with STZ on day 28, we found that STZ + OVA mice showed reduced body weight
(Figure 1B), accompanied by enhanced dietary intake (Figure 1C) and water consumption
(Figure 1D). Importantly, the fasting glucose levels significantly increased in the STZ + OVA
group mice (Figure 1E). Furthermore, STZ + OVA mice also showed deteriorated metabolic
fitness (Figure 1F,G) and significantly decreased insulin sensitivity (Figure 1H,I) compared
to CK and OVA mice, indicating that STZ significantly weakened the glucose sensitivity of
mice. Detailed tissue analysis revealed significant pathological alterations in the structure
of the spleen (the lymphocyte of the red pulp area decreased and the area of the white pulp
area increased) and adipocytes (the adipose cells were not tightly packed and well-defined)
in STZ + OVA mice (Figure 1J,K). STZ + OVA mice were also compared to STZ mice. There
was no significant difference between STZ and STZ +OVA mice in fasting glucose, and
insulin sensitivity (Figure S1). Altogether, these data suggested that the diabetic allergic
model was successfully developed.

3.2. Effects of Diabetes on Food Allergy

We next investigated whether diabetes could affect some of the immunological indica-
tors associated with food allergies. Critically, rectal temperature was significantly altered
in the OVA and STZ + OVA groups, while significantly allergic symptoms elevated were
observed in those mice (Figure 3A,D). Strikingly, both the OVA and STZ + OVA groups
showed significant alterations in antibody levels (IgE, IgG1, IgG2a, and IgG1/G2a), allergic
cytokines (IL-4/5), IFN-γ, and histamine compared to the CK mice (Figure 3B,C,E,F).
Furthermore, there were no significant differences observed between OVA mice and
STZ + OVA mice with respect to the immunological changes, suggesting that OVA treat-
ment significantly altered the immunological response, while STZ administration did not
aggravate this phenotype in the STZ + OVA group (Figure 3B,C,E,F). Overall, these results
indicated that STZ treatment could not further disrupt the immune balance induced by
OVA administration.
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3.3. Establishment of Allergic Diabetic (OVA + STZ) Mice Model

To study the impact of food allergy on diabetes, as shown in Figure 2A, we modeled
the OVA + STZ group and compared it to the CK and STZ groups. First, after injection
with STZ on day 28, we found a significant decrease in body weight and an increase
in food and water intake in the STZ and OVA + STZ groups compared to the CK mice
(Figure 2B–D). Compared to the CK group, mice of the STZ and OVA + STZ groups
had inflammatory cell infiltration in the pancreas, were swollen and arranged as loosely
scattered with the white vacuole formed by different lipid droplets in hepatocytes, and
had increased subcutaneous fat cell hypertrophy (Figure 2E). Furthermore, fasting glucose
levels in the STZ and OVA + STZ groups were significantly higher than those in the CK
group (Figure 2F). In addition, the OVA + STZ group showed a decrease in metabolic fitness
and insulin sensitivity compared to the CK mice (Figure 2G–J). These data supported the
successful development of the allergic diabetes model and indicated that food allergies did
not further disrupt glucose dysregulation in mice.

3.4. Effects of Food Allergy on Diabetes

To further study the influence of food allergies on diabetes, we evaluated the changes in
leukocyte subsets and blood biochemical levels in the three groups of mice. The assessment
of leukocyte subsets showed that the proportion of neutrophils increased significantly
and that of lymphocytes decreased significantly in the STZ and OVA + STZ groups, with
the decrease being more evident in the OVA + STZ group (Figures 4A and S1). We also
observed an increase in LDL-c in the OVA + STZ group compared to the STZ group
(Figure 4B). Altogether, these results indicated that the pathological morphology of the
viscera, composition of peripheral blood leukocytes, and metabolic level were altered when
the body is sensitized to OVA.
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cytes, and granulocytes) component distribution. Orange, purple, green, blue, and red represented
neutrophile, monocyte, lymphocyte, eosinophils, and basophilic, respectively. (B), Serum levels of
CHO, TG, HDL-c, and LDL-c. (C), Rectal temperature change. (D), Food allergy symptom score.
(E), Serum-specific antibody levels of IgE, IgG1, and IgG2a. (F), Serum specific antibody IgG2a/IgG1
level. (G), Histamine levels. (H), Cytokines levels of IL-4, IL-5, and IFN-γ. The error bars indicated
the mean ± SEM. n = 6. Different lowercase letters in the figure represent significant differences
between the groups (p < 0.05 by one-way ANOVA followed by SNK). (I), The success rate of animal
experimental models (by the chi-square analyses).

We then set out to investigate if food allergies could affect diabetes by analyzing
immunological indicators. We first analyzed the rectal temperature and food allergy symp-
tom scores of mice after intragastric administration of high-dose OVA. Rectal temperature
and food allergy symptom scores of the OVA + STZ group showed a significant increase
compared to those of the control group, which indicated mice in the OVA + STZ group
experienced more serious food allergic reactions (Figure 4C,D). Significant immunological
alterations were found in the OVA + STZ mice, including reduced IFN-γ and IgG1/G2a and
improved specific antibody (IgE, IgG1, IgG2a), IL-4/5, and histamine levels (Figure 4E–H).
Importantly, we found that OVA + STZ mice showed significant alterations (IL-4 and
IL-5 increased significantly, whereas a decrease in IFN-γ was observed significantly) in the
immunological indicators compared to the STZ group, indicating that the immune response
of OVA + STZ mice was significantly inclined toward the Th2 cell response (Figure 4E–H).
Furthermore, we evaluated fasting glucose levels in mice after STZ treatment. When FBG
was stable above 11.1 mmol/L, we considered the modeling to be successful. Intriguingly,
compared to the CK and STZ groups, OVA + STZ mice had a higher modeling success
rate, which indicated mice in the OVA + STZ group have a higher susceptibility to diabetes
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(Figure 4I). Overall, these results indicated that when mice were in a state of sensitization,
they presented an immune imbalance and showed increased susceptibility to diabetes.

Figure 5A–B. it is worth noting that jejunal villi were damaged most in OVA + STZ
group mice (Figure 5A). Furthermore, compared to the CK group, the STZ + OVA and
OVA + STZ groups showed a significant increase in Zonulin level in the blood serum,
suggesting that intestinal barrier function was severely impaired [52] (Figure 5C). At the
molecular level, we found increased expression of ZO-1, claudin-1, and occludin in the
jejunum, indicating a self-negative feedback mechanism (Figure 5D). Notably, we observed
enhanced expression of claudin-1 and occludin in OVA + STZ mice compared to that in
OVA mice, indicating the jejunal barrier was damaged most in the OVA + STZ group
(Figure 5D). In addition, we found an increased number of mast cells and an enhanced
expression of mMCP-1 in the jejunum after high-dose OVA stimulation, compared to the CK
group, indicating that barrier function and homeostasis were destructed [53] (Figure 5E,F).
Altogether, these results suggested that when the mice were sensitized by allergens the
intestinal barrier function was severely impaired and mast cell activation was promoted.

Foods 2022, 11, x FOR PEER REVIEW 10 of 19 
 

 

of sensitization, they presented an immune imbalance and showed increased susceptibil-

ity to diabetes. 

Figure 5A–B. it is worth noting that jejunal villi were damaged most in OVA + STZ 

group mice (Figure 5A). Furthermore, compared to the CK group, the STZ + OVA and 

OVA + STZ groups showed a significant increase in Zonulin level in the blood serum, 

suggesting that intestinal barrier function was severely impaired [52] (Figure 5C). At the 

molecular level, we found increased expression of ZO-1, claudin-1, and occludin in the 

jejunum, indicating a self-negative feedback mechanism (Figure 5D). Notably, we ob-

served enhanced expression of claudin-1 and occludin in OVA + STZ mice compared to 

that in OVA mice, indicating the jejunal barrier was damaged most in the OVA + STZ 

group (Figure 5D). In addition, we found an increased number of mast cells and an en-

hanced expression of mMCP-1 in the jejunum after high-dose OVA stimulation, compared 

to the CK group, indicating that barrier function and homeostasis were destructed [53] 

(Figure 5E,F). Altogether, these results suggested that when the mice were sensitized by 

allergens the intestinal barrier function was severely impaired and mast cell activation 

was promoted. 

 

Figure 5. Food allergy affects diabetes by promoting jejunal barrier destruction. (A), H&E staining 

of jejunum (scale bar =100 μm). The arrows in the Histo means significant changes in intestinal villi 

structure. (B), H&E staining of jejunum (scale bar = 50 μm). (C), Serum levels of Zonulin. (D), mRNA 

expression of tight junction proteins (ZO-1, Claudin-1, occludin) in jejunum. (E), Toluidine blue 

staining of jejunum (scale bar = 50 μm). (F), mRNA expression of mMCP-1 in jejunum. The error 

bars indicated the mean ± SEM. n = 6. Different lowercase letters in the figure represent significant 

differences between the groups (p < 0.05 by one-way ANOVA followed by SNK). 

3.5. Food Allergy Affects Diabetes by Demoting the Secretion of GLP-1 

To understand the molecular mechanism by which food allergy affects diabetes, we 

evaluated the secretion of GLP-1. GLP-1 can bind to the GLP-1R to activate insulin secre-

tion in pancreatic β-cells [54]. Therefore, to further evaluate the role of GLP-1 as a positive 

regulator of intestinal barrier function, we measured GLP-1 and insulin levels in blood 

serum. A significant decrease was observed in GLP-1 levels in all animal groups compared 

to the CK group (Figure 6A). Strikingly, GLP-1 levels were significantly reduced in the 

OVA + STZ mice compared to those in the other groups (Figure 6A). In the pancreas, GLP-

1 is now known to induce the augmentation of glucose-stimulated insulin secretion [55]. 

We found that the OVA + STZ group also showed decreased insulin levels compared to 

Figure 5. Food allergy affects diabetes by promoting jejunal barrier destruction. (A), H&E staining of
jejunum (scale bar =100 µm). The arrows in the Histo means significant changes in intestinal villi
structure. (B), H&E staining of jejunum (scale bar = 50 µm). (C), Serum levels of Zonulin. (D), mRNA
expression of tight junction proteins (ZO-1, Claudin-1, occludin) in jejunum. (E), Toluidine blue
staining of jejunum (scale bar = 50 µm). (F), mRNA expression of mMCP-1 in jejunum. The error
bars indicated the mean ± SEM. n = 6. Different lowercase letters in the figure represent significant
differences between the groups (p < 0.05 by one-way ANOVA followed by SNK).

3.5. Food Allergy Affects Diabetes by Demoting the Secretion of GLP-1

To understand the molecular mechanism by which food allergy affects diabetes, we
evaluated the secretion of GLP-1. GLP-1 can bind to the GLP-1R to activate insulin secretion
in pancreatic β-cells [54]. Therefore, to further evaluate the role of GLP-1 as a positive
regulator of intestinal barrier function, we measured GLP-1 and insulin levels in blood
serum. A significant decrease was observed in GLP-1 levels in all animal groups compared
to the CK group (Figure 6A). Strikingly, GLP-1 levels were significantly reduced in the
OVA + STZ mice compared to those in the other groups (Figure 6A). In the pancreas, GLP-1
is now known to induce the augmentation of glucose-stimulated insulin secretion [55].
We found that the OVA + STZ group also showed decreased insulin levels compared to
the OVA group (Figure 6B). GLP-1 secretion increased in an IL-6-dependent manner [56].
Interestingly, IL-6 levels were significantly enhanced in the serum and decreased in the je-
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junum, suggesting that GLP-1 secretion increased in an IL-6-dependent manner (Figure 6C).
TNF-α induced systemic inflammation and reduced GLP-1 levels [57]. In our experiment,
the TNF-α levels in blood serum showed a significant increase in the OVA, STZ + OVA,
and OVA + STZ groups, compared to those in the CK group (Figure 6D). High levels of
glucose induced the release of GLP-1 through the sodium–glucose cotransporter 1 (SGLT1)
and, to a lesser extent, the glucose transporter 2 (GLUT2). Critically, the expression of
SGLT1 and GLUT2 decreased in all cases compared to the CK group, suggesting that
GLUT2 inhibited the secretion of glucose-induced GLP-1 (Figure 6E). Notably, we found
a significant decrease in GLUT2 in the OVA + STZ group compared to the OVA group
(Figure 6E). Overall, these results indicated that when the mice are in the OVA-sensitized
state, GLP-1 secretion inhibits, in accompaniment with decreased insulin, IL-6, TNF-α,
SGLT1, and GLUT2 levels.
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3.6. Food Allergy Affects Diabetes by Upregulating the Expression of PI3K/Akt/mTOR/NF-κB p65

Next, we aimed to elucidate the mechanism between food allergy and diabetes. Previ-
ous studies have shown that mTOR is a critical regulator of intestinal barrier damage and
secretion of GLP-1, and the proposed mechanism of action of GLP-1 is believed to occur
through activation of the PI3K/Akt signaling pathway [36,58]. We evaluated the mRNA
and protein expression of mTOR and other related immunological and metabolic markers,
including PI3K, Akt, and NF-κB p65.

Among those, the PI3K/Akt signaling pathway was activated, and the expression of
PI3K/Akt/mTOR/NF-κB p65 showed a significant increase in the mRNA levels compared
to the CK group (Figure 7A). At the protein level, there was no significant difference in PI3K
expression levels between each group. Compared to the STZ group, the expression of PI3K
in the OVA + STZ group enhanced significantly and significantly upregulated the expression
levels of mTOR, and NF-κB p65 in STZ + OVA and OVA + STZ mice, compared to other
control groups (Figure 7B,C), which indicated that STZ and OVA demoted GLP-1 secretion
by up-regulating the expression levels of PI3K, mTOR, and NF-κB p65. Intriguingly, we
observed how the OVA + STZ group enhanced protein expression in PI3K and mTOR
levels, compared to the STZ group, which may explain why mice in the OVA + STZ group
presented increased immune imbalance to Th2 humoral response to and showed increased
susceptibility to diabetes when they were in a state of sensitization (Figure 7B,C).
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p65. (A), mRNA expression of PI3K/Akt/mTOR/NF-κB p65 in jejunum. (B), Western blotting
of PI3K/Akt/mTOR/NF-κB p65 in jejunum. (C), Quantitative analysis of Western blot results of
Figure 3M. The error bars indicated the mean ± SEM. n = 6. Different lowercase letters in the figure
represent significant differences between the groups (p < 0.05 by one-way ANOVA followed by SNK).

Taken together, these results emphasized that the PI3K/Akt/mTOR/NF-κB p65 path-
way, especially mTOR, played an important role in the mechanism by which food allergies
affect diabetes.

4. Discussion

This study suggests that food allergies have interactions with diabetes. Food allergy
increased the risk of STZ-induced diabetes in mice, which promoted food allergen-induced
damage of the jejunum barrier and direct uptake of dendritic cells, induced mast cell acti-
vation, increased IL-4, IL-5, IL-6, mMCP-1, and TNF-α secretion, reduced GLP-1 secretion
in the jejunum, and decreased insulin secretion in the pancreas. (Figure 8).

The quality of life of many patients with food allergies and diabetes is affected. Previ-
ous studies have found that T1D, T2D, and DM are associated with allergic disease [18–25].
In addition, a previous study showed a positive correlation between allergic disease and
diabetes with an odds ratio of 1.25, indicating that allergic disease is a risk factor for di-
abetes [59]. Thus, it is important to establish a model and identify a mechanism linking
food allergy and diabetes. To explore this relationship, we established a BALB/c animal
model to explore the immune and metabolic levels of food allergy and diabetes. We used
OVA and STZ to build a food allergy and a diabetes mice model, respectively. It has been
observed that BALB/c inbred nude and outbred nude mice receiving the highest STZ dose
(240 mg/kg) experienced the lowest rate of complications [60]. In the current study, a
diabetic allergic mice model showed that diabetes did not disrupt the immune balance in
mice. However, allergic diabetic mice showed a more significant tilt toward Th2 immune
response (p < 0.05) and a higher success rate of modeling, suggesting that OVA sensitization
may cause an immune imbalance and increase the susceptibility to diabetes. The results of
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a previous population study in the United States also suggested that allergic asthma can
affect the severity of diabetes [61], and Thomsen and collaborators found that significant
positive genetic correlations were found between asthma and T2D [62]. Moreover, the
results of another population study in Canada suggested that the relationship between
allergic diseases and diabetes may be related to a Th1/Th2 imbalance [59]. However,
there was no difference in the jejunum mRNA expression of IL-4 and IFN-γ in OVA, STZ,
STZ + OVA, and OVA + STZ mice in our previous study (Figure S3A–B). Similarly, there
was no relation between TH2-mediated atopy and TH1-mediated autoimmune disorders
in the American Third National Health and Nutrition Examination Survey, with an odds
ratio of 1.01 (95% CI: 0.61, 1.67) [63]. In a classical mice model of autoimmune diabetes,
increased Th1 has been found in the mesenteric lymph nodes (MLNs) and pancreatic lymph
nodes (PaLNs) [64]. Moreover, evidence supporting this possibility includes enhanced Th1
cytokine expression in diabetic subjects [65]. In summary, to quote Sheikh and collaborators,
‘the Th1/Th2 model, as currently formulated, might be an oversimplification’ [63].
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Mounting evidences have suggested that the gut immune system is involved in au-
toimmune diabetes development. Up to 75% of individuals with diabetes experience
gastrointestinal symptoms [66]. Previous studies have demonstrated that stiffness of
the intestinal wall, particularly the jejunum wall, increases over time during DM devel-
opment [67]. The jejunum is a major site of digestion and absorption within the small
intestine [68]. An inflammatory state has been confirmed in the intestines of patients
with T1D, T2D, and MD, and abnormal intestinal permeability has been found to be the
contributing factor [69–71]. In diabetes, the jejunum plays a key role in regulating insulin
sensitivity [72]. Additionally, altered intestinal epithelial barrier function and composition
have been observed in patients with food allergies [5,73]. In the current study, we showed
that OVA and STZ treatments in mice led to histopathological damages in the structure of
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the jejunum and a significant increase in the number of mast cells, in agreement with previ-
ous results. Zonulin is a biomarker of intestinal barrier dysfunction [57]. Its increased level
in the serum can activate the dense connexin ZO-1, claudin-1, and occludin, which are fun-
damental for the maintenance, integrity, and normal function of the intestinal mechanical
barrier [74]. Mast cells participate in specific and nonspecific immune responses related to
inflammatory and metabolic diseases (such as diabetes). Specifically, mast cells contribute
to sensitization to food allergens and stimulate the release of histamine, protease, cytokines,
and chemokines [34,35,45,75], which induce allergic reactions and diabetes [76,77].

GLP-1 is a hormone secreted by intestinal L cells, and its response to glucose is
limited to small intestinal L cells. L cells in the jejunum are capable of secreting high
levels of GLP-1 [78]. GLP-1 binds to the GLP-1R, a G-protein–coupled receptor widely
expressed in the pancreas, gastrointestinal tracts, kidneys, lungs, and hearts [79]. Glp-1R
mRNA expression is the highest in the epithelial fraction of the jejunum, followed by the
ileum and colon [80]. Recently, He and collaborators reported that gut intraepithelial T
cells regulate GLP-1 bioavailability by capturing GLP-1 on GLP-1Rs and impacting L cell
numbers [81]. GLP-1R agonists can regulate OVA-induced airway inflammation and mucus
secretion in mice [35], which are related to the inhibitory effect of GLP-1R signaling on
Th2 inflammation [82]. Rapid secretion of GLP-1 occurs before the nutrients reach the
ileum and colon, where large numbers of L cells are concentrated [83]. GLP-1 secretion is
regulated by IL-6 signaling [84], and inflammatory stimuli increase GLP-1 secretion in an
IL-6-dependent manner [57]. In contrast with previous studies, our results showed that IL-6
levels in the serum significantly decreased after OVA and STZ stimulation (p > 0.05). This
discrepancy may be related to the different animal strains used in the study [85], different
sampling sites [86], and different models [87]. SGLT1 and GLUT2 play a dominant role in
controlling glucose-stimulated GLP-1 release from human L cells [88].

A large number of previous studies have found that intestinal mTOR regulates GLP-1
production in mouse L cells, and mTOR may link the energy supply to GLP-1 production
in L cells [38,89,90]. The PI3K/Akt/mTOR signaling pathway is important not only in the
development of cancer but also in the proliferation, adhesion, migration, metabolism, and
survival of normal cells [91]. The PI3K/Akt/mTOR pathway in innate immune cells inhibits
autophagy in allergic asthma [92], and it is considered an emerging therapeutic target [93].
Moreover, a study found that the PI3K/Akt/mTOR signal transduction pathway constitutes
the intersection of allergic asthma and cataracts [94]. In a study on diabetes, it was found
that the PI3K/Akt/mTOR signaling pathway is associated with the apoptosis of pancreatic
β cells in Wistar rats with STZ-induced diabetes [95]. In addition, this pathway could also
be involved in post-injury healing and autophagy dysfunction [96–98], and its inhibition has
been suggested for the treatment of diabetic retinopathy [99]. The transcription factor NF-κB
plays an important role in both innate and adaptive immunity [100]. Lipid accumulation in
the liver leads to subacute liver “inflammation” through NF-κB activation and downstream
cytokine production. This can cause insulin resistance locally in the liver and throughout
the body [101].

5. Conclusions

Mice models were used to study the interaction between food allergy and diabetes.
Pathological section, mast cell staining analysis, glucose and insulin tolerance test, ELISA,
real-time PCR, and Western blot helped to explore the potential mechanisms by which food
allergy promotes diabetes. The main findings of the paper are as follows:

(1) The diabetic allergic (STZ + OVA) model was successfully developed by basic growth
status and glucose sensitivity. Compared to the STZ group, STZ treatment could
not further disrupt the secretion of immunoglobulin and cytokines induced by
OVA administration;

(2) Allergic diabetic (OVA + STZ) model was successfully developed by basic growth
status and glucose sensitivity. Compared to the OVA group, when mice were in a
state of sensitization, the pathological morphology of the viscera, the composition
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of peripheral blood leukocytes, and the metabolic level were altered, the secretion
of immunoglobulin and cytokines could further disrupt and would have a higher
susceptibility to diabetes;

(3) Food allergy affects diabetes by promoting jejunal barrier destruction through the
damage of tight junction proteins and the proliferation and activation of mast cells;

(4) Food allergy affects diabetes by demoting the secretion of GLP-1. When mice were in
the OVA-sensitized state, secretion of GLP-1 secretion is inhibited, in accompany by
decreased insulin, IL-6, TNF-α, SGLT1, and GLUT2 levels;

(5) Food allergy affects diabetes by upregulating the expression of PI3K/Akt/mTOR/NF-
κB p65, especially mTOR, which plays an important role in the mechanism by which
food allergy affects diabetes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods11233758/s1. Figure S1: Computation of four groups;
Figure S2: Leucocyte component distribution in CK, STZ, and OVA + STZ groups; Figure S3: mRNA
expression of IL-4 and IFN-γ in jejunum.
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