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Abstract: Traditional machine learning-based methods for the detection of rice degree of milling
(DOM) that are not comprehensive in feature extraction and have low recognition rates fail to meet
the demand for fast, non-destructive, and accurate detection. This paper presents a digital image
processing technology combined with deep learning to implement the classification of DOM of rice.
An improved multi-scale information fusion model of the InceptionResNet–Bayesian optimization
algorithm (IRBOA) was constructed based on the Inception-v3 structure and residual network
(ResNet) model. It enables to automatically extract more comprehensive features of rice and determine
the DOM of rice. Additionally, the important hyperparameters in the model were tuned by the BOA to
optimize the recognition rate of rice DOM. The results show the hyperparameters optimized using the
BOA are those that would not be chosen in manual tuning. The classification precision of the IRBOA
model reached 99.22%, 94.92%, and 96.55% for well-milled, reasonably well-milled, and substandard
rice, respectively, with an average accuracy of no less than 96.90%. This model improved 7.41% over
the traditional machine learning model and at least 1.35% over the fashionable CNN model with
strong generalization performance. This method effectively completes rapid, non-destructive, and
accurate intelligent detection of rice DOM, which can supply a reliable and accurate technical mean
for rice processing enterprises to guide the rice processing process.

Keywords: degree of milling; multi-scale information fusion; residual network model; Bayesian
optimization algorithm

1. Introduction

Paddy is a major grain in the world. As the worldwide population grows, the re-
quirement for rice is expected to rise by 30% in 2050 [1]. Therefore, the processing and
production of rice have a vital role. At present, there are prominent problems in the rice
market, such as the one-sided pursuit of appearance quality (fine, white, and nice taste),
backward control means of the DOM, and nutrient loss caused by over-processing, which
threaten food security [2]. Thus, an efficient and rapid method of estimating the DOM of
rice can instruct enterprises to adjust the parameters in the rice milling process in real-time.
Additionally, enterprises can perform such approaches to moderately process rice and
achieve efficient rice loss reduction through technological innovation. It has essential
significance for guiding paddy processing, rice storage, distribution, and trade.

According to the regulations of the Chinese National Standard of “Milled rice (GB/T
1354-2018) [3]”, rice DOM refers to the degree of germ remaining and the residual bran
layer on the surface and back grooves of a rice grain after processing, which is divided into
three levels: well-milled, reasonably well-milled, and substandard. Well-milled, reasonably
well-milled, and substandard rice represent rice with skin retention less than 2%, between
2% and 7%, and more than 7%, respectively. The skin retention of rice is defined as the
sum of the residual skin and rice embryo projection area as a percentage of the projection
area of the sample. In rice processing enterprises, detecting the DOM of rice is still at the
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stage of human eye inspection or staining method to auxiliary implementation. These
approaches have the disadvantages of strong professionalism, being time-consuming and
labor-intensive, poor repeatability, etc. Foreign researchers found that rice DOM is closely
related to its chemical composition content [4]. They extracted the lipid content of the
milled rice surface by chemical extraction to quantify the DOM of rice [5]. However, this
method cannot meet the requirements of modern rice DOM for rapid, non-destructive,
efficient, and objective detection.

Machine vision technology provides the advantages of high efficiency, fast speed, and
accurate detection, which is currently a research hot spot in the field of crop detection [6–8].
Xu et al. [9] and Wood et al. [10] detected the DOM of rice by digital image processing
technology combined with the staining method, but the staining process was cumbersome
and destructive. Zhang et al. [11] obtained the rice DOM by the bran degree of RGB images
of rice. Wan and Long [12] and Wan et al. [13] proposed detection methods based on
gray-gradient co-occurrence matrix and color features incorporated with machine learning,
respectively, and the corresponding discrimination accuracy reached 94% and 92.17%. Fang
et al. [14] used grayscale values of rice to measure DOM. Zareiforoush et al. [15] adopted
the fuzzy logic reasoning method to realize the recognition of five rice milling grades, and
the overall confidence reached 89.80%. Hortinela et al. [16] used the support vector machine
to classify milled rice with an adaptive enhancement algorithm, and the average accuracy
was 86.67%. Although the above methods achieved positive detection results, they all need
to design and extract features manually, and there is the problem that incomplete feature
extraction leads to low accuracy.

In recent years, CNN has achieved remarkable achievements in face recognition [17],
handwritten digit recognition [18], pedestrian detection [19], and other fields, bringing new
opportunities for the development of rice DOM detection technology. In terms of DOM
detection of rice, Qi et al. [20] combined the hypercolumn technology, max-relevance and
min-redundancy feature selection algorithm, extreme learning machine technique, and
improved VGG16 to identify rice DOM with an overall accuracy of 97.32%. For the quality
inspection of rice, Patel and Joshi [21] used the transfer learning-based VGG16 model for
fine rice, broken rice, and variety determination. A four-layer CNN model to realize head
and broken rice classification was adopted by Hong Son and Thai-Nghe [22]. Li and Li [23]
improved Inception-v3 by introducing fine-grained classification to learn local features
of rice and to identify the integrity of the rice germ. Li et al. [24] refined the Inception-v3
model to detect the integrity of the germ with the addition of mutual channel loss and
mlpconv. Li et al. [25] identified rice germ integrity based on the EfficientNet-B3 model
with the introduction of the double attention network (DAN).

To summarize, existing research on rice is mostly quality examination, while the
determination of rice DOM has essential guidance for maintaining food nutrition and
reducing food waste. The current research is unable to acquire the feature details of rice
well, and there is still a lack of deep learning-based methods that can effectively and
correctly identify the DOM of rice. Therefore, the main contributions of this study are
as follows:

(1). Simple image preprocessing and single-grain rice segmentation methods are used to
segment single-grain rice images from multiple-grain rice images. Then, they are fed
into the improved IRBOA model for rice DOM classification.

(2). The Inception-v3 structure with ResNet34 are combined to fuse rice features at differ-
ent scales and enrich the feature representation, thereby enabling the detection of rice
DOM and enhancing the recognition accuracy of the model.

(3). We used BOA to search for the hyperparameters that lead to the optimal model
performance in order to avoid the problem of manual setting of hyperparameters that
fail to obtain the peak accuracy. The method can increase the discrimination rate of
the model via upgrading the efficiency of manual search.



Foods 2022, 11, 3720 3 of 15

2. Materials and Methods
2.1. Experimental Materials and Image Acquisition

Standard samples of early indica rice DOM (SAC LS/T 15121-2020), including well-
milled, reasonably well-milled and substandard, were selected from the Anhui grain and
oil products quality supervision and testing station in Hefei, Anhui Province, China. A total
of 50 g of each class of rice was used for sample preparation. Each five grams of rice was
packed in a sealed bag as a group, and each type of rice was packed in 10 groups. Finally,
there were 30 groups of three types of rice, marked with the corresponding serial numbers,
and stored in a refrigerator at 0–5 ◦C to prevent the influence of sample deterioration on
the inspection results.

According to the requirements of rice image acquisition, a Phantom h9 flatbed scanner
was used to acquire RGB images of rice in multiple mixed poses with the background of
a black frosted Acrylic plate. The contrast ratio, brightness, resolution, and image size of
the flatbed scanner were set to 65, 30, 600 dpi, and 5000 pixels × 7000 pixels, respectively.
Image acquisition was carried out in units of five grams, and each group of rice was placed
on the draft table of the scanner with the help of a separating sieve to avoid the adhesion
of rice grains. Then, image scanning was performed. Next, the operation of random
placement and scanning was executed again to fully utilize the sample and obtain two
different images. Finally, the scanned rice was put into the corresponding sealed bag, and
the other group of rice was repositioned on the scanner. The above steps were performed
on 30 groups of samples of well-milled, reasonably well-milled, and substandard in turn.
Finally, a total of 60 valid images were obtained, some of which are shown in Figure 1.
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Figure 1. Images of the original multi-grain rice. (a) Well-milled. (b) Reasonably well-milled.
(c) Substandard.

2.2. Image Preprocessing

The image quality of the original images of multi-grain rice is affected by noise due to
the limitation of the shooting conditions. So, a series of preprocessing operations were taken
for the images to selectively highlight effective features and eliminate irrelevant information
in order to improve the image quality and increase the classification and recognition
accuracy. Meanwhile, in this research, we performed image smoothing, binarization, and
segmentation of single-grain rice on the original rice images before inputting the single-
grain rice images into the CNN model.

2.2.1. Image Smoothing and Binarization

We first converted each color image to grayscale using an image grayscale transform.
Image smoothing was achieved by median filtering that can eliminate image noise while
preserving image edge information before implementing image segmentation [26]. We
used a fixed threshold to complete the image binarization operation, which avoided the
situation of separating rice endosperm and bran by other methods. Finally, we performed a
morphological opening and closing operation on the binarized image to smooth the image
and fill the holes inside the target rice.
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2.2.2. Segmentation of Single-Grain Rice Images

The Canny algorithm of contour detection was used to detect the edge of each grain
of rice. The minimum circumscribed rectangle of each rice was drawn, and its four vertex
coordinates and rotation angle were gained. Next, the original rice image was rotated by
the derived rotation angle. Finally, image segmentation of single-grain rice in a vertical
state was realized by extending the coordinates of the rotated rectangle vertex to the
surroundings by 5 pixels as the boundary. Figure 2 shows the sample data of three kinds of
DOM rice after single-grain segmentation.
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Figure 2. Single-grain rice images of three kinds of DOM. (a,b) Well-milled. (c,d) Reasonably
well-milled. (e,f) Substandard.

2.3. Data Augmentation

A dataset was established based on the segmented single-grain rice images, and
5800 valid images each of well-milled, reasonably well-milled, and substandard rice was
obtained, for a total of 17,400 images. Each category of rice dataset was divided into
a training set, validation set, and test set with a ratio of 6:2:2 for each category. That
means obtaining 3480 images per class of rice for the training set and 1160 images for
the validation and test sets, respectively. The training set is used for training the model,
while the validation set is employed to optimize the model structure and hyperparameters,
and the test set is only designed to test the performance of the model to enhance its
generalization ability.

It is essential to enhance the training set data to reduce the incidence of overfitting
when the data are limited. Firstly, each rice was cropped to an image of the same size
(224 pixels × 224 pixels) by the center cropping for input into the CNN model. Secondly,
30% of the training data were randomly selected for horizontal and vertical flipping,
respectively. Then, a random rotation was executed for each image with rotation angles
ranging from 35◦ to 135◦. Finally, the mean and standard deviation of the three color
channels of all training set images were calculated and fed into the normalization function
to realize the normalization of each image. The training set was expanded according to the
above steps to derive sufficient data to train models.

2.4. Proposed Approach

CNN is one of the most popular deep learning models and is widely used in image
classification tasks at present. It is not only able to extract features of target objects in images
automatically and comprehensively but also possesses the characteristic of weight sharing,
which reduces the training parameters of the network and makes the model simpler [27].
We constructed an IRBOA model which can fuse multi-scale information based on the
integration of the Inception-v3 structure and ResNet model to classify rice from three kinds
of DOM. The model used was as described below.
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2.4.1. Inception Structure

Inception structure is a significant breakthrough in the development history of CNN
models. Its purpose is to execute multiple convolution operations or pooling operations on
the input image in parallel and concatenate all the outputs to attain more comprehensive
image features. This structure was first introduced by GoogLeNet and called Inception-
v1 [28]. Subsequently, it was improved to the Inception-v2 structure by applying batch
normalization (BN) [29] and convolutional decomposition. Then, it evolved into the
Inception-v3 network by adding asymmetric convolution, auxiliary classifiers, etc. The
architecture not only accelerates the computation but also improves the generalization ability
of the model while eliminating the use of dropout in the batch normalization network [30].
Currently, the Inception structure has been developed to the Inception-v4 [31].

2.4.2. ResNet Model

ResNet, which emerged in 2015, marks a milestone in deep learning [32]. It adjusts
the structure of the traditional CNN models, in which the most critical residual structure
adds an identity mapping to the basic network unit [33]. The residual structures are shown
in Figure 3. The original fitting target of the residual structure is H(x), and it becomes
extremely difficult to learn H(x) with the gradual deepening of the network level. Thus,
transforming the fitting target into the fitted residual function F(x) (F(x) = H(x) − x)
through the residual structure and turning the output into a superposition of the fit, and
the input will make the learning of the network relatively easy. The residual learning is
adopted for each stacked layer in ResNet, and the residual learning formula is defined as:

y = F(x, {wi}) + x (1)

where x and y are the input and output vectors of the residual structure of this layer, and
F(x, {wi}) represents the residual mapping to be learned. For the example in Figure 3 that
has two layers, F = w2ReLU(w1x) in which ReLU denotes ReLU activation function. In
addition, the dimensions of F(x, {wi}) and x should be consistent. wS, a square matrix, can
be conducted through identity mapping to match the dimensions when the input or output
dimension information needs to be changed, as shown in Figure 3b.

y = F(x, wi) + wsx (2)
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2.4.3. Custom Model

The Inception-v3 structure offers the characteristics of fusing multi-scale features and
accelerating network computation, while the residual structure in ResNet prevents gradient
explosion, gradient disappearance, and network degradation when the number of network
layers is deepened. Consequently, in this study, we integrated the Inception-v3 structure
and residual module and established a multi-scale information fusion CNN model based
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on ResNet34 architecture, named InceptionResNet–BOA model, or IRBOA model for short.
The model was adopted to enrich the rice feature information and promote the recognition
effect. The structure of the IRBOA model is shown in Figure 4. The input of the model
is a 224 × 224 × 3 color image, and the model architecture consists of an Inception-A
structure as shown in Figure 5a, a maximum pooling layer, five Residual-A structures,
two Residual-B structures, an Inception-B structure as shown in Figure 5b, and an average
pooling layer. The input of the fully connected layer is the number of flattened characteristic
maps of the average pooled layer. While the count of neurons of this layer is the amount of
rice DOM types to classify rice DOM.
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Table 1 displays the parameter settings for each layer of the IRBOA model. The
Inception-A structure is a parallel combination of a series of 1 × 1 convolution layers, 3 × 3
convolution layers, and a 5 × 5 convolution layer replaced by two 3 × 3 convolution layers,
with the number of convolution kernels from branch1 to branch4 being 8, 12, 24, 8, 12, 24, 24,
respectively. The Residual-A structure contains two convolutional layers with 3 × 3 kernels
and an identity mapping, and the number of convolutional kernels in Residual-A1 to A4
are 64, 128, 256, and 256, respectively. Residual-B structure matches the number of channels
in the two pathways by 1 × 1 convolution at identity mappings based on the Residual-A
structure, with 128 and 256 convolution kernels for Residual-B1 to B2. The Inception-B
structure is combined by 1 × 1 convolution layers, asymmetric 1 × 7 convolution layers,
and 7 × 1 convolution layers. The number of convolution kernels from branch1 to branch4
are 64, 128, 64, 64, 128, 192, 192, 192, 192, and 128, respectively.
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Table 1. Parameters of the IRBOA model structure.

Name of Layer Parameters (Kernel_Size, Kernel_Num, Padding, Stride)

Image input 224 × 224 × 3

Inception-A

branch1 1 × 1 Conv, 8, 0, 1

branch2
1 × 1 Conv, 12, 0, 1
3 × 3 Conv, 24, 1, 1

branch3
3 × 3 Maxpool, –, 1, 1

1 × 1 Conv, 8, 1, 1

branch4
1 × 1 Conv, 12, 0, 1
3 × 3 Conv, 24, 1, 1
3 × 3 Conv, 24, 1, 1

Filter concatenation 224 × 224 × 64
MaxPool 3 × 3 MaxPool, –, 1, 2

Residual-A1 –, 64, 1, 1
Residual-A2 –, 64, 1, 1
Residual-B1 –, 128, 1, 2
Residual-A3 –, 128, 1, 1
Residual-B2 –, 256, 1, 2
Residual-A4 –, 256, 1, 1
Residual-A5 –, 256, 1, 1

Inception-B

branch1 1 × 1 Conv, 64, 0, 1

branch2
3 × 3 MaxPool, –, 1, 1
1 × 1 Conv, 128, 0, 1

branch3
1 × 1 Conv, 64, 0, 1

1 × 7 Conv, 64, [0, 3], 1
7 × 1 Conv, 128, [3, 0], 1

branch4

1 × 1 Conv, 192, 0, 1
1 × 7 Conv, 192, [0, 3], 1
7 × 1 Conv, 192, [3, 0], 1
1 × 7 Conv, 192, [0, 3], 1
7 × 1 Conv, 128, [3, 0], 1

Filter concatenation 28 × 28 × 512
Avg_pool 1 × 1 × 512

Fc 3
“–” represents that there is no corresponding parameter.

2.5. Optimization Methods of the Model
2.5.1. BOA

Determining how to select appropriate hyperparameters has become a key issue in
image classification tasks in the circumstance that the performance of the model largely
depends on the selection of hyperparameters. The method of manual optimization is
difficult and time-consuming to find the optimal parameters. Recently, the widely used
methods of automatic parameter tuning of machines include the grid search algorithm
(GSA), the random search algorithm (RSA), and the BOA. The essence of the GSA is the
enumeration method, which is costly in terms of time spent when the objective function is
more complex [34]. Although the RSA no longer tests all values within a parameter range,
randomly selected sample points in the search range may ignore optimal values [35]. The
BOA is one of the most popular methods for tuning hyperparameters in deep learning
models [36]. Its main idea is that, given an objective function to be optimized, the posterior
distribution of the objective function is updated by continuously adding sample points
until the posterior distribution approximately corresponds to the true distribution or the
function is executed for a predetermined number of iterations. It is a technique for adjusting
hyperparameters based on the priori information, which is faster, more effective, and more
efficient than the previous two algorithms. The major problem scenarios of the BOA are
as follows:

X* = argx∈S maxf (x) (3)
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Here, S is the candidate set of x and f (x) is the objective function. The target of the
BOA is to pick an x from S such that the value of f (x) is maximized or minimized.

The BOA was used to optimize the hyperparameters of the back propagation neural
network (BPNN), AlexNet, VGG16, ResNet34, and IRBOA models. The activation function
adopted for each model was ReLU with each batch_size set to 64, and the training epoch for
the BPNN and CNN models were 5000 and 100, respectively. The cross-entropy function
was employed for the loss function and the accuracy of the validation set was selected
for the objective function of the BOA. The optimized variables are those proposed in
2.5.2, 2.5.3, and 2.5.4, including the number of neurons in the hidden layer of the BPNN
(hidden), optimizer, learning_rate, the update interval in the learning rate decay algorithm
(step_size), the multiplication factor for updating the learning rate (gamma), and L2 regular
term parameters (weight_decay). Table 2 shows the search space of each hyperparameter.

Table 2. Hyperparameters search space based on BOA.

Model Hyperparameter Search Space

BPNN

hidden {10, 12, 14, 16, 18, 20, 22, 24}
optimizer {SGD, Adam}

learning_rate [0.1, 0.00001]
step_size {600, 800, 1000, 1200, 1400}
gamma [0.1, 0.00001]

AlexNet, VGG16, ResNet34,
IRBOA

optimizer {SGD, Adam}
learning_rate [0.1, 0.00001]

step_size {10, 15, 20, 25, 30}
gamma [0.1, 0.00001]

weight_decay [0.1, 0.00001]

2.5.2. Optimizer

The optimizer is designed to minimize the loss in the training process through gra-
dient descent, thereby enhancing the accuracy of the model. The stochastic gradient
descent (SGD) algorithm and the adaptive momentum estimation (Adam) algorithm are
two superior optimizers for image classification tasks in deep learning. Each of them has
its advantages and disadvantages, hence the optimizer was selected to make the model
optimal by employing the BOA in Section 2.5.1.

2.5.3. Learning Rate

Learning rate is a very crucial hyperparameter in CNN classification models and
impacts the recognition accuracy of the model. It is difficult and extremely important
to choose the appropriate learning rate. In this paper, the model was trained by the
equal-interval learning rate decay method, where the values of step_size and gamma were
determined by BOA. The equation for the equal-interval learning rate decay is as follows.

new_lr = initial_lr× gamma
epoch

step_size (4)

where new_lr is the learning rate after decay, initial_lr is the learning rate before decay,
gamma is the decay rate less than 1, epoch is the number of training rounds, and step_size
is the decay step.

2.5.4. Regularization

Regularization is performed by adding penalty terms for the loss function to reduce
model complexity and instability to avoid overfitting the model. L2 regularization not only
prevents overfitting but also makes the process of optimizing the solution stable and fast
through weight decay. Therefore, the L2 regularization method was adopted to solve the
problem of model overfitting, and the regular term parameter was calculated by BOA.
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2.6. Performance Evaluation Indicators for the Model

Confusion matrix, accuracy, precision, recall, and F1-score are usually used to evaluate
the performance of models for single-label image classification issues [37]. The confusion
matrix is mainly used to compare the objective results with the predicted results when
evaluating the recognition accuracy of the images. Accuracy refers to the probability of
predicting correct samples among all samples. Precision indicates the proportion of samples
with positive predictions that are correctly predicted. Recall denotes the proportion of
correctly predicted outcomes in the actual sample of true examples. In the actual situation,
precision and recall are mutually “restricted”. Therefore, we need the F1-score, a weighted
average of precision and recall, to comprehensively evaluation the performance of models.
The higher the F1-score, the better the performance of the model. The calculation formula
of each indicator is as follows.

Precision (P) =
TP

TP + FP
(5)

Recall (R) =
TP

TP + FN
(6)

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
(7)

F1-score =
2× P× R

P + R
(8)

Here, TP is the number of samples where the actual case is true, and the predicted
outcome is positive. TN is the number of samples where the actual case is true and the
predicted outcome is negative, and the same for FP and FN. They can be calculated by a
confusion matrix.

2.7. Experimental Environment

All models used in this study were trained and tested based on the Windows 10
operating system and the following specifications: Intel ® Core™ i7-11800H CPU @ 2.30
GHz, 16 GB RAM, NVIDIA GeForce RTX 3060 GPU under CUDA v11.1 and cuDNN v8.0.5,
PyTorch v1.9.0 (Facebook, America).

3. Results and Discussion

Rice image datasets with different DOMs were trained on BPNN, AlexNet, VGG16,
ResNet34, and IRBOA models. In addition, we compared the five models to find the
optimal rice DOM inspection model. The training epochs for the BPNN and CNN models
were 5000 and 100, respectively. Figure 6 shows the loss and accuracy curves of the four
CNN models on the training set. The horizontal axis in the graph is the number of training
epochs, and the vertical axes are the loss value (Loss) and accuracy (Acc) of the model,
respectively. With the continuous increase of training epochs, the classification error of the
training set shows a downward trend, and the accuracy shows an opposite trend. When the
training epochs of the IRBOA model reach 69, the training loss is close to a stable value. The
stable value of the average loss is 0.087, which is lower than the other three CNN models,
and the accuracy is significantly higher than other models. In conclusion, the IRBOA model
designed in this paper is reasonable and provides satisfactory training results.
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Figure 6. Comparison of the learning curves of the four CNN models. (a) Loss curve. (b) Accuracy
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The hyperparameter optimization result of the IRBOA model is shown in Figure 7.
The horizontal axis (Trial) in Figure 7 represents the number of iterations of the BOA, when
it is 98, the objective function value is 0.9690 and the best result is obtained. However,
the value of the objective function is still changing as the number of iterations increases.
The effect indicates that the BOA is still trying to explore other optimal positions while
approaching the optimal value. Table 3 lists hyperparameters obtained by the BOA for
the five models, from which we can see that the hyperparameters are those that would
normally not be set manually. The algorithm saves time and achieves results that cannot be
captured by manual search. The models were trained and tested based on the optimized
hyperparameters and the recognition rates were calculated for each model based on the test
set. According to the comparative analysis in Table 3, we found that the detection accuracy
of the IRBOA model for recognizing rice images was higher than that of the other four
models, at 96.90%.

Foods 2022, 11, x FOR PEER REVIEW 11 of 16 
 

 

Figure 6. Comparison of the learning curves of the four CNN models. (a) Loss curve. (b) Accuracy 
curve. 

The hyperparameter optimization result of the IRBOA model is shown in Figure 7. 
The horizontal axis (Trial) in Figure 7 represents the number of iterations of the BOA, 
when it is 98, the objective function value is 0.9690 and the best result is obtained. How-
ever, the value of the objective function is still changing as the number of iterations in-
creases. The effect indicates that the BOA is still trying to explore other optimal positions 
while approaching the optimal value. Table 3 lists hyperparameters obtained by the BOA 
for the five models, from which we can see that the hyperparameters are those that would 
normally not be set manually. The algorithm saves time and achieves results that cannot 
be captured by manual search. The models were trained and tested based on the opti-
mized hyperparameters and the recognition rates were calculated for each model based 
on the test set. According to the comparative analysis in Table 3, we found that the detec-
tion accuracy of the IRBOA model for recognizing rice images was higher than that of the 
other four models, at 96.90%. 

 
Figure 7. The Bayesian optimization process for the IRBOA model. 

  

Figure 7. The Bayesian optimization process for the IRBOA model.

Accuracy is not sufficient to describe the practical application performance of the
model in the case of significant differences and imbalances in the data samples. Confusion
matrices were plotted for several models based on the test set (Figure 8) to accurately assess
the classification performance of the above five classification models for rice DOM. The
actual categories (horizontal axis) are compared with the predicted category (vertical axis)
in Figure 8 to depict the individual classification performance of each category. ‘A’ in the
diagram for well-milled, ‘B’ for reasonably well-milled, and ‘C’ for substandard. These
results demonstrated that the classification effect of the CNN models was better than that
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of BPNN, with the IRBOA model offering the best classification efficiency. The recognition
precision of this model was 99.22%, 94.92%, and 96.55% for well-milled, reasonably well-
milled and substandard rice, respectively, with an average correct detection rate of 96.90%.
The accuracy of the IRBOA model is 7.41% higher than that of traditional machine learning
and no less than 1.35% higher than that of the classic CNN models.

Table 3. Hyperparameter results for the five models of Bayesian optimization.

Model
Parameter (Hidden, Optimizer,

Learning_Rate, Weight_Decay, Step_Size,
Gamma)

Accuracy (%)

BPNN 12, Adam, 0.054, –, 1000, 0.00034 89.49
AlexNet –, SGD, 0.035, 0.0001, 10, 0.0005 92.30
VGG16 –, SGD, 0.016, 0.00027, 20, 0.053 92.93

ResNet34 –, Adam, 0.00011, 0.00012, 25, 0.0001 95.55
IRBOA –, Adam, 0.00019, 0.0002, 15, 0.085 96.90

“–” represents that there is no corresponding parameter.
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According to the prediction value in the confusion matrix, four different statistical
indicators were attained, namely, TP, TF, FP, and FN. Moreover, the four evaluation
indicators of accuracy, precision, recall, and F1-score, as well as the training time and single
image test time of each model were calculated to compare the performance of several
classification models (Table 4). The precision, recall, and F1-score of the IRBOA model
were all 96.90% from Table 4. The corresponding values of BPNN, AlexNet, VGG16, and
ResNet34 were all lower than the model proposed. Their F1-scores were 89.43%, 92.32%,
92.94%, and 95.59%. The experiments indicated that the recognition performance of the
IRBOA model is better than that of the remaining four models, with higher accuracy and
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generalization performance. Meanwhile, we found that the BPNN took a longer time when
testing the network on a single piece of data although its training time of it was much
faster than the CNN model. The reason for this consequence is the BPNN takes a large
amount of time in extracting the color and texture feature parameters and in reducing the
dimension of the feature parameters using principal component analysis. The IRBOA model
for recognizing rice DOM is characterized by its long training time, but high detection
accuracy and less than 20 milliseconds for a single image among the four CNN models.
The effect of the model proposed can meet the actual needs in terms of temporal and model
recognition performance.

Table 4. Detection performance indicators for the five models.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Training
Time (h)

Single Image
Detection
Time (s)

BPNN 89.49 89.44 89.43 89.43 0.10 20.69
AlexNet 92.30 92.35 92.30 92.32 0.56 2.87
VGG16 92.93 93.00 92.93 92.94 3.52 6.61

ResNet34 95.55 95.64 95.54 95.59 1.78 3.74
IRBOA 96.90 96.90 96.89 96.90 4.22 12.93

4. Conclusions

The nutritional value of rice decreases with the fineness of the rice DOM, while the
processing process causes unnecessary food waste and affects national food security.

The purpose of this study was to solve the problems of the high labor intensity
of traditional manual detection of rice DOM with manual feature extraction and a low
recognition rate of existing classification methods based on machine learning. This paper
presents an IRBOA model capable of extracting multi-scale rice features to identify classified
rice DOM to further guide the processing process of rice enterprises.

The classical CNN model was improved by fusing the Inception-v3 structure and the
residual structure. IRBOA, a multi-scale information fusion model, was constructed and
its identification accuracy was enhanced relative to other classical networks. In addition,
we used the BOA to seek the hyperparameters that led to the optimal performance of the
model and increased the correct classification rate of the model. The IRBOA model, which
performed hyperparameter optimization by BOA, achieved a recognition rate of 96.90%
for rice DOM, while the testing time for a single image was less than 20 ms. The accuracy
of IRBOA improved by 7.41 and no less than 1.35 percentage points relative to traditional
machine learning methods and classic CNN models, respectively. The model enhances the
feature representation and has better classification performance and generalization ability.

This study has demonstrated the feasibility of the inspection method proposed, which
can provide a certain guidance to the processing work of rice enterprises and provide
a reliable and accurate technical means for the classification of rice DOM level. More
importantly, real-time rice DOM level evaluation can be achieved in the actual production
process. Subsequently, the model can be combined with specific sorting apparatus to sort
rice that has reached a certain DOM level in the rice milling section. It avoids the rice being
over-milled in the next milling stage, so as to reach the goal of moderate processing and
grain saving.

However, there are still some shortcomings in the research of this paper, and we will
improve our current work in the following two aspects in the future work: (1) The model is
prone to error attributed to the acquisition of single-sided images due to the different bran
degrees on two sides of different DOMs rice. In the future, we will adopt the method of
double-sided image acquisition [38] to improve the recognition rate of the model. (2) The
chalky region of rice will have an impact on the discrimination of DOM level. In future
research, we will search for effective image processing means to reduce the influence of the
chalky areas of rice. (3) The accuracy of the model proposed only reaches 96.90%, which not



Foods 2022, 11, 3720 13 of 15

only takes a long training time but also requires a large number of training samples. In the
future, we can try to use the lightweight model [39,40] with small samples to save training
time, or use the transfer learning model [41,42] to improve the recognition accuracy while
reducing training time and samples.
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