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Abstract: With the continuous development of economy and the change in consumption concept,
the demand for meat, a nutritious food, has been dramatically increasing. Meat quality is tightly
related to human life and health, and it is commonly measured by sensory attribute, chemical
composition, physical and chemical property, nutritional value, and safety quality. This paper
surveys four types of emerging non-destructive detection techniques for meat quality estimation,
including spectroscopic technique, imaging technique, machine vision, and electronic nose. The
theoretical basis and applications of each technique are summarized, and their characteristics and
specific application scope are compared horizontally, and the possible development direction is
discussed. This review clearly shows that non-destructive detection has the advantages of fast,
accurate, and non-invasive, and it is the current research hotspot on meat quality evaluation. In the
future, how to integrate a variety of non-destructive detection techniques to achieve comprehensive
analysis and assessment of meat quality and safety will be a mainstream trend.

Keywords: meat quality; non-destructive detection; near-infrared spectroscopy; Raman spectroscopy;
hyperspectral imaging

1. Introduction

Meat and meat products are major sources of high-quality protein and they are rich
in vitamins and minerals. Beef, pork, mutton, and other raw meat can replenish the
microelement, such as iron lacking in human body and they are an indispensable food
to strengthen the physical function and promote metabolism [1,2]. In recent years, with
the continuous improvement in consumption level, people gradually turn to the pursuit
of quality of life. To maintain life and health and improve the irrational diet structure,
the demand for meat, a type of nutrient-rich product, is increasing day by day [3]. The
consumption of meat per person is expected to increase to 35.5 kg by 2024 according to the
Organization for Economic Co-operation and Development (OECD).

Meat is a diverse product. Internal factors of livestock and poultry themselves, or
external conditions, such as rearing environment, slaughter time, and storage temperature,
will have a great impact on the quality of meat [4]. Once exposed to light, dust, and microor-
ganisms during transportation and sales, they will take on an unappetizing appearance.
The quality of meat is directly related to the survival and development of human beings,
and it is the most critical aspect for consumers to consider when purchasing meat. Some
consumers are even willing to pay a higher price to guarantee the quality of meat [5].
However, in recent years, many unscrupulous merchants have tended to take risks to seize
the market and obtain huge profits, resulting in various quality problems. Government
departments and the food industries should pay close attention to the safety and quality of
meat to safeguard the legitimate rights and interests of consumers [6]. Therefore, how to
test and estimate the quality of meat has become the top priority of research.
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Sensory attribute, chemical composition, physical and chemical property, nutritional
value, and safety quality are five important standards commonly used [7]. Standards of
sensory attribute include color, smell, taste, and texture. Color, a basic attribute of food, is
the external embodiment of physical and chemical properties, which can directly reflect
the freshness of meat and meat products. Meat mainly contains six substances, namely
water, protein, fat, vitamins, minerals, and carbohydrates, which are closely related to its
nutritional value. Water is the most abundant ingredient in meat and its specific content
and distribution, especially water-holding capacity (WHC), which will affect the taste of
meat. Tenderness and juiciness depend on the composition of the fat, determining the
purchase intention of customers. Among the physical and chemical properties, pH value
can be used to grade the quality of meat into RFN (reddish-pink, firm, non-exudative),
PSE (pale, soft, exudative), and DFD (dark, firm, dry). Safety qualities such as freshness,
authenticity, and adulteration are tightly linked to human health.

Traditional discrimination methods of meat are broadly divided into two categories:
Subjective and objective, including sensory assessment, microbial detection, physical and
chemical experiments, etc. Sensory evaluation, integrating senses of sight, smell, taste, and
touch, is an artificial measurement. It depends on the experience and practice of inspectors,
and the results are often difficult to be quantified. Objective evaluation refers to ascertaining
the physical and chemical properties of meat by means of a scientific experiment with the
aid of instruments. There is a certain improvement in the speed and accuracy of results
while it will cause irreversible damage to products [8]. To improve the detection efficiency
and reduce the loss of products, modern techniques are developing rapidly in the direction
of rapid, accurate, and non-destructive detection.

Non-destructive detection technique (NDDT) is a burgeoning comprehensive subject
based on physics, electronics, computer science, artificial intelligence (AI), etc. It can
describe the internal structure and external properties of a substance by detecting the
optical, acoustic, and electromagnetic characteristics without destroying its original state [9].
NDDT is a promising method in the field of meat quality inspection due to its virtues
of rapidness, real-time performance, accuracy, and non-destructive detection. AI has
developed into one of the most revolutionary technologies in the 21st century. It provides
technical support for online meat grading and evaluation, and it is expected to bring about
an unprecedented opportunity for the non-destructive detection of food and agricultural
products [10].

In this paper, four types of non-destructive detection techniques commonly used to
estimate the quality of meat and meat products in recent years have been reviewed in detail,
including spectroscopic techniques (near-infrared spectroscopy, Raman spectroscopy, and
terahertz spectroscopy), imaging techniques (hyperspectral imaging, X-ray imaging, and
thermal imaging), machine vision, and electronic nose. The review discusses the theoretical
basis and current applications of these emerging techniques, as well as the characteristics
and challenges faced by them, and finally presents the outlook for future development
directions. The searches on the research articles were carried out using several databases,
such as Web of Science and Science Direct. The keywords focused on different types of
meat and meat products in combination with non-destructive detection techniques.

2. Spectroscopic Techniques

Spectrum can be divided according to the range of wavelength, which is successively
from small to large: γ-rays, X-rays, ultraviolet, visible light, infrared, microwave, and radio
waves [11]. Spectroscopy is not only an interdisciplinary subject combining physics and
chemistry, but also an important measurement for qualitative and quantitative analysis of
meat and meat products. Spectroscopic techniques, including near-infrared spectroscopy
(NIRS), Raman spectroscopy (RS), and terahertz (THz) spectroscopy, have been used in
food, communication, and health care as well as other areas, and are often combined
with various approaches in practical applications. Multivariate statistical analysis (MSA)
methods include multiple regression analysis (MRA), cluster analysis (CA), and discrim-
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inant analysis (DA), and have been greatly used to process the spectral data. Moreover,
stoichiometry and computer technology have made great contributions to the development
of spectroscopy [12].

2.1. Near-Infrared Spectroscopy

Near-infrared spectrum is an electromagnetic wave between the visible spectrum and
mid-infrared spectrum, with a wavelength range of 800 to 2500 nm. Different organic
matter often contains different hydrogen-containing groups, such as O-H bonds in water,
N-H bonds in protein, and C-H bonds in fat. When exposed to infrared spectrum, they are
excited into resonance and can absorb the energy. Molecules absorb each wavelength at a
specific rate, creating peaks and troughs in the spectrum. The principle of near-infrared
spectroscopy is to measure the frequency doubling and frequency merging absorption of
these hydrogen-containing groups, and then conduct qualitative or quantitative analysis of
the components according to the position and intensity of the absorption spectrum [13].

Sample preparation indicates the selection of a batch of representative meat and meat
products with different parts, varieties or origins and its process will partly affect the
reliability of results. In general, NIRS tends to be more accurate in predicting the chemical
composition of chopped tissue than intact meat samples due to the homogeneity of ground
products [14]. The energy absorbed will be lower after the crushing treatment, leading to a
higher reflectance, which is easier to be measured. Therefore, meat and meat products are
often physically segmented before subsequent data acquisition and the finer the grinding,
the better the results [15].

Frequently-used devices, to scan the samples and collect their spectral data, include
Fourier near-infrared spectrometer, portable near-infrared spectrometer, etc. At present,
Denmark and Germany have developed equipment that can be applied to online detection
in industrial production. During the procedure of data preprocessing, different methods
should be appropriately selected on the basis of persisting issues. Smoothing is mainly
applied in eliminating the interference of high frequency noise [16]. Utilizing first and
second derivatives can remove the influence of systematic background, such as base-line
drift. Additionally, the scattering correction, including multiplicative scattering correction
(MSC), orthogonal signal correction (OSC), etc. can effectively reduce the adverse effects
of scattering on the model [17]. Moreover, averaging and centering are commonly used
spectral preprocessing methods.

When quantitatively analyzing the physical and chemical parameters of samples, the
data obtained based on standard methods are the theoretical limit of using mathematical
models. Acid value (AV) is defined as milligrams of potassium hydroxide needed to
neutralize the free fatty acids in one gram of fat, and it is an important index to measure
the degree of hydrolysis of fat [18]. Kjeldahl method can detect the content of total volatile
basic nitrogen (TVB-N), which has been widely used to estimate the crude protein content
in beef. Soxhlet extraction and drying method are always applied for the determination of
the fat and moisture content [19,20].

The most critical and complex procedure of NIRS is to establish the mathematical
relationship between spectral information and physicochemical data, including analytical
method, prediction equation, etc. The selection of spectral region is generally based on the
specific characteristics of samples. In general, the system will contain more information
if the spectral range is sufficiently comprehensive. Enlarging the counts of scans and
expanding the sampling interval are two effective means to improve the prediction accu-
racy in daily application [21,22]. However, the error in measurement will increase in the
meantime with the extension of data points, thus the choice of spectral region is necessary
to avoid the part of small information and large distortion. To solve the influence caused
by overlapping spectral peaks and the interference based on a complex background, all the
information of the selected spectral region must be applied in the modeling process. The
data processing algorithms commonly used include principal component analysis (PCA),
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linear discriminant analysis (LDA), support vector machine (SVM), partial least squares
regression (PLSR), etc.

Cross-validation is the most common method to evaluate the prediction accuracy of
mathematical models. It takes out a fixed number of samples each time, using the remaining
sections to establish a model and detect the samples chosen before, and finally it repeats
the above operations until all of them have been tested. When the correlation coefficient
approaches 1 and the corrected standard deviation is close to the measured standard
deviation, the performance of the system is best. In addition, external validation has been
applied in researches on meat and meat products, such as pork and pork sausages [23,24].
After evaluating the system performance (accuracy, stability, etc.) and further improving
the model that has been built, the quality of meat can be directly calculated by collecting
the spectra of unknown samples and then using this model.

Compared with traditional chemical analysis methods, NIRS has the advantages of
rapidness, non-destructive detection, and low cost, and has been widely used for chemical
composition analysis, edible quality evaluation, and adulteration identification. Chemical
composition is the basic property of food, and the current researches on meat and meat
products have focused on the content of moisture, crude protein (CP), and intramuscular
fat (IMF). As early as the 1960s, there was a study on the determination of water and fat
content in meat emulsion using direct spectrophotometric techniques [25]. Thereafter, with
the introduction of chemometrics, modern optics, and computer data processing, NIRS has
developed rapidly. Prieto et al. successfully used near-infrared reflectance spectroscopy
to estimate several chemical parameters of oxen meat, indicating that NIRS was an useful
tool to analyze the composition of beef [26]. Other researches have confirmed the ability
of NIRS in the field of meat products. For example, Gaitan-Jurado et al. were devoted to
evaluating the content of fat, protein, and moisture in pork dry-cured sausages using the
diode array instrument [27]. In addition, there are abundant studies on the composition
analysis of mutton, breast meat, etc. [28,29].

Edible quality mainly contains tenderness, marbling, color, etc. Tenderness is a specific
characteristic to describe the texture of meat, referring to the softness and fragility of
the mouthfeel when tasting. At present, Warner-Bratzler shear force (WBSF) is widely
used as a criterion to determine meat tenderness. Barlocco et al. predicted the IMF and
moisture content and WBSF in intact and homogenized pork muscles based on PLS models,
respectively, suggesting the potential of NIRS to estimate the content of IMF and moisture
in homogenized tissues and WBSF in intact samples [30]. Byrne et al. used PCA to discuss
the correlation between NIRS and the selected quality attributes (tenderness, marbling, and
flavor) of raw beef [31]. Cozzolino et al. identified the color of pork muscle using visible
and near-infrared reflectance spectroscopy combined with modified partial least squares
analysis [32].

Adulteration often has the characteristics of low investment and high return. It is
common to replace high-quality meat with raw meat of other varieties and origins. In
addition, soybean and other vegetable proteins are often added in meat products to achieve
the purpose of reducing costs. Meanwhile, it is hard to tell the difference between real
meat and fake meat owing to the complex composition and diverse adulteration methods.
Therefore, how to accurately detect the safety quality of meat is of great significance.
Kuswandi et al. established a PLS and LDA model to determine pork adulteration in
beef meatball based on chemometrics, and the results were in good agreement with the
immunochromatographic method [33]. Alamprese et al. aimed at evaluating the ability of
visible, near-infrared, and mid-infrared spectroscopy for identification and quantification
of turkey meat adulteration in minced beef by different multivariate regression and class-
modeling strategies [34]. Additionally, NIRS could be used for the detection of adulteration
in beef hamburgers, with an accuracy of up to 92.7% [35].

However, this technique still has some limitations, such as the demand for a large
number of physical and chemical experiments before modeling. Machine vision is the most
widely used method when detecting meat color, and the accuracy of using electro-magnetic
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characteristics is often higher than NIRS in the aspect of freshness. Therefore, NIRS
should be combined with other non-destructive detection techniques in the comprehensive
evaluation of meat quality to increase the detection efficiency and economic benefits.
Moreover, due to the great influence of external factors on the spectrum, how to effectively
extract spectral information and increase the signal-to-noise ratio is an important direction
in the future research.

2.2. Raman Spectroscopy

The scattering is classified as inelastic scattering or Raman scattering if the incident
photons exchange energy with molecules during the collision. Raman spectrum is a type of
molecular vibration spectrum based on Raman scattering effect [36]. It detects the inelastic
scattering spectrum generated by the interaction between lasers and molecules to obtain
the vibration or rotation information of molecules and plays a complementary role with the
near-infrared absorption spectrum [37]. In fact, each molecule has its own unique Raman
spectrum signal. Therefore, once the special molecular information in the samples has been
extracted, the qualitative judgment of the material structure can be successfully realized. In
the field of meat detection, chemometrics is often used to extract features from samples. By
analyzing the representative information of meat samples, the relationship between the
molecular structure and various free radical groups can be possessed to further evaluate
the quality of meat.

Raman spectroscopy, a green detection technique, does not require pretreatment of
samples and has certain advantages in generating information. In general, only a small
number of samples are needed to obtain the key characteristics of compounds in food.
In recent years, Raman spectroscopy has been increasingly applied in the prediction of
meat dietary quality traits. Schmidt et al. conducted investigations on the shear force and
cooking loss of 140 raw sheep meat samples from two different origins with a prototype
handheld Raman system. They used PLSR algorithm to correlate the Raman data with
quality traits and the results exhibited the usefulness of Raman spectroscopy to estimate
the tenderness and cooking loss of meat [38]. Similarly, Fouler et al. focused on the
juiciness and tenderness of 45 beef loins using a 671 nm handheld Raman spectroscopic
device, and the correlations between predicted and observed values were 0.42 and 0.47,
respectively [39]. Moreover, Raman spectroscopy has considerable potential to determine
the quality attributes of cooked meat. Beattie et al. selected 52 cooked beef samples and
successfully measured their texture and tenderness [40].

In the analysis of chemical components, Raman spectroscopy is often used to study the
changes in chemical bonds in substances, especially for the determination of water, protein,
and lipid structures in meat. Pedersen et al. combined infrared absorption spectrum
with Raman scattering spectrum to reflect the moisture content of pork in a short period
after slaughter, indicating the feasibility of Raman spectroscopy to determine the structure
of water in biological macromolecules [41]. The Raman bands of proteins are usually
assigned based on the model compounds in meat, such as amino acids and short peptides.
Herrero used Raman spectroscopy as a powerful and non-invasive method to provide the
information on the secondary structure of muscle proteins, and the results demonstrated
its possibilities to predict the functional properties and sensory attributes of protein in
intact muscle and muscle food [42]. Moreover, Shao et al. investigated the changes in
structure, texture, water- and fat-binding capacity of raw and heated meat batters added
with different lipids. The results showed that both the preparation process and thermal
treatments will cause great damages to the properties of meat batters [43].
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Applications of Raman spectroscopy in safety quality evaluation revolve around
spoilage, adulteration, etc. Based on the usage of machine learning in combination with
evolutionary computing methods, Argyri et al. compared Raman spectroscopy with Fourier
transform infrared (FT-IR) spectroscopy on the prediction of meat spoilage. It turned
out that both Raman spectroscopy and FT-IR spectroscopy reliably assessed the spoilage
of meat [44]. Boyaci et al. extracted the pure fat samples from 49 beef and horsemeat
samples and used PCA to perform the data mining process of Raman spectra, providing an
accurate and fast method to identify the beef adulteration with horsemeat based on Raman
spectroscopy and chemometrics [45]. Boar taint is a disgusting odor that results from the
accumulation of androstenone and skatole, especially in the fat tissue of non-castrated
male pigs, and using a portable Raman device is a feasible approach to detect and classify
different types of boar taint [46].

In recent years, with the progress of laser technology and nanotechnology, Raman
spectroscopy has been comprehensively applied in the field of meat quality evaluation. It
is a direct and non-destructive technique compared with traditional detection methods.
However, in view of the heterogeneity and complexity of meat and meat products, future
researches need to determine the repeatability and robustness of models which have been
established on a larger independent dataset. In addition, Raman spectroscopy is still a
promising direction for scientific studies and industrial applications to explore the law of
quality change in meat processing.

2.3. Terahertz Spectroscopy

Terahertz (THz) wave belongs to the far-infrared band and its frequency is in the range
of 0.1 to 10 THz, which is located between millimeter wave and infrared spectrum [47]. As
a promising direction in the field of spectroscopic technique, THz spectroscopy benefits
from its unique radiation band. It uses THz rays to irradiate the measured objects and can
be available to obtain the information through the transmission or reflection of samples,
which has the advantages of high signal-to-noise ratio, wide dynamic range, etc.

According to the type of sources, THz imaging systems can be divided into two modes:
Pulse and continuous. The former has the characteristics similar to terahertz time domain
spectroscopy (THz-TDS) and can perform functional imaging of objects to obtain the
refractive index distribution inside the substance. Although the latter has some advantages
in the complexity of data and system, it cannot reflect the comprehensive information of
the samples [48,49]. Therefore, it is necessary to combine the characteristics of the two
methods and then select the imaging system according to the specific application. Terahertz
spectroscopy is able to determine the appearance and internal components of targets by
collecting their time domain and frequency domain information in THz band and has been
deeply used for the detection of meat quality.

For the sake of financial interests, some enterprises cheat on the quality of meat,
such as selling defective merchandise and putting additives into the raw meat. THz
spectroscopy can identify the meat from different tissues, varieties or even different brands
of the same variety, and this provides the theoretical foundation and experimental basis
for the authenticity and adulteration of meat in practical application. It is widely known
that many materials have characteristic absorptions in terahertz range. THz-TDS can be
used to ascertain the absorption and refractive index of tert-butylhydroquinone (a food
additive in McDonald’s chicken products). The results indicate that it is a potential method
to detect the food additives in meat products [50]. In addition, THz spectroscopic imaging
has the ability to distinguish the foreign materials in food and has effectively located metal
contaminations in sausages with complicated compositions using PCA combined with
discriminant analysis methods [51].

During the deterioration process, the absorption coefficients of pork tissue are often
different in the time domain and frequency domain. Terahertz spectroscopy possesses the
fingerprint characteristics of many biomolecules and covers a large number of material
vibration models. It can be used to respectively detect the freshness of preserved meat and
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spoiled meat, and the results indicate that the moisture content is closely related to meat
quality, which provides a reference for the application of this technique in meat freshness
identification [52]. A study on the spoilage of salmon using THz-TDS and electrochemical
impedance spectroscopy confirms that Terahertz spectroscopy is a non-invasive and non-
destructive method to monitor the quality of fish [53]. Terahertz spectroscopy presents
a multifaceted capability to observe the low-energy response of macromolecules, cells,
and tissues, and to determine the biophysical effects of terahertz wave. In the detection
of meat products, lean meat always absorbs terahertz radiation, while fat meat is almost
transparent to the radiation, which can be used to detect the proportion of fat and lean [54].

Terahertz wave has a strong penetration to most dielectric materials and non-polar
substances, and its energy is lower than the bond energy of various chemical bonds, thus it
will not cause harmful ionization reactions. Therefore, THz spectroscopy has been widely
used in semiconductor materials, broadband communication, microwave orientation, etc.
In the field of meat and meat product detection, there are many potential problems in the
application and research of this technique. First, its theoretical research is still in the early
stage. For instance, the reason for the signal generation of matter in the terahertz band
range is relatively complex and needs to be further studied. Second, water has a strong
absorption of terahertz radiation and the meat samples always contain a large amount
of water, which will affect the signal-to-noise ratio in the testing process. Finally, the
experimental platform for transmitting and receiving terahertz waves is also necessary to
be improved. Table 1 shows the extensive applications of spectroscopic techniques in the
field of rapid non-destructive detection for meat quality in the past years.

Table 1. Summaries of different spectroscopic techniques applied for meat detection.

Techniques Samples Applications Methods Reference

Near-infrared
spectroscopy

Chicken Classification of poultry samples DT and SVM [55]

Pork Prediction of fatty acid profile SVM, DT, and REPTree [56]

Minced lamb Detection of adulteration with duck meat
in minced lamb PLSR [57]

Chicken Discrimination of fresh and
freeze-thawed chicken meat SIMCA and PCA [58]

Beef Prediction of WBSF, L*, a*, and b* PLSR [59]

Duck Prediction of TVB-N content PLSR and PCA [60]

Pork Identification of repeatedly frozen meat PCA and SCNN [61]

Pork Evaluation of pH and color PLSR [62]

Pork Prediction of post-mortem meat quality
(pH, drip loss, and intramuscular fat) PLSR [63]

Duck Evaluation of pH and color PLSR [64]

Lamb Classification of geographical origins and
prediction of δ13C and δ15N PCA, PLS-DA, LDA, and PLSR [65]

Lamb Classification of geographical origins PCA + LDA and PLS-DA [66]

Fishmeal Discrimination of meat and bone meat in
fishmeal PLS-DA [67]

Crab Determination of edible meat content PLSR [68]

Sliced pork meat Evaluation of freshness and detection of
spoilage PCA, CDA, and PLS [69]

Freeze-dried beef and
mutton Prediction of IMF and protein content PCA and PLSR [70]

Heated fish and shellfish
meats Determination of end-point temperature MLR [71]
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Table 1. Cont.

Techniques Samples Applications Methods Reference

Raman spectroscopy

Beef, pork, and mutton Identification of species RF and BPNN [72]

Beef, lamb, venison Classification of species SVM and PLS-DA [73]

Beef Assessment of tenderness PLSR [74]

Beef Prediction of WBSF, IMF, ultimate pH,
drip-loss, and cook-loss PLSR [75]

Dairy bull beef Assessment of physico-chemical traits
related to eating quality PLSR [76]

Beef and poultry Identification of meat-associated
pathogens SVM [77]

Beef Detection of frauds in bovine meat by the
addition of salts and carrageenan PLS-DA [78]

Pork Prediction of meat quality traits PLSR [79]

Terahertz
spectroscopy

Pork Prediction of freshness BP-ANN and AdaBoost [80]

Chicken
Analysis of chlortetracycline

hydrochloride and tetracycline
hydrochloride

PLSR [81]

Fish, beef, chicken, and pork Classification of species PCA-SVM [82]

Abbreviations: WBSF, Warner-Bratzler shear force; L*, lightness; a*, redness; b*, yellowness; TVB-N, total volatile
basic nitrogen; IMF, intramuscular fat; DT, decision tree; RF, random forest; SVM, support vector machine;
PLS, partial least squares; PLSR, partial least squares regression; PCA, principal component analysis; LDA, linear
discriminant analysis; CDA, canonical discriminant analysis; PLS-DA, partial least squares discriminant analysis;
MLR, multiple linear regression; SCNN, self-organizing competitive neural network; BPNN, back propagation
neural network; BP-ANN, back propagation-artificial neural network; AdaBoost, adaptive boosting.

3. Imaging Techniques

In recent years, with the iterative update of camera performance and the continuous
improvement in computer hardware processing capacity, imaging techniques gradually
present the potential in the field of non-destructive detection and have been widely used
in aerospace, agriculture, food, and other areas [83]. Imaging is a non-contact method
using optical principles, and it can provide the spatial information of objects related to their
chemical properties and sensory attributes, which is crucial for measuring the external
characteristics of food. Emerging imaging techniques commonly used for meat quality
and safety evaluation include hyperspectral imaging (HSI), X-ray imaging, and thermal
imaging (TI), which will be separately described in the following sections.

3.1. Hyperspectral Imaging

Spectroscopy aims to obtain spectral information by measuring the optical properties
of food [84]. Additionally, the spectral information can reflect the chemical composition
of meat, which is of great significance for estimating its internal quality characteristics.
However, there are some limitations in the application scope of spectral technology. Com-
puter vision is the most commonly used method when describing the distribution in space,
and the acquired image information can be used to detect the external attributes of meat
products. Hyperspectral image uses the voxels to characterize spectral information and
can describe the two-dimensional spatial information of objects, which is a comprehensive
hyperspectral cube in three-dimensional space. The approaches to acquiring hyperspectral
images include point scanning, line scanning, area scanning, and single shot scanning [85].
Among them, line scanning is the most popular scanning method concerning food quality
and safety assessment [86]. Hyperspectral imaging (HSI) is a new generation of photoelec-
tric detection and fusion technology and has many characteristics, such as high spectral
resolution, continuous multi-band, and atlas integration [87,88]. Therefore, HSI, as the
name implies, integrates the advantages of traditional spectroscopy and imaging tech-
nology, which can provide spectral information and image information at the same time,
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providing a feasible method for qualitative discrimination and quantitative analysis of
comprehensive meat indicators.

The applications of HSI in meat quality evaluation mainly focus on sensory attributes
and chemical components. Tenderness is one of the most critical characteristics to describe
meat palatability. Cluff et al. developed a non-destructive model to classify the tenderness
of cooked-beef based on hyperspectral optical scattering imaging, and the accuracies were
83.3% and 75.0% for tough and tender samples, respectively [89]. Similarly, Wu et al. used
hyperspectral scattering techniques to predict the color, pH value, and tenderness of beef,
with a correlation coefficient of 0.86 for WBSF [90]. Additionally, they obtained a better
correlation coefficient of 0.91 in further research [91]. Some researches concentrate on the
other sensory characteristics of meat. Aredo et al. scanned 58 longissimus dorsi muscle
samples by the HSI reflectance mode and established a model using PLSR algorithm to
predict the marbling of beef, which turned out to be a high correlation coefficient of 95%
in the prediction [92]. Moreover, Kamruzzaman et al. used a visible HSI system in line
scanning mode to measure the color parameters of red meat and the outcome showed that
HSI imaging was a potential technique to evaluate meat color [93].

In the field of chemical components, applications of HSI revolve on the detection of
moisture, protein, and fat content. Water is a main component of meat and can be precisely
determined by hyperspectral imaging. The HSI systems with a wavelength ranging from
900 to 1700 nm have been used for the detection of moisture content in raw meat such
as pork, beef, lamb, etc. [94–96]. Furthermore, HSI facilitates the estimation of water in
meat products. On the basis of near-infrared hyperspectral imaging in combination with
chemometrics, Achata et al. developed a novel prediction model to determine the content
of water in beef jerky samples, indicating the satisfaction of NIR-HIS to evaluate drying
behavior in cooked meat [97]. Talens et al. applied multivariate analysis methods (PLSR
and PLS-DA) to predict the contents of water and protein in Spanish cooked hams and
successfully graded the examined samples into different quality categories [98]. Moreover,
the study on the content and distribution of intramuscular fat is an important direction of
hyperspectral imaging. Liu et al. successively employed stepwise procedures and PLS to
predict the IMF content of pork related to juiciness, tenderness, and taste, with the adjusted
R2 of 0.92 and 0.93, respectively [99]. Lohumi et al. visualized the concentration of IMF in
beef in the spectral range of 400 to 1000 nm, providing a fast and accurate method for the
determination of IMF distribution [100].

HSI is a potential non-destructive detection technique in the field of food quality and
safety assessment. However, due to the fact that hyperspectral images cover both spectral
and spatial information of the objects, HSI often has large and complex amount of data and
cannot be directly applied for online meat quality detection. Therefore, it is indispensable to
select suitable analysis algorithms to process the data in advance, which can effectively save
computation time. Additionally, choosing the most relevant wavelength is instrumental in
eliminating the variability of spectral data. Moreover, the rationality of spectral regions has
a great influence on the development of HSI. Utilizing different image processing methods,
such as artificial neural network (ANN) in selected wavebands, the region of interest can be
finally determined [101]. At present, HSI technique has been widely used in the detection
of defective fruits, damaged mushrooms, teas, etc. In the future, HSI will develop in the
direction of high speed and low cost, and the emergence of a real-time food monitoring
system to satisfy the requirement of modern industry is anticipated [102].

3.2. X-ray Imaging

The X-ray imaging system often consists of X-ray generator, linear array detector,
image acquisition card, and display equipment [103]. X-ray has the characteristics of
penetration, diffraction, and fluorescence excitation. The transmission and tomography
images of samples can be obtained by capturing the penetration characteristics of X-rays.
Computed tomography (CT) is one of the most popular X-ray imaging techniques at present.
It is often used in the quality and safety inspection of food, especially providing a great
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possibility for research on the structure and components of meat. CT has less damage to
the objects and can be used to investigate exactly the same samples before and after heat
treatment. Miklos et al. used X-ray tomography combined with 3D image segmentation
to quantitively study the heat induced structural changes in meat, especially the internal
components of samples including water, fat, connective tissue, and myofibrils [104]. Furnols
et al. estimated the lean meat percentage (LMP) in pig carcasses using PLSR algorithm to
obtain a calibration equation for the computed tomography scans [105].

In general, the freshness of meat will be greatly reduced after the freezing treatment.
Many unscrupulous traders cut costs by replacing raw meat with frozen meat. Kobayashi
et al. conducted a comparative study of tuna meat before and after freezing by computed
tomography, and the results showed that uneven ice crystal structures would form in the
cells of frozen tuna meat, which provided an idea for distinguishing frozen meat [106].
Diffraction-enhanced imaging is a new radiographic imaging modality used for NDDT
and X-ray computed tomography [107]. It is an important method to distinguish fresh
meat from frozen meat. The diffraction intensity is directly proportional to the freshness of
meat and the quality of meat can be judged by the position of wave peaks in the diffraction
pattern [108]. In addition, the characteristics of meat change greatly after being processed
into meat products and the X-ray imaging technique usually has accurate prediction results
when detecting the microstructure characteristics of meat products, such as fried chicken
nuggets [109].

X-ray imaging plays an important role in the field of food safety detection. It has been
commonly used to determine the foreign materials in meat and meat products to avoid
food safety accidents in daily life. Tao et al. developed a new image detection algorithm to
detect the bone fragments in meat, and it was feasible even in the samples with uneven
thickness [110]. However, when the density of foreign materials is close to water, the
detection results of this technique are often not very good. In addition, X-ray imaging
can be used to qualitatively analyze the mildew of food. Through parameter analysis and
processing of the mildew image, effective detection of the mildew area can be realized.

3.3. Thermal Imaging

Thermal imaging is a type of non-destructive and non-contact temperature sensing
technique. It is one of the most commonly used food contaminant detection methods.
Thermal imaging technique mainly collects thermal infrared band light to detect the ther-
mal radiation [111]. An infrared thermal imaging system consists of a thermal camera
equipped with an infrared detector, a signal processing unit, and an image acquisition
system. Infrared detectors absorb infrared energy emitted by objects and convert it into
electrical signals. Then, the pulses are sent to the signal processing unit, which transforms
the information into thermal images. The use of thermal imaging method avoids the risk
of contamination caused by contact measurement and can quickly obtain the temperature
value and its distribution at a specific point. According to these characteristics, it can be
non-invasively applied to food detection.

Thermal imaging can generate images by collecting thermal radiation emitted by
objects without interference from the external environment. The infrared thermal imaging
temperature measurement has been developed greatly due to its advantages of accurate
results and non-contact process. Infrared thermal imaging is a popular thermal imaging
technique. Traffano-Schiffo et al. used infrared thermal imaging to obtain changes in
meat surface temperature during the drying operation [112]. Kor et al. compared two
different methods, contact (thermocouples) and non-contact (thermal imaging), to measure
the temperature of semi-cooked cylindrical minced meat products during cooking. The
results showed that the thermal imaging non-contact temperature measurement method is
faster and can greatly reduce the errors of point measurement [113].

Driven by market interests, some illegal merchants mix low-price meat with high-
price meat to obtain higher profits. Zheng et al. collected 35 samples of pure mutton,
35 samples of pure pork, and 175 samples of adulterated mutton in the experiment. The
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combination of thermal imaging and convolutional neural network (CNN) achieved great
results in qualitative classification of different samples and quantitative prediction of the
adulteration ratio, and the accuracy of validation set and test set were 99.97% and 99.99%,
respectively [114]. Moreover, thermal imaging can be used to predict the temperature
of chicken after cooking combined with multi-layer neural networks, demonstrating its
potential in estimating the doneness of chicken [115].

Recent researches on the evaluation of pork and beef products using the thermal
imaging technique mainly focus on the alive samples. Cuthbertson et al. investigated the
real-time quality and physiological response of cattle exposed to transport using infrared
thermography [116]. Newborn piglets are susceptible to the environmental temperature
and the cold condition is one of the most dangerous stressors encountered. Tabuaciri et al.
intended to treat the thermography as an early diagnostic tool to distinguish hypothermia
piglets [117].

Thermal imaging is a promising technology, which can be applied in a wide range of
fields. It has the advantages of long distance, strong penetration, resistance to strong light
interference, and can adapt to the working environment at night and under harsh conditions.
However, thermal imaging has limitations. It records the heat distribution by measuring
the infrared radiation emitted from the surface of objects to map the temperature. Therefore,
it is sensitive to thermal interference in the environment, and the results are often uncertain
when detecting targets with unstable temperature. In addition, the choice of technology in
measurement of temperature has a great impact on the prediction accuracy and the contact
method generally shows more reliable results. Thermal imaging is developing toward
low cost and high accuracy. Table 2 lists the typical applications of imaging techniques as
non-destructive detection methods for meat quality attributes during the recent years.

Table 2. Summaries of different imaging techniques applied for meat detection.

Techniques Samples Applications Methods Reference

Hyperspectral imaging

Beef Estimation of fat marbling PLSR [118]

Pork Prediction of fat content SVR and PLSR [119]

Mutton Discrimination and analysis of
adulterated mutton CNN [120]

Mutton Evaluation of texture parameters DT, RF, PLSR, and LSSVM [121]

Beef, lamb, and venison Prediction of IMF and pH PLSR and DCNN [122]

Lamb Prediction of stearic acid content PLSR and LSSVM [123]

Mutton Detection of fatty acid content SPA, UVE, and VCPA [124]

Chicken
Prediction of quality traits and
grades of intact chicken breast

fillets
PLSR [125]

Pork Assessment of IMF quality PLSR [126]

Beef, chicken, mutton Classification of minced meat SVM [127]

Chicken Determination of freshness RF and PLSR [128]

Pork Identification of jowl meat
adulteration in pork PLSR [129]

Red meat Discrimination of red meat LDA, PLS-DA, and SVM [130]

Chicken Detection of spoilage Optimized BPNN [131]

Mutton and fox meat Detection of fox meat
adulteration in mutton PLSR and SVR [132]

Beef and chicken Visualization of the percentage
of adulterated meat LS [133]
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Table 2. Cont.

Techniques Samples Applications Methods Reference

X-ray imaging

Beef Prediction of composition Linear mixed effects model [134]

Meat Detection of needles in meat CNN [135]

Pork Prediction of softness PLSR [136]

Lamb Determination of the
proportions of fat, lean, and bone General linear model [137]

Lamb Prediction of IMF content and SF MLR [138]

Pork Assessment of carcass
composition SA [139]

Pork Prediction of lean content PLSR [140]

Beef Prediction of composition, fatty
acids, and quality characteristics PLSR [141]

Thermal imaging

Pork and Mutton Classification of minced mutton
adulteration with pork CNN [114]

Beef Determination of temperature
distributions OT and CT [142]

Pork Detection of meat quality defects Infrared thermography [143]

Abbreviations: SF, shear force; IMF, intramuscular fat; DT, decision tree; RF, random forest; SVM, support
vector machine; SVR, support vector regression; LS, least square; LSSVM, least squares support vector machine;
LDA, linear discriminant analysis; PLS-DA, partial least squares discriminant analysis; PLSR, partial least squares
regression; CNN, convolutional neural network; DCNN, deep convolutional neural network; BPNN, back
propagation neural network; SPA, successive projection algorithm; UVE, uninformative variable elimination;
VCPA, variable combination cluster analysis; SA, statistical analysis; MLR, multiple linear regression; OT, ohmic
thawing; CT, conventional thawing.

4. Machine Vision

Machine vision technology improves the quality of vision through electronic percep-
tion and image investigation. Image sensors acquire target images, which are analyzed and
converted into digital information by computer technology, and then identify and detect
target objects [144]. It is a comprehensive, efficient, fast, and non-destructive technique
that objectively obtains accurate, reliable, and repeatable data. Moreover, it can replicate
and replaces human vision and perception of images. However, this technique is limited
to identifying external factors, such as color and size when analyzing digital images. It
requires artificial illumination in dimly lit scenes [145].

Machine vision system consists of image capture equipment, light sources, and com-
puter hardware and software. The devices used for image capture can be digital cameras,
ultrasound scanners, computed tomography scanners, etc., enabling the user to obtain
information about the external and internal characteristics of the object under test [146]. Il-
lumination level is one of the important influencing factors for machine vision systems. The
appearance of the object can be changed to some extent by external illumination to make
the features of the measured part clearer and reduce reflections, shadows, and noise [147].
Moreover, image processing is the core process of machine vision systems. Low-level
processing mainly refers to image pre-processing (noise reduction, gray level, geometry,
and bokeh correction). Mid-level processing includes image segmentation, display, and
description. High-level processing includes image diagnosis and annotation, aiming at
transforming the extracted data into valid information [145].

4.1. Image Acquisition Method

Machine vision techniques are now widely used in feature extraction and recognition
of meat-related images [144]. The first step of a machine vision system is illumination and
image acquisition, image acquisition by digital camera or smartphone shooting, ultrasound
imaging, nuclear magnetic resonance (NMR), computed tomography (CT), near-infrared
spectral imaging (NIR), hyperspectral imaging (HS), etc.
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4.1.1. Camera or Smartphone Shot

Machine vision technique was investigated to detect defects in pork loin longus muscle
in an industrial setting [149]. Computer vision system (CVS) could detect PSE and DFD,
but could not distinguish between RSE and RFN [148]. Moreover, it shows that CVS can
analyze the color of the entire meat surface in a non-invasive manner. Huang et al. used two
18 W illumination lamps to generate light diffusion and a high-performance charge-coupled
device (CCD) camera to acquire images to determine the TVB-N content in pork [149].
Huang et al. applied fluorescent lights to provide uniform illumination, LED lights as
supplemental illumination, and a CCD camera with an 8 mm zoom lens to acquire images
to assess fish freshness using CV and NIR. BP-ANN achieved 90% prediction success in CV,
and 80% in NIR, and after data fusion, the prediction success reached 93.33% [150]. The
CVS can reproduce colors very similar to the true colors and does not produce large color
differences due to translucency or inhomogeneity of the meat matrix, making it easier to
preserve sample images [151]. Determination of the shelf life of fish by CVS analysis is fast,
non-destructive, and correlates well with chemical and sensory results [152]. Moreover,
it was demonstrated that CVS was able to predict the TVB-N, TVC, and TBA of both
pupils [153].

4.1.2. Ultrasound Imaging

Ultrasound imaging is a cost-effective technique to obtain images of the interior of
the sample under test. Typically, there are two modes of ultrasound imaging: Amplitude
modulation and brightness modulation, with brightness modulation being more widely
used [154]. Fukuda et al. accurately estimated the number of beef marble standards
(BMS) using ultrasound echo imaging [155]. Utilizing independent component analysis
(ICA), the resulting correlation coefficient between actual and estimated values was 0.7,
which was higher than PCA (r = 0.6) [155]. Brethour acquired images using an Aloka
210 ultrasound system equipped with a 3.5-MHz universal transducer array to obtain
tomograms of the longest lateral spinal muscles [156]. Aass et al. predicted the fat content
in lean cattle by a scanner equipped with QUIP software and an ASP-18 transducer for
image acquisition [157].

4.1.3. Nuclear Magnetic Resonance

NMRI has different features in the electromagnetic spectrum to assess meat quality
and safety. Different biochemical properties of the subject result in different absorption
and emission of energy in the electromagnetic spectrum [154]. Avila et al. studied the
distribution of several texture features inside meat products by MRI, and the parameters
obtained by traditional destructive techniques are highly correlated with the data obtained
by texture analysis based on volumetric information, while the CVS by 3D algorithm allows
for the attainment of quality parameters in a non-destructive way [158]. A horizontal 4.7T
NMRI system was prepared for image acquisition to achieve in situ dynamic imaging of
the connectivity network during meat cooking by NMRI, allowing for the simultaneous
monitoring of local deformation and changes in water transfer, muscle structure, and
thermal history [159]. Kremer et al. evaluated whether magnetic resonance imaging (MRI)
can reliably analyze components in pigs [160]. Compared with other CVS imaging methods,
MRI is more complex and time-consuming and requires a high level of imaging samples,
but its non-invasive nature enables in vivo imaging, which is more convenient for follow-up
studies of samples.

4.1.4. Computed Tomography

X-ray computed tomography uses X-rays to create a tomographic image of the scanned
sample. When the tissue in the sample under test attenuates the X-rays, a thin cross-
sectional image of the sample is obtained [154]. The new muscle indices were developed
for the hind legs and lumbar region of lambs by CT assessment of muscle mass and bone
size [161]. An X-ray computed tomography method was improved to automatically detect
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fish bones in fish fillets, validated using salmon and trout, achieving very high classification
rates in quality control, with cross-validation performance of 100%, 98.5%, and 93.5%
for large, medium, and small fish bones, respectively [162]. Calibration equations were
obtained by the partial least squares regression technique for the computed tomography,
predicting an RMSEPCV of 0.97% when LMP scanned only the ham and 0.9% when
scanning both the ham and the lumbar region [105]. Table 3 summarizes the application
of machine vision systems using different illumination and image acquisition methods on
various meat.

Table 3. Summaries of different illumination and image acquisition methods in machine vision
systems applied for meat detection.

Samples Applications Image Acquisition
Methods Lighting Methods Reference

Pork Detection of defects in pork loin longus muscle Macro lens digital camera Halogen lamp [148]

Pork Determination of TVB-N in pork
High-performance

charge-coupled device
(CCD) cameras

2 × 18 W lighting tubes produce
light scattering [149]

Fish Development of a new rapid non-destructive
technique to assess fish freshness

CCD camera with 8 mm
zoom lens Fluorescent and LED lamps [150]

Beef, pork,
chicken

Limits of colorimeter and image analysis
techniques when evaluating the color of beef,

pork, and chicken

Digital camera with
CMOS sensor

4 fluorescent lamps and light
diffusers [151]

Fish Assessment of the freshness of the fish Color Digital Camera 4 fluorescent lamps [152]

Tilapia Development of a machine vision system based
on pupil and gill color changes in tilapia Color Digital Camera 4 fluorescent lamps provide

diffuse reflection [163]

Beef Accurate estimation of beef marbling standards
(BMS) quantities Ultrasound Echo Signal / [155]

Beef Estimate of the number of marbling in
live cattle

Ultrasound systems with
universal transducer arrays / [156]

Beef The accuracy and precision of intramuscular fat
prediction in lean cattle

Scanners with quality
ultrasound indexing

programs and transducers
/ [157]

Meat Study of the distribution of several textural
characteristics within meat products

Nuclear Magnetic
Resonance Imaging / [158]

Meat The structural and physical changes in meat
during cooking Horizontal 4.7T MRI system / [159]

Pork
Assessment of whether magnetic resonance

imaging (MRI) can reliably analyze
components in pigs

Nuclear Magnetic
Resonance Imaging / [160]

Lamb Development of a new muscle index for the
hind leg and lumbar region of lambs CT / [161]

Salmon, trout Automatic detection of fish bones in fish fillets CT / [162]

Meat Prediction of carcass leanness ratio and
different cuts CT / [105]

Abbreviations: TVB-N, total volatile base nitrogen; CCD, charge-coupled device; LED, light emitting diode;
CMOS, complementary metal oxide semiconductor; BMS, beef marbling standards; MRI, magnetic resonance
imaging; CT, computed tomography.

4.2. Data Processing Method

After image acquisition, it is very important to pass some form of dimensionality
reduction. Common data processing algorithms used in machine vision are support vector
machines, regression models, and artificial neural networks (ANN).
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4.2.1. Support Vector Machine

Geronimo et al. used a machine vision system and spectral information from the
near-infrared region to distinguish between wood breasts and normal chicken breasts.
Combining image analysis with a support vector machine classification model, 91.8% of
chicken breasts were correctly classified, while NIR showed only 97.5% accuracy [164].
Assia et al. implemented an embedded system based on DSP, PCA, and SVM algorithms
using a dataset of 81 HSI beef images for projection and prediction models using PCA
and SVM for beef classification and identification to detect the freshness of beef during
refrigeration with a 100% success rate of recognition and classification [165]. Sun et al.
developed a machine vision system for measuring and building an artificial intelligence
prediction model for pork color and marbling quality grade. The prediction accuracy of the
measured pork color using SVM was 92.5% and the prediction accuracy of the measured
pork marbling was 75.0% [166]. Liu et al. (2018) investigated the ability of machine
vision systems to predict the intramuscular fat percentage (IMF%) of pork. The correlation
between subjective IMF% and ether extract IMF% was 0.81, while the correlation between
image IMF% and ether extract IMF% was 0.66. The accuracy of the stepwise regression
model was 0.63 and the support vector machine was 0.75 [167].

4.2.2. Regression Models

Sun et al. developed a color-based machine vision system that uses digital image
analysis to efficiently segment the adipose tissue in pork loin samples to predict the color
properties of pork loin, using a linear regression model with a coefficient of determination
of 0.83, a higher correlation than the stepwise regression model (r = 0.7) [168]. Chen et al.
measured the actual intramuscular fat content (IMF%) and meat color of 200 pigs and
then compared them with the scoring results of the machine vision system to construct an
estimation model using SR and gradient boosting machine (GBM), with model accuracies
of 0.875 and 0.89 for SR and GBM based on residual distribution [169]. Aass et al. used a
procedure developed with a stepwise regression model to study the accuracy and precision
of intramuscular fat prediction (USIMF) in lean cattle [157].

4.2.3. Artificial Neural Networks

Huang et al. used integrated NIR, machine vision, and electronic nose techniques to
measure TVB-N content in pork. PCA was used to fuse data from different sensor feature
variables and a back propagation artificial neural network (BP-ANN) was used to construct
a TVB-N content prediction model [149]. Huang et al. obtained image information of
sensory changes and spectral information of structural changes in fish samples during
storage, compressed and reduced the dimensionality of the data using PCA, and used a BP-
ANN to build a prediction model of fish freshness and changes in fish during storage [150].
Huang et al. used a residual network (ResNet) to extract pork features to classify the types
of pork original cuts into four categories: Ham, loin, belly, and neck, and applied machine
vision to recognize different pork cuts with an accuracy of 94.47%. The main reasons that
the different recognition results for some images still exist are the effects of the dataset size
and the lighting environment in which the images were taken [170]. Table 4 summarizes
the application of machine vision systems using different data processing methods on
various meat.
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Table 4. Summaries of different data processing methods in machine vision systems applied for
meat detection.

Techniques Samples Applications Methods Reference

CV

Pork

Measure and build artificial
intelligence prediction models

for pork color and marbling
quality grades

SVM [166]

Pork Prediction of percentage of
intramuscular fat in pork (IMF%) SVM [167]

Pork Prediction of the color properties
of pork tenderloin

Linear Regression,
Stepwise Regression [168]

Beef
The accuracy and precision of
intramuscular fat prediction in

lean cattle
Stepwise Regression [157]

Pork Identification of the different
cuts of pork ResNet [170]

CV, NIR,
E-nose Pork Determination of TVB-N in pork PCA, BP-ANN [149]

CV, NIR
Fish

Development of a new rapid
non-destructive technique to

assess fish freshness
PCA, BP-ANN [150]

Chicken Distinguishment of the woody
and normal chicken breasts SVM [164]

CV, DSP Beef Classification of the freshness of
beef PCA, SVM [165]

CV,
Traditional Method Pork Estimation of the intramuscular

fat content of pork

Linear Regression,
Stepwise Regression,

GBM
[169]

Abbreviations: TVB-N, total volatile base nitrogen; PCA, principal component analysis; BP-ANN, back propaga-
tion artificial neural network; CV, computer vision; NIR, near-infrared; E-nose, electronic nose; SVM, support
vector machine; DSP, digital signal processing; IMF, intramuscular fat; GBM, gradient boosting machine; ResNet,
residual neural network.

5. Electronic Nose

The electronic nose provides the overall information and implied characteristics of
the sample under test through various types of sensors and different pattern recognition
systems [163].

The odor composition of food products is complex, and traditional odor analysis
techniques are difficult to identify. On the other hand, sensory analysis by experts is
expensive and subjective, thus the application of electronic noses is gradually becoming
widespread [171,172]. Unlike chromatographs and spectrometers, the electronic nose is not
a quantitative and qualitative analysis of one or several components of the sample under
test, but a “fingerprint” of the volatile components in the sample.

The electronic nose essentially simulates the human olfactory organ for odor percep-
tion and analysis, which mainly consists of gas transmission sampling, sensor processing,
signal pre-processing, pattern recognition, odor expression, and other units [173]. When a
certain odor encounters a sensor corresponding to the active material, the chemical com-
ponents in the odor will interact with the active material and the sensor can detect the
transformation of the chemical signal into an electrical signal, which can only be processed
with a suitable pattern recognition algorithm after appropriate pre-processing (noise elimi-
nation, feature extraction, signal amplification, etc.) [174]. The sensor is the most important
part of the electronic nose, and its role is to collect information about the measured pa-
rameters [174]. The electronic nose has a short analysis time and does not damage the
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test sample, but the sensor technology should be highly improved for an electronic nose
system [171].

5.1. Electrochemical Sensors

The most widely used electrochemical sensors are conductivity sensors: Metal oxide
semiconductor (MOS) sensors, metal oxide semiconductor field effect transistor sensors
(MOSFET), and conductive polymer sensors (CP).

5.1.1. MOS Sensors

The selectivity and sensitivity of MOS sensors depend mainly on the semiconductor
material used in the sensor [175]. The semiconductor material used in MOS sensors drifts
with changes in ambient humidity and also reacts “poisonously” to sulfides present in gas
mixtures, which tends to reduce the detection accuracy of the electronic nose.

An electronic nose consists of eight different MOS gas sensors for distinguishing
mackerel, anchovy, and whiting, and a classification algorithm based on a binary tree
structure could achieve an overall accuracy of 96.18% for fish recognition [176]. The aroma
compounds in Siniperca chuatsi were analyzed using an electronic nose equipped with 10
different MOS sensors in combination with GC-MS [177]. An electronic nose consisting
of 18 MOS gas sensors was studied to measure and simulate flavor quality changes in
refined chicken fat during controlled oxidation [178]. An electronic nose was applied
to detect adulteration of lamb combined with PLS, MLR, and BPNN, which served as a
prediction model for the content of pork in minced lamb [179]. The use of an electronic
nose containing 18 MOS sensors was studied to differentiate between chicken and beef
seasonings and predict sensory attributes [180]. An electronic nose consisting of 10 MOS
sensors could extract flavor fingerprints of Chinese-style sausages during processing and
storage to assess lipid oxidation [181].

An electronic nose and an electronic tongue with six MOS sensors were designed
to identify not only three different sources of red meat, but also the number of days of
refrigerated storage successfully [182]. MOS sensor-based electronic nose was investigated
to identify spoiled or contaminated fish and beef using ANN, SVM, and k-nearest neighbor
for data analysis and comparison [183]. Olafsdottir et al. investigated the feasibility of a
prototype gas sensor array system for fish volatile organic compounds (VOC), establishing
quality criteria based on sensory attributes (sweet/sour, off-flavors, and putrefactive aro-
mas) and classifying samples based on the response of an electronic fish nose [184]. Haugen
et al. demonstrated the feasibility of direct quality measurements of smoked salmon with
electronic noses, which were used to monitor quality changes and compare results with
traditional sensory, chemical, and microbiological measurements [185]. Chantarachoti et al.
evaluated the ability of a portable electronic nose to detect spoilage of whole Alaskan pink
salmon stored at 14 ◦C and in slush ice. The instrument classified fish as fresh or spoiled
with 92% accuracy [186].

5.1.2. MOSFET

MOSFET has the low sensitivity to ammonia and carbon dioxide as well as baseline
drift, which is the main source of error for electronic noses using MOSFET [187].

An electronic nose containing eight MOS sensors and six MOSFET sensors and gas
chromatography-mass spectrometry were used to measure volatile compounds in meatballs
and perform sensory analysis [188]. The electronic nose could clearly distinguish between
spoiled broiler packages and fresh packages, both in the early stages and in the period
of spoilage when sensory changes were evident, and the numbers of enterobacteriaceae
and hydrogen sulfide-producing bacteria were most consistent with the electronic nose
results, fully indicating that the electronic nose was able to detect early signs of spoilage in
air-seasoned packaged poultry meat [189].
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5.1.3. Conductive Polymer Sensors

Conductive polymers (CP) have been used as active layers in gas sensors since the early
1980s [190]. Sensing polymer-based nanocomposites (CPNC) were effectively enhanced
in terms of sensitivity and selectivity [191]. CP sensors require less electrical energy to
operate at room temperature and respond quickly but are more sensitive to ambient
relative humidity.

The ability of a CP sensor E-nose was evaluated to detect the presence of off-flavored
malodorous compounds in catfish fillets [192]. An electronic nose with 32 CP sensors was
used to determine the overall antioxidant status of fresh meat from animals fed different
diets and to distinguish them by their odor characteristics [193].

5.2. Piezoelectric Sensors

Two types of piezoelectric sensors are commonly used in electronic noses, one is a
body acoustic wave sensor (including quartz crystal microbalance sensors) and the other is
a surface acoustic wave sensor (SAW) [174].

The volatile compounds were studied in meat products for halal certification using
an electronic nose with a single uncoated quartz surface acoustic wave sensor and a gas
chromatography-mass spectrometer with a headspace analyzer (GCMS-HS) [194]. The
performance of an electronic nose based on a portable quartz microbalance was evalu-
ated for monitoring spoilage of aerobically packed beef tenderloin at different storage
temperatures [195].

While electronic noses offer many advantages over conventional analysis, the sensors
also have some unresolved drawbacks. These include issues, such as sensor poisoning,
sensor drift, and sensitivity. Selectivity and sensor drift has been the focus of research.
Recent trends in overcoming sensor drawbacks include combining semiconductor chemical
sensors with other types of sensors. While this complicates the sampling system (requiring
more volume and electronics), this hybrid technology can compensate for the shortcomings
of current chemical sensor technology. Hyperspectral imaging and electronic nose (E-nose)
techniques were combined to improve the feasibility of freeze-thaw pork moisture (MC)
prediction performance. The spectral and image (color and texture) information was
extracted from the HSI sensor, while the odor information was extracted from the E-nose
sensor to detect MC in pork. The method is an effective data fusion method, and the
combination of HSI and E-nose techniques improves the prediction performance of MC
in freeze-thawed pork [196]. Table 5 summarizes the application of different sensor-based
electronic noses on some types of meat.

Table 5. Summaries of different sensors in electronic nose systems applied for meat detection.

Techniques Samples Applications Methods Sensor Systems Reference

E-nose

Fish Discrimination of fish species

New Approach,
Naïve Bayes,

k-Nearest
Neighbor, LDA

8 different MOS sensors
with temperature and

humidity sensors
[176]

Chicken

Measurement and simulation of
flavor quality changes in refined

chicken fat during controlled
oxidation

PLSR 18 MOS gas sensors [178]

Chicken and beef Distinguishment of chicken and
beef seasonings PCA, PLSR 18 MOS sensors [180]

Chinese-
style sausage

Extraction of flavor fingerprints of
Chinese-style sausages during

processing and storage
SVM, ANN 10 MOS sensors [181]

Beef and fish Identification of spoiled or
contaminated fish and beef

ANN, SVM,
k-nearest neighbor MOS sensor [183]
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Table 5. Cont.

Techniques Samples Applications Methods Sensor Systems Reference

E-nose

Fish Classification of fish according to
sensory attributes PCA, PLSR MOS gas sensor arrays [184]

Salmon

Evaluation of the feasibility of direct
quality measurements on salmon
and detected changes in salmon

quality

PCA, PLSR MOS sensor [185]

Pink salmon
Assessment of the ability of

electronic noses to detect pink
salmon spoilage at 14 ◦C

PCA MOS sensor [186]

Chicken

Study of the applicability of
electronic noses for the quality

control of modified atmosphere
packaged broiler chicken cuts

PCA, PLS, ANN 12 MOS sensors and 10
MOSFET sensors [189]

Catfish

Detection of malodorous
compounds in catfish fillets and

assessment of the potential
marketability of the meat

PCA CP sensor [192]

Beef

Determination of the overall
antioxidant status of fresh meat
from animals fed with different

diets

PCA, LDA 32 CP sensors [193]

Beef

Evaluation of the performance of
monitoring aerobically packed beef

tenderloin spoilage at different
storage temperatures

SVM, Regression
Model Portable QMB sensor [195]

E-nose,
GC-MS

Siniperca chuatsi
Analysis and comparison of aroma

compounds of Siniperca chuatsi
during fermentation and storage

PCA 10 different MOS sensors [177]

Meatball
Measurement of volatile

compounds in meatballs and
sensory analysis

PLSR 8 MOS sensors and 6
MOSFET sensors [188]

Pork
Study of volatile compounds in

meat products and halal
certification

PCA Single uncoated quartz
SAW sensor [194]

Traditional
Methods,

E-nose
Pork Prediction of pork content in lamb PLS, MLR, BPNN MOS sensor [179]

E-nose,
E-Tongue Red Meat

Identification of the different
sources and days of refrigeration of

red meat
PCA, SVM 6 MOS sensors [182]

E-nose
HSI Pork Prediction of moisture content (MC)

in frozen-thawed pork PLSR / [196]

Abbreviations: MOS, metal oxide semiconductor; LDA, linear discriminant analysis; E-nose, electronic nose;
PCA, principal component analysis; GC-MS, gas chromatography-mass spectrometry; PLSR, partial least square
regression; PLS, partial least squares; MLR, multiple linear regression; BP-ANN, back propagation artificial
neural network; ANN, artificial neural network; MOSFET, metal oxide semiconductor field effect transistor;
CP, conductive polymer; SAW, surface acoustic wave; QMB, quartz crystal microbalance; SVM, support vector
machine; HSI, hyperspectral imaging.

6. Discussion

Traditional meat detection techniques mainly include sensory evaluation, microbiolog-
ical testing, and physicochemical experiments, etc. Sensory evaluation is quite subjective
owing to its high dependence on the vision, smell, taste, and touch of the testing expert.
It requires the processing temperature, processing time, and substrate for meat products
to be parallel and operated according to the standard procedures during sample prepara-
tion. In addition, it demands to be equipped with multiple evaluators, which is a huge
drain on human resources and time, and the current state of sensory evaluators also has
an important impact on the final results. Microbiological testing and physical-chemical
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experiments are strict in terms of experimental environment and testing process, resulting
in over-consumption of time and samples. In addition, irreversible damage will occur to
the samples during the procedure of experiments.

Non-destructive testing is an emerging technology to effectively solve the limitations
of traditional testing methods with the advantages of fast, accurate, and non-invasive
detection. Nowadays, non-destructive detection technology (NDDT) has been widely used
for freshness detection, adulteration identification, odor detection, and detection of certain
compounds in meat products. It plays an important role in meat quality assurance and has
become one of the most important tools for controlling the safety of edible meat. It shows
clear advantages compared with traditional detection techniques and has a wide range of
prospects in the field of meat detection.

Recently, with further improvements in detection instruments and data processing
algorithms, non-destructive techniques make great contributions to the analysis of meat
and meat products. However, it cannot be assumed that NDDT can completely replace
traditional detection techniques. There is no doubt that color, flavor, and texture are
important criteria to measure the quality and freshness of meat. Sensory evaluation, which
highly relies on the sense of evaluation experts, seems to be more subjective than other
detection methods. In fact, both NDDT and traditional detection techniques are devoted
to ensuring the quality of meat to protect human health. However, the exact instruments
are inconvenient to carry when humans visit the market and it will take a great deal of
time to wait for the results, thus judging the freshness of meat by human senses is the most
convenient and widely used method for them. In addition, people from different countries
possess diverse demands on the quality of meat. For example, in China, people are in favor
of pork and chicken, while in England, they tend to eat beef. NDDT is good at predicting
and classifying the quality of meat according to defined standards. It cannot completely
replace the traditional detection techniques and should be used in combination with them.

7. Challenges and Outlooks

Despite the rapid development of spectroscopic and imaging techniques, they are
faced with a few drawbacks. Spectroscopic techniques have the ability of rapid analysis
and high sensitivity and have been widely researched on the classification and shelf-
life detection of meat products. Among them, NIR analysis is fast and non-destructive,
providing a good prediction of the sensory properties of meat. It possesses the property
of high penetrating power and the instruments are often simple and easy to maintain,
with no need for tedious pretreatment and abundant samples. However, NIR analysis
method requires a large number of physicochemical experiments before modeling and the
model needs to be continuously updated according to the classes and states of samples.
In addition, NIR spectroscopy has a low chance of non-resonant absorption leaps, which
makes for its relatively low sensitivity, and it is not suitable for the analysis of aquatic
organisms due to the disturbance of oxhydryl in water. Although NIR spectroscopy is in
the leading position when applied for the detection of red meat, it is sensitive to external
factors, such as ambient temperature during measurement [197]. In the future, continuous
researches will appear, concentrating on extracting effective spectral information and
improving the signal-to-noise ratio. Raman spectroscopy is a green detection technique
with no need for sample pretreatment or preparation process, which has the advantages
in terms of information generation. It requires only a small number of samples to obtain
the key characteristics of compounds, avoiding the prediction errors to a certain extent. In
truth, Raman spectroscopy is a rather weak phenomenon, which depends on the inelastic
scattering of photons, and since the Raman effect is less intense than fluorescence, even a
very small amount of fluorescence will cause the contamination of tested samples [198].

Imaging technique has a high adaptability to detect changes in chemicals in meat.
Hyperspectral imaging is designed to enable efficient and reliable measurements of the
content and spatial distribution of multiple chemical components and physical properties
simultaneously [199]. It can determine the color and performs better than RGB imaging [87].
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Although hyperspectral imaging has achieved great progress in the qualitative analysis of
meat and meat products, the accuracy of outcomes is still not high. To solve this problem,
it is desirable first to improve the precision of spectral devices and reduce the interference
of useless information. In addition, the high dimensionality of hyperspectral data limits
the processing speed of hyperspectral imaging technique in order that more efficient data
processing algorithms need to be developed [8]. At present, HSI has been widely used in
the field of detecting defective fruits and tea, and there will be a low cost and real-time meat
detection system available for the modern industry in the future. Thermal imaging is a
non-destructive and non-contact temperature sensor technology. It can capture the moving
targets in real time and generate a visual image to show the difference in temperature over
a wide range. This technology has the advantages of long range, high penetrating power,
resistance to strong light interference, and adaptability to night and harsh conditions. It
records the heat distribution by measuring the infrared radiation emitted from the surface
of objects. Therefore, it is sensitive to the thermal interference in the environment, and
the results may be uncertain when detecting targets with unstable temperatures. It is
necessary to reduce the high cost and weaken the influence of thermal interference from
the surrounding environment before it can be widely used in industry [154].

Machine vision is commonly fast, efficient, and comprehensive, and it tends to de-
scribe the spatial information of samples and cannot identify their internal characteristics.
During the process of imaging, computer vision is strict with the external environment
and lighting condition, especially when detecting the samples taken by cell phones and
cameras. Moreover, the size of samples exercises considerable influence over the accuracy
of results. It causes a small proportion when the samples are divided into tiny parts, and
it is difficult to extract effective features when the samples are significantly large. Fur-
thermore, the complexity of environment, such as the low contrast of color between the
samples and background, will bring about serious noise interference. Machine vision is
an effective technique for meat quality assessment and is most likely to be expanded to
daily life. In the future, it is promising to equip cell phones with machine vision systems in
order that consumers can quickly know the quality and freshness of meat when they select
the products.

Electronic nose has the advantage of being objective, accurate, and low cost. It can
detect the overall information of volatile substances and toxic components in the samples.
In recent years, with the development of sensor technology, electronic nose has confronted
many opportunities and challenges. For example, semiconductor materials will drift along
with the change in environment, and MOS sensors produce a “toxic” response to sulfides.
Furthermore, the CP sensor is sensitive to environmental humidity response, thus elec-
tronic noses need a system to prevent sensor drift [198]. The majority of electronic nose
applications exhibit poor reproducibility and predictability without extensive calibration
and mathematical analysis of the sensors. More importantly, sensor arrays and pattern
recognition techniques tend to evaluate the quality of samples, which have been rarely
applied for providing the data related to composition and concentration. The current re-
searches on electronic nose mostly stay in the laboratory stage and have not been promoted
for industrial environment. Nanomaterials, with the advantages of high sensitivity and
selectivity, are expected to be applied to the electronic nose systems in the future.

In general, machine vision describes the external characteristics of meat, but it is
difficult to obtain the internal quality of meat. NIR can detect the changes in the internal
composition of meat while it is unsuitable for the identification of external information.
With regard to electronic nose, it is mainly used to monitor the volatile gases released
from the meat, and HSI can simultaneously predict the internal characteristics and external
spatial information of samples [144]. In practical application, the quality of meat involves
both external and internal factors, thus the integration of multiple inspection methods
is a necessary development trend for future meat detection. Hyperspectral imaging was
combined with machine learning to accurately detect the adulteration status of minced
meat [200]. A combination of NIR spectroscopy, machine vision, and electronic nose was
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applied to measure the TVB-N content in pork, and the results were more advantageous
than those with a single technique [149]. NIR spectroscopy and Raman spectroscopy are
complementary when detecting the internal quality of meat, and their combination can
improve the stability and accuracy of detection results. In addition, current studies mainly
focus on red meat, and the detection of white meat tends to choose poultry and fish, rarely
using amphibians (bullfrogs), crustaceans (crabs and shrimp), and bivalves (clams and
oysters). In fact, the seafood occupies a significant proportion of meat and meat products,
and it is a protein-rich sustainable food source. In the future, NDDT is hopeful to be
expanded to the analysis of other categories of meat.

8. Conclusions

Meat is an important food for people to obtain protein and micronutrients daily. This
paper provides an overview of traditional methods for testing meat quality and briefly
describes the principles and applications of spectroscopic techniques, imaging techniques,
machine vision, and electronic nose applied for meat quality and safety evaluation. The ad-
vantages and disadvantages of NDDT are summarized by comparison with the traditional
detection techniques.

In general, traditional detection technology is related to consumers’ experiences and
habits as well as life and culture factors. It is practically impossible for people to visit the
market with all types of testing instruments, thus judging the quality of meat by human
senses is the most convenient and widely used method. On the other hand, consumers’
needs for meat quality vary by living environment and age, which results in differences
in the criteria for judging meat quality. However, NDDT tends to detect and differentiate
meat quality according to defined standards and cannot be set independently according
to the needs of different consumers, thus the relationship between NDDT and traditional
inspection techniques is complementary.

Although a specific NDDT indeed plays a great role in meat quality and safety eval-
uation, there are still some limitations. In the future, combining a variety of NDDT is an
inevitable trend for the detection of meat. More importantly, NDDT is not a complete
replacement for traditional detection techniques, and connecting the traditional methods
with new approaches will result in the greatest outcome. Furthermore, it is necessary to
take into consideration that meat is always diverse and NDDT should be further expanded
for the detection of other types of meat and meat products.
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