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Abstract: This study investigated the effects of annealing on the structural and physicochemical
properties of rice starch below the onset temperature (To) by 5 ◦C and 15 ◦C. The results revealed
that annealing improved the gelatinization temperature of rice starch, decreased the swelling power,
solubility, and paste viscosity of rice starch, and had no significant effects on the morphological
structure and crystal configuration of rice starch. In one-step annealing, the annealing temperature of
60 ◦C is more conducive to the rearrangement of starch molecules, so its crystallinity, short-range
ordered structure, and gelatinization temperature are higher than at 50 ◦C; however, its RDS, SDS,
and RS contents will be increased. During the two-step annealing treatment, the temperature change
is not conducive to the molecular chain rearrangement and to the formation of perfect crystalline
structure, which increases the sensitivity of enzymes to starch, so the RDS content of starch increases
significantly, while the RS content decreases.

Keywords: starch structure; annealing temperature; digestibility

1. Introduction

Starch is a semi-crystalline polymer composed of glucose, which is deposited in the form
of granules in the roots, stems, and leaves of green plants and widely used in foods,
medicines, and cosmetics [1,2]. However, natural starch is poor in functionality and prone
to aging, which reduces the viscoelasticity of the product and causes poor gel stability
and transparency [3,4]. Starch is generally modified by using physical, chemical, or en-
zymatic methods and their combinations to improve its specific functional properties.
In food processing industrial applications, there is increasing attention on physical modifi-
cation of starch that employs moisture, heat, radiation, or shear to modify starch without
the potential risk caused by chemical modification [5].

Annealing of starch is performed in excessive (>65% w/w) or appropriate (40–55% w/w)
moisture and at temperatures above glass transition and slightly below gelatinization [6–8].
Annealing can greatly modify the functional properties of starch without destroying its
granular structure, form a more stable configuration, and reduce amylose leaching by
promoting the reorganization of starch molecules [9]. It is also possible to change the crys-
tallization characteristics of starch by promoting the rearrangement of molecular chains
within starch to cause the growth of starch crystals [10]. Compared with natural starch,
the thermostability, gelatinization temperature, acid resistance, and shear resistance of
starch after annealing are enhanced [11–13]. In the process of the annealing modification of
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starch, the ratio of starch to water, the temperature of annealing, and the heat treatment
time are the key parameters that need to be controlled [14]. Liu et al. [15] found that
annealing at 30 ◦C has a more obvious effect on the granular morphology of corn starch
than annealing at 50 ◦C. Additionally, it has also been reported that through continuous
and repeated annealing, the modified starch obtained by the repeated annealing has better
functional characteristics and can be used as an effective treatment method for the produc-
tion of modified functional starch with different industrial applications [16,17]. However,
starch is modified at a single annealing temperature or by repeated annealing at a single
temperature in the most cases, and few reports have been found on continuous annealing
at different temperatures.

Based on current researches [16–18], this paper proposes a hypothesis that the struc-
tural and physical properties of starch annealed at multi-step temperatures will be sig-
nificantly different from that annealed at a single temperature. Based on this hypothesis,
this experiment uses rice starch as raw material, modifies rice starch through annealing
treatment at a single temperature and at two-step temperatures, and explores the effects
of annealing temperature and method on the structure, functional properties, and in vitro
digestibility of rice starch, in order to provide a new research idea for annealing modified
rice starch.

2. Materials and Methods
2.1. Materials

The rice in this study was obtained from Hall 4, Yupei, Nanling, Wuhu, Anhui, China.
The rice starch was milled to 100−mesh. A glucose oxidase/peroxidase (GOPOD) was
purchased from Megazyme International Ireland (Bray Business Park, Bray, Co., Wicklow,
Ireland). Amyloglucosidase and α-amylase were purchased from Sigma-Aldrich Co. LLC,
Santa Clara, CA, USA. All other reagents in the experiments were of analytical grade.

2.2. Preparation of Samples
2.2.1. Rice Starch Preparations

The starch isolation from rice flour was based on Bian et al. [19], with minor modifica-
tions. Rice that had been washed 2 to 3 times with pure water was dispersed in NaOH solu-
tion (0.2%) and stirred continuously for 30 min after soaking at 25 ◦C for 4 h, and the NaOH
solution was replaced every 4 h for a total of 24 h. The rice slurry was wet ground with
a colloid mill and centrifuged at 4000r/min for 15 minutes. The yellow supernatant was
discarded and the starch residue was washed repeatedly with pure water. After that,
the purified rice starch was dried in an oven (40 ◦C), milled to 100−mesh, and named NRS.

2.2.2. Annealing Treatment

The method was based on Xu et al. [17], with minor modifications. The onset temper-
ature (TO) of the starch was determined by DSC at 65◦ in pre-experiments. The natural
rice starch (25 g, dry basis) was dispersed in 0.02% sodium azide and 75 mL of distilled
water and divide into 4 equal parts. The first sample was heated at 50 ◦C (TO −15 ◦C) for
48 h, which was named ANN−50. The second sample was heated at 60 ◦C (TO −5 ◦C) for
48 h, which was named ANN−60; the third sample was first heated at 50 ◦C for 12 h and
then transferred to 60 ◦C for 12 h to obtain the two-step annealed starch, which was named
ANN−50−60. The fourth sample was first heated at 60 ◦C for 12 h and then transferred to
50 ◦C for 12 h to obtain the two-step annealed starch, which was named ANN−60−50.

After annealing, the sample was cooled to 25 ◦C, followed by centrifugation at
4000 r/min for 15 min. The precipitation was collected, dried in an oven (40 ◦C), and milled
to 100−mesh.
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2.3. Polarized Light Microscopy (PLM) and Optical Microscope (OM)

A drop of starch solution with a mass fraction of 1% was placed onto the slide and cov-
ered with the coverslip. The morphologies of the samples were observed using an optical
microscope (Nikon, Tokyo, Japan) under crossed-polarized light (magnification 200×).

2.4. Scanning Electron Microscopy (SEM)

The morphologies of the starch samples were observed using a SEM (JEOL, Tokyo,
Japan), prepared for observation as described by Huang et al. [16].

2.5. X-ray Diffraction (XRD)

XRD analyses of the starch samples were determined by an XRD (Rigaku Corpora-
tion, Tokyo, Japan) equipped with CuKα radiation source (λ = 1.5406 Å, voltage 40 kV,
and current 40 mA). The samples were scanned from 5◦ to 40◦ (2θ), at a 5◦ min−1 rate.
The relative crystallinity (RC) was calculated using the Peakfit software with the following
specific formula:

RC% =
Ac

(Ac + Aa)
× 100% (1)

where Ac is the area of the crystalline region, and Aa is the area of the amorphous region [1].

2.6. Fourier Transform Infrared Spectroscopy (FT-IR)

The FT-IR spectra of the starch samples were based on Ji et al. [20], with minor
modifications. The FT-IR spectra of starch samples were determined by using a FT-IR
(IRTracer-100, Shimadzu, Japan). The rice starch samples were mixed with KBr (starch/KBr:
1/100, w/w), compressed, and scanned at a speed of 4 cm−1 in the range of 4000–400 cm−1;
the number of scans was set to 64. After that, the original spectrum was deconvoluted
using the Omnic 9.2 software.

2.7. Pasting Properties (RVA)

Starch samples (3.0 g, dry basis) were mixed with 25 mL of distilled water, and pasting
properties were obtained by using a RVA-Super4(perten, Stockholm, Sweden); the program
was set following the procedure of Hu et al. [21]. Peak viscosity (PV), setback (SB), final
viscosity (FV), and breakdown (BD) were calculated from the RVA profiles.

2.8. Thermal Properties (DSC)

Thermal properties of the starch samples were obtained by using a differential scan-
ning calorimeter (TA Instruments, New Castle, DE, USA). Starch samples were mixed
with distilled water (1/3, w/w) and equilibrated overnight at 25 ◦C. Then, the samples
were scanned at a heating rate of 10 ◦C min−1 from 20 to 110 ◦C, and the onset (TO),
peak (TP), and conclusion temperatures (TC) and the gelatinization enthalpy change (∆H)
were recorded.

2.9. Swelling Power and Solubility

The swelling power (SP) and solubility (S) of rice starch samples were obtained ac-
cording to the method of Xu et al. [17], with minor modifications. We dispersed the starch
sample (0.5 g, dry weight) in a centrifuge tube containing 30 mL of distilled water and
placed it in a water bath at 55, 65, 75, 85, and 95 ◦C for 30 min, respectively. The centrifuge
tubes that were cooled to 25 ◦C were then centrifuged at 4000 r/min for 30 min, and the su-
pernatant was dried in an oven at 105◦C and weighed; the precipitate was immediately
weighed. S and SP were calculated using the following formula:

S(%) =
A
W
× 100% (2)

SP(%) =
P

W × (100− S)
× 100% (3)
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where W, A, and P represent the dry sample weight, supernatant weight, and precipitate
weight, respectively.

2.10. In Vitro Digestibility

The digestibility of the starch samples was obtained according to the method of
Englyst et al. [22], with minor modification. The sample (100 mg) was vortex-dispersed
in 15 mL of sodium acetate buffer (0.2 mol/L, pH 5.2) and equilibrated at 37 ◦C for 5 min;
then, 5 mL of a ready-to-use enzyme solution containing porcine pancreatic α-amylase
(450 U/mg) and amyloglucosidase (51 U/mL) was added. The mixture was then immersed
in a water bath at 37 ◦C and hydrolyzed at 160 r/min. The mixture (500 µL) was treated
in absolute ethanol (4 mL) at intervals of 0, 5, 10, 20, 40, 60, 90, 120, and 180 min to inactivate
the enzyme, followed by centrifugation at 4000 r/min for 10 min. After centrifugation,
the supernatant was taken to measure the glucose content (Gt) using the GOPOD kit,
and the hydrolysis rate, rapidly digestible starch (RDS), slowly digestible starch (SDS),
and resistant starch (RS) of the sample were calculated according to the following formulas:

Hydrolysis rate (%) = Gt × 0.9 /TS × 100% (4)

RDS (%) = (G20− FG)× 0.9 /TS × 100% (5)

SDS (%) = (G120−G20)× 0.9 /TS × 100 (6)

RS (%) = [TS− (RDS + SDS)]× 0.9 /TS × 100% (7)

where FG is the free glucose content of starch, and TS is the total starch weight.

2.11. Statistical Analysis

Unless otherwise noted, all results in this article were expressed as the mean ± stan-
dard deviation of three experiments at 95% (p < 0.05) using SPSS 20.0 (SPSS Inc., Chicago,
IL, USA), by Duncan’s multiple test method. Plots were all performed using Origin 8.5
(Northampton, MA, USA).

3. Results
3.1. Morphology of Granules

The granular microstructures of the rice starch samples are presented in Figure 1.
Natural rice starch (Figure 1A) has granules with relatively small sizes, irregular polyg-
onal shapes, and smooth surfaces without cracks and pores. The annealed starch had
granules with smoother polygonal edges and more surface folds, which may be due to
the swelling of the starch granules under certain hydrothermal conditions. In the one-step
annealing, the folds present on the surface of the ANN−60 were more obvious, compared
to the ANN−50, indicating that the annealing temperature close to TO had a greater im-
pact on the morphological structures of starch granules. The result was consistent with
the findings of Wang et al. [9], who found that the annealing of wheat starch at 30 ◦C and
40 ◦C, respectively, did not influence the morphologies of wheat starch granules, but starch
granule aggregation and destruction were noticed during the 50◦C annealing process.

Compared with one-step annealing, the surface folds of the two-step annealed starch
granules (Figure 1(A4,A5)) were significant, of which the surface folds of ANN−60−50
were slightly more than those of ANN−50−60, possibly resulting from the temperature
changes in the two-step annealing that aggravated the dissolution of amylose in the hy-
drothermal effect. Shi et al. [2] found that annealing at different temperatures and times had
no effect on the morphology of starch from Castanopsis sclerophylla. These results showed
that changes in the morphological characteristics caused by annealing modification might
depend on starch source and treatment conditions.
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Figure 1. SEM images at 5000×magnification (A), OM images at 200×magnification (B), and PLM
images at 200×magnification (C) of the one and two-step annealed rice starch samples. 1, NRS; 2,
ANN-50; 3, ANN-60; 4, ANN-50-60; 5, ANN-60-50.

In the polarized light microscopy, the rice starch granules showed Maltese cross
structure before and after annealing. The Maltese cross structure is related to a difference
in density and refractive index between two different crystal structures and amorphous
structures inside starch granules; the Maltese cross structure is formed when the polarized
light passes through the starch granules [20]. The Maltese cross phenomenon of annealed
rice starch is more obvious under polarized light microscopy, which may be due to the fact
that annealing not only does not destruct the crystalline structure, but it also enhances
the crystal structure integrity and stability of the starch granules.

3.2. XRD

The crystallization properties of starch are shown in Figure 2. As shown in the Figure,
the natural rice starch had remarkable diffraction peaks at 2θ = 15◦, 17◦, 18◦, and 23◦

(Figure 2), indicating an A-type crystalline structure [23]. The weak diffraction peak at
2θ = 20◦ might be associated with starch–lipid complexes in rice starch and correspond
to the V-type crystalline structure. The crystalline structure of rice starch did not change
before and after annealing, indicating that the double helix structure of the starch did not
melt, and the crystalline form was not destroyed during the annealing treatment, which
was consistent with the findings of Wang et al. [24].

The relative crystallinity (RC) of natural rice starch was 37.09%, and it significantly in-
creased after the annealing modification, corresponding to the findings of Waduge et al. [25].
The increase in the crystallinity after annealing could be attributed to the interaction of some
factors, such as the reduction of defect crystal structure and the formation of new microcrys-
tals [3]. The RCs of ANN−50 and ANN−60 after receiving one-step annealing modification
was 42.69% and 46.24%, respectively, increasing by 5.6% and 9.15%, compared with NRS,
which may be due to the annealing temperature approaching TO being more conducive
to the internal rearrangement of starch molecules and increasing the integrity of starch
crystal structure. It was noteworthy that the RCs of the two-step annealing samples were
lower than the RC of ANN−60 of the one-step annealing, which may be due to the change
in temperature during the two-step annealing not being conducive to the transformation of
imperfect crystal structure to perfect crystal structure for starch under hydrothermal action,
thereby inhibiting the formation of more new microcrystalline structures.
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Figure 2. X-ray diffraction patterns of the one and two-step annealed rice starch samples.

3.3. FT-IR

The short-range order of rice starch sample molecules was reflected by FT-IR (Figure 3
and Table 1). The bands that appeared in the 1200~800 cm−1 region were the embodiments
of the stretching and bending vibration information of various chemical bonds, which
mainly reflected the stretching vibrations of C−C and C−O and the bending vibrations of
C−H−O, and they were sensitive to changes in the short-range ordered structure of starch.
As shown in Figure 3 for FT-IR spectroscopy, the annealing treatment had no significant
effects on the typical absorption peaks of the natural rice starch, but the strengths of
the absorption peaks varied depending on whether the starch was annealing or not, which
was consistent with findings of Ji et al. [26], who studied the effects of annealing on three
crystal forms of starch.
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Table 1. The ratios of 1047 cm−1/1022 cm−1 and 995 cm−1/1022 cm−1 of the one and two-step
annealed rice starch samples.

Samples IR (995/1022)/cm−1 IR (1047/1022)/cm−1

NRS 0.602 ± 0.009 c 0.770 ± 0.007 b

ANN-50 0.627 ± 0.007 b 0.788 ± 0.004 a

ANN-60 0.657 ± 0.004 a 0.777 ± 0.002 ab

ANN-50–60 0.584 ± 0.014 d 0.741 ± 0.003 c

ANN-60–50 0.587 ± 0.023 cd 0.744 ± 0.014 c

Same lowercase letter in the same column indicates non-significant difference, different indicates significant
difference (p < 0.05).

Absorption strengths at 1047 cm−1 and 1022 cm−1 were used to characterize the or-
dered structure of the starch crystalline region and the disordered structure of the amor-
phous region, respectively, while the absorption strength at 995 cm−1 was used to indi-
cate the amount of intramolecular hydrogen bonds of the hydroxyl group [27]. There-
fore, R995 cm−1/1022 cm−1 and R1047 cm−1/1022 cm−1 are usually used to character-
ize the double helix structure and order of starch [28]. After the one-step annealing
treatment, the ratio of R995 cm−1/1022 cm−1 increased, which was more significant
in ANN−60 than that in ANN−50, indicating that annealing at 60◦C was more conducive
to the increase in the double helix structure. After the two-step annealing, the ratios of
R995 cm−1/1022 cm−1 and R1047 cm−1/1022 cm−1 were significantly lower than that of
natural starch and one-step annealed starch, indicating a reduced order of starch crystals,
which may be due to the fact that the temperature change will disturb the rearrangement
of starch molecular chains, thereby reducing the order of starch crystals. In addition,
Vela et al. [29] found that the R1047 cm−1/1022 cm−1 of the rice flour samples remained
unchanged at annealing temperatures of 20 ◦C, 40 ◦C, and 50 ◦C, and only the annealing
temperature of 60 ◦C caused a significant difference from the control group, which might
be related to partial gelatinization during treatment.

3.4. RVA

The gelatinization characteristic curve and corresponding parameters of rice starch
before and after annealing are presented in Figure 4 and Table 2. According to Figure 4,
the peak viscosity of starch after annealing decreased by varying degrees, which was
consistent with the findings of Shi et al. [2]. The internal crystallization of starch increased,
and the interactions between the starch chains were strengthened after annealing, thereby
inhibiting the formation of hydrogen bonds between starch and water, reducing the de-
gree of hydration in the amorphous region and limiting the swelling capacity, resulting
in a decrease in peak viscosity. ANN−60 that underwent one-step annealing had a more
significant reduction of peak viscosity and hydratability of the amorphous region due
to the greater hydrothermal intensity applied on starch granules through annealing at
temperatures approaching gelatinization. The peak viscosity of ANN−60−50 was sig-
nificantly lower than that of ANN−50−60 in two-step annealing, which may be due to
the fact that the crystal integrity of the starch granules undergoing one-step annealing had
changed, and the hydrothermal intensity effect of the subsequent annealing temperature
may be smaller.
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Figure 4. Viscosity profiles of the one and two-step annealed rice starch samples.

Table 2. Viscosity properties of the one and two-step annealed rice starch samples.

Sample PV/cP BD/cP FV/cP SB/cP

NRS 3876.67 ± 70.61 a 2182.00 ± 65.94 a 3508.00 ± 14.73 d 1813.00 ± 15.01 a

ANN−50 3723.00 ± 51.12 b 1446.00 ± 29.44 b 4174.00 ± 22.61 a 1897.00 ± 5.00 a

ANN−60 3349.50 ± 38.89 c 716.50 ± 33.23 d 3987.00 ± 70.71 b 1354.00 ± 1.14 c

ANN−50−60 3411.00 ± 9.90 c 853.00 ± 23.52 c 4050.00 ± 63.15 b 1543.00 ± 16.64 b

ANN−60−50 3158.67 ± 63.96 d 810.00 ± 67.98 cd 3863.00 ± 39.89 c 1468.50 ± 106.77 b

Same lowercase letter in the same column indicates non-significant difference, different indicates significant
difference (p < 0.05).

The breakdown is related to the thermostability and shear stability of the starch gran-
ules. Compared with NRS, the breakdown of annealed starch was reduced to varying
degrees, which showed that annealing was conducive to increasing the thermostability and
shear stability of starch. That is mainly because intramolecular imperfect crystallization
in rice starch will form a tighter perfect crystal structure through molecular rearrange-
ment under hydrothermal action, resulting in a more stable structure of the starch [1,8].
The retrogradation value is associated with a short-term retrogradation of starch, with
a decrease in the retrogradation value of the starch after annealing, which is usually related
to the amylose content and the rearrangement of the amylose leached in gelatinization.
The increasing of the final viscosity indicates that the ability of rice starch to form a gel by
cooling increases after annealing [30].

3.5. DSC

Thermal properties such as TO, TP, and TC for starch are related to the crystallization
degrees and particle sizes of the starch granules. The tighter and more orderly the asso-
ciation between starch molecules is, the more energy is required to destroy its inherent
structure in the gelatinization process and the higher the gelatinization temperature is.
The effect of annealing treatment on the thermal properties of rice starch is shown in Table 3
and Figure 5. The annealed starch increased in To and TP, decreased in TC−TO, and had
no significant change in enthalpy value. It indicates that annealing improves the stability
and uniformity of the crystals inside the starch molecules and forms a tighter crystalline
structure than the natural starch, resulting in an increase in its gelatinization tempera-
ture [13]. This result was consistent with the findings of Waduge et al. [25], who reported
that annealing increased the TO, TP, and Tc of barley starch and decreased the gelatinization
temperature range (TC−TO), attributing this change to the formation of a new double
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helix structure due to the improvement of the crystal structure and the interaction between
amylose–amylose or amylose–amylopectin.

Table 3. Thermodynamic properties of the one and two-step annealed rice starch samples.

Sample TO (◦C) TP (◦C) TC (◦C) TC−TO (◦C) 4H (J/g)

NRS 64.42 ± 0.46 e 74.69 ± 0.31 e 81.13 ± 1.10 abc 16.71 ± 1.16 a 9.53 ± 0.12 a

ANN−50 67.16 ± 0.40 d 75.23 ± 0.26 d 80.45 ± 0.45 c 13.29 ± 0.42 b 10.15 ± 0.95 a

ANN−60 72.45 ± 0.23 a 78.19 ± 0.03 a 82.01 ± 0.23 a 9.56 ± 0.39 c 10.27 ± 0.70 a

ANN−50 − 60 70.99 ± 0.10 c 77.26 ± 0.07 c 80.97 ± 0.34 bc 9.98 ± 0.25 c 10.42 ± 0.63 a

ANN−60−50 71.80 ± 0.20 b 77.78 ± 0.07 b 81.82 ± 0.29 ab 10.02 ± 0.13 c 10.31 ± 0.96 a

Same lowercase letter in the same column indicates non-significant difference, different indicates significant
difference (p < 0.05).
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Figure 5. Thermodynamic properties of the one and two-step annealed rice starch samples.

In the two-step annealing, ANN−60−50 had a higher gelatinization temperature than
ANN−50−60, which may be because TO of starch was increased by annealing treatment
in the first step. Combined with the one-step annealed rice starch in which TO, TP, and TC
of ANN−60 were significantly higher than ANN−50, it was shown that starch was getting
higher and higher in intermolecular association and tighter and tighter in crystallization
structure when the annealing temperature was getting closer to the gelatinization tempera-
ture of the starch. Significantly, the DSC spectrum began to gradually form a multimodal
morphology after annealing, which may be due to the fact that part of the new double helix
structure formed in the phase change process, since part of the imperfect crystallization
transforms into perfect crystallization in starch during annealing. It gradually generated
double peaks under heating and melting because of the difference in stability of that part
of the structure and the inherent thermostability of starch.

3.6. Swelling Power and Solubility

The solubility and swellability of starch samples were measured in 55 ◦C−95 ◦C,
as shown in Figure 6. The solubility and swellability of starch increased with the rise
of temperature before and after annealing. This may be because the gradual absorption
and expansion of starch granules with the increase in temperature lead to the accelerated
dissolution of amylose, resulting in the increased swellability of starch granules. After
annealing, the solubility and swellability of rice starch showed a decreasing trend, which
was consistent with findings of Xu et al. [16]. This may be because an increase in crystal in-
tegrity and amylose polymerization or interaction reduces the hydration of the amorphous



Foods 2022, 11, 3641 10 of 13

region of starch, thus inhibiting the swelling of starch granules. In addition, a decrease
in swellability of the annealed starch showed that the breakage of the amylopectin chain
in the annealing process reduced the water-holding capacity of swollen granules [13,25].
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Figure 6. (A) Swelling power. (B) Solubility index patterns of the one and two-step annealed rice
starch samples.

During the one-step annealing, the sample ANN−50 had a significantly higher solubil-
ity and swellability than ANN−60. When annealing at 60 ◦C, the imperfect crystallization
of starch formed perfect crystallization through unwinding, and the crystallinity increased
significantly, compared with that annealed at 50 ◦C, thereby achieving stronger thermosta-
bility, as well as relatively lower solubility and swellability. The two-step annealed rice
starch had significantly lower solubility than the one-step annealed rice starch, which may
be related to the gradual improvement of starch microcrystals and the enhanced intermolec-
ular interaction of amylose during the annealing process. This change formed a more stable
configuration and reduced the leaching of amylose. Meanwhile, the decrease in the swelling
power of annealed starch was consistent with the decrease in gelatinization viscosity.

3.7. In Vitro Digestibility

The digestion curves of rice starch before and after annealing are shown in Figure 7.
All samples were rapidly digested within 20 min, and starch hydrolysis slowly increased
within 20–180 min. Annealing treatment changed the digestibility of starch. Both the one-
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step annealing and the two-step annealing improved RDS and SDS contents and reduced
RS content (Table 4). The one-step-annealed modified ANN-60 was higher than ANN-50.
Combined with SEM analysis, the hydrothermal effect was more intense at the annealing
temperature of 60 ◦C, and the surface folds of starch granules increased; thus, hydrolase
was more likely to go into starch granules, thereby increasing RDS content and reducing RS.
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Figure 7. The digestion curve of the one and two-step annealed rice starch samples.

Table 4. The amount of RDS, SDS, and RS of the one and two-step annealed rice starch samples.

Samples RDS SDS RS

NRS 51.25 ± 0.59 e 24.16 ± 0.24 b 23.84 ± 0.23 a

ANN−50 53.98 ± 0.12 d 29.32 ± 1.96 a 17.85 ± 0.46 b

ANN−60 56.33 ± 0.12 c 27.13 ± 1.76 ab 16.53 ± 1.87 b

ANN−50−60 59.21 ± 0.12 b 27.99 ± 0.36 a 12.80 ± 0.24 c

ANN−60−50 64.45 ± 0.25 a 24.28 ± 0.37 b 11.27 ± 0.12 c

Same lowercase letter in the same column indicates non-significant difference, different indicates significant
difference (p < 0.05).

The increase in ANN-60-50 was most significant in the two-step annealing, with RDS
and SDS increasing by 13.2% and 0.12% over NRS and RS content reducing by 12.57%.
Combined with SEM analysis, the increase in RDS content and the decrease in RS content
may be due to the folds generated on the surface layer of the annealed rice starch, thereby
increasing enzyme sensitivity and accelerating the digestion of rapid digestion starch (RDS).
The increase in SDS may be due to the annealing process enhancing the strong interaction
between the intermolecular chains of starch, which limits the effect of enzymes on the starch
molecular chains to some extent [31]. Song et al. [32] annealed starch from potatoes and
sweet potatoes and obtained consistent results, with increases in RDS and SDS contents
and a decrease in RS content. Since digestive enzymes easily attack amorphous regions
and molten crystal defects, the loss of the α-helix structure following partial gelatinization
of the annealed starch can explain the increase in SDS and the decrease in RS.

4. Conclusions

The results showed that the surface folds of rice starch granules increased, and the Mal-
tese cross was more obvious after annealing. The annealing modification increased the hy-
dration of the amorphous region and crystallization integrity for starch, resulting in de-
creases in its breakdown, peak viscosity, and retrogradation value and some increase in To
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and TP, which also showed an improvement of the thermostability of rice starch. FTIR
showed that no functional groups and new chemical bonds were produced after different
annealings of rice starch; the pretreatment prior to two-step annealing increased the TO
of starch, and the change of annealing temperature destroyed the natural crystallization
integrity, reducing the short-range order of rice starch molecules. Therefore, when starch
is modified by annealing, it is important to keep the temperature of the hydrothermal
treatment consistent. This is more conducive to the rearrangement of starch molecular
chains and the formation of a perfect crystalline structure. The obtained result may be
helpful for the development of annealing modified starch with appropriate applications.
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