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Abstract: In order to improve the water solubility and stability of lutein, soy protein isolates (SPI)
and their hydrolysates via pepsin (PSPI) and alcalase (ASPI) were used as nanocarriers for lutein to
fabricate the lutein-loaded nanoparticles (LNPS) of SPI, PSPI, and ASPI. The encapsulation proper-
ties, light, and in vitro digestive stability of lutein in nanoparticles, and protein–lutein interactions
were investigated. Compared with SPI-LNPS and ASPI-LNPS, PSPI-LNPS was characterized by
uniform morphology (approximately 115 nm) with a lower polydispersity index (approximately 0.11)
and higher lutein loading capacity (17.96 µg/mg protein). In addition, PSPI-LNPS presented the
higher lutein retention rate after light exposure (85.05%) and simulated digestion (77.73%) than the
unencapsulated lutein and SPI-LNPS. Fluorescence spectroscopy revealed that PSPI had stronger
hydrophobic interaction with lutein than SPI, which positively correlated with their beneficial effects
on the light and digestive stability of lutein. This study demonstrated that PSPI possessed significant
potential for lutein delivery.

Keywords: lutein; soy protein hydrolysates; encapsulation; nanoparticles; stability

1. Introduction

Lutein, a type of natural carotenoid found in vegetables, fruits, and eggs [1], is bene-
ficial for a variety of health problems, most notably photo-oxidative retinal damage, eye
inflammation, neurological disorders, and oral diseases [2]. However, lutein’s rapid pho-
todegradation and low aqueous solubility make it difficult to apply and absorb [3]. In
order to overcome these obstacles, it has been widely confirmed that developing nutrient
delivery systems is a promising solution. Proteins, polysaccharides, and starches derived
from food are frequently used for nanoencapsulation.

Emulsion systems were widely used to encapsulate carotenoids. However, fabricating
lutein-loaded nanoemulsions caused a low encapsulation efficiency due to the homog-
enization process [4]. Fabricating fat-free nanoparticles is another effective method [5].
In recent years, several proteins have been used to encapsulate lutein by an antisolvent
method. Glycosylated casein and whey protein were used to create pH and ionic stable
lutein-loaded nanoparticles [6,7]. Zein and its hydrolysates were used to encapsulate
lutein [8]. Zein-derived peptides exhibited significantly increased lutein solubility and sta-
bility against in vitro digestion compared with zein. Additionally, rice protein hydrolysates
were also successfully used to fabricate lutein-loaded nanoparticles [9]. As natural and
environmentally friendly food components, plant proteins have several beneficial effects
on physical health by lowering the risk of cardiovascular disease, diabetes, and certain
types of cancer [10]. However, as a widespread source of plant protein, soy protein has not
been shown to encapsulate lutein.
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SPI has a much higher molecular weight than animal protein, and the hydrophobic
groups are mostly embedded. Due to their high molecular weight and limited hydrophobic
binding sites on the surface, hydrophobic nutrients have a lower loading capacity in
nanoparticles than animal proteins [11]. Through physical or chemical modification of SPI,
additional hydrophobic groups can be exposed to combine with hydrophobic nutrients,
thereby increasing the loading capacity of hydrophobic nutrients in SPI. For example,
heat treatment, ultrasonic treatment, the addition of mild denaturants, and enzymatic
hydrolysis can all be used to dissociate and reassemble SPI [12–14]. Enzymatic modification
is a hotspot for plant protein structure modification research due to its mild production
conditions, high safety, high specificity, and ease of control. Alcalase and pepsin were
used to prepare soy protein hydrolysates for curcumin encapsulation via sonoassembled
and pH-driven methods [15,16]. These methods were based on the solubility of curcumin
in an alkali solution to trigger reassembling with protein. Curcumin belongs to phenolic
compounds, while lutein is a type of carotenoid. The hydrophobicity of lutein is higher than
curcumin. It could not dissolve in both acid and alkali solutions, so these methods could not
be applied to lutein. The effectiveness of soy protein hydrolysates for lutein encapsulation
still needs to be verified. It has been demonstrated that the nanodelivery of carotenoids
such as beta-carotene and lutein by the antisolvent method via peptides derived from other
proteins improves their stability, solubility, and bioactivity when compared to the original
proteins [8,17]. Based on these findings, we hypothesize that certain SPI-derived peptides
may be more effective at encapsulating lutein than SPI.

This study sought to increase lutein’s encapsulation effect via enzymatic hydrolysis of
SPI, thereby increasing lutein’s light and in vitro digestive stability. First, SPI hydrolysates
were prepared using pepsin (PSPI) and alcalase (ASPI), and their structural properties
and lutein encapsulation properties were analyzed. The lutein-loaded SPI hydrolysates
nanoparticles with the best encapsulation properties and particle characteristics were cho-
sen for comparison to unencapsulated lutein and lutein-loaded SPI nanoparticles in terms
of stability against light and in vitro digestion. Meanwhile, the surface hydrophobicity, flu-
orescence spectroscopy, circular dichroism spectrum, Fourier transform infrared spectrum,
and X-ray diffraction analysis were used to investigate the potential mechanism leading
to the different encapsulation effects and lutein stability when SPI and its hydrolysates
nanoparticles were used. This work will aid in the improvement of lutein’s aqueous solu-
bility, stability, and bioavailability, and the development of lutein-enriched nutraceuticals.

2. Materials and Methods
2.1. Materials

Lutein (purity > 90%), alcalase (enzyme activity > 200 U/mg), bile salts, and molecular
weight standards including bacitracin, aprotinin, myohemoglobin, bovine serum albumin,
and thyroglobulin were purchased from Shanghai Yuanye Biotechnology Co., Ltd. (Shang-
hai, China). Soybeans were bought from Fengyuan Zhongye Co., Ltd. (Lianyungang,
China). Pepsin (enzyme activity > 2500 U/mg), trypsin (enzyme activity > 2500 U/mg),
8-aniline-1-naphthalensulfonic acid (ANS), and trinitrobenzenesulfonic acid (TNBS) were
purchased from Sigma-Aldrich Co., (St. Louis, MO, USA). All other reagents and solvents
were of at least analytical grade.

2.2. Preparation of SPI and Its Hydrolysates by Pepsin and Alcalase (PSPI and ASPI)

SPI was prepared from soybeans with reference to a previous publication [18]. First,
soybeans were pulverized and defatted with a threefold concentration of n-hexane:ethyl
alcohol (9:1, v/v). After drying the organic solvent in the air for 12 h, the defatted soy flour
was blended with deionized water at a 1:10 (w/v) ratio with the pH adjusted to 8.0 using 2 M
NaOH. The dispersion was stirred for 2 h at a constant pH of 8.0 and centrifuged for 20 min
at 10,000× g, and the supernatant was adjusted to pH 4.5 with 2 M HCl and centrifuged
at 3300× g for 20 min (Xiangyi Appliance Co., Ltd., Beijing, China) The precipitate was
redissolved in deionized water at a ratio of 1:4 (w/v) for at least 3 h while maintaining a
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pH of 7.0. The solution was lyophilized to yield SPI with a protein content of 90.23%, as
determined by the Kjeldahl method. The SPI was stored at −80◦C prior to use.

PSPI and ASPI were prepared in a manner similar to that used by other researchers [15,19].
SPI was completely dissolved in deionized water (5%, w/v) after overnight hydration. En-
zymatic hydrolysis both took 45 min using pepsin (pH 2.0, 37 ◦C) and alcalase (pH 8.0,
55 ◦C), respectively. Enzyme activity was 2500 U/g protein for pepsin and 2000 U/g protein
for alcalase. After adjusting pH to 7.0, the solution was boiled for 10 min at 100 ◦C in a
water bath to deactivate enzymes and then rapidly cooled. After centrifuging the solution
at 8000× g for 15 min, the supernatant was collected and lyophilized to yield PSPI and
ASPI. PSPI and ASPI were stored at −80◦C prior to use.

2.3. Characteristics of SPI, PSPI, and ASPI
2.3.1. Degree of Hydrolysis (DH) Measurement

The DH of PSPI and ASPI was determined using the TNBS assay described by Adler-
Nissen [20]. Specifically, 0.125 mL protein solutions (1 mg/mL) were thoroughly mixed
with 1 mL phosphate buffer (pH 8.2, 0.2 M) and 1 mL TNBS (0.1%). After 1 h of dark
reaction at 50 ◦C, 2 mL of 0.1 M HCl was added to terminate the reaction. The absorbance
at 340 nm was measured until the solution reached room temperature. Additionally, the
unhydrolyzed SPI and the standard L-leucine (0–2.5 mmol/L) were used to react together.
The following Equation (1) was used to determine the DH:

DH = h/htot × 100% (1)

where h is the concentration of broken peptide bonds (mmol/g), and htot is the total
concentration of broken peptide bonds after thorough hydrolysis, which is 7.8 mmol/g for
soy protein.

2.3.2. Molecular Weight (MW) Distribution

The molecular weight distribution of SPI and its hydrolysates was determined using
an HPLC system (Waters 2695, Milford, MA, USA) equipped with a size exclusion chro-
matography column according to the method described by Jiang et al. [21]. The testing
condition was listed below.

Chromatography column: protein KW-804 (8 × 300 mm, 5 µm, Shodex Co., Tokyo,
Japan); flow rate: 1 mL/min; wavelength: 220 nm; column temperature: 25 ◦C; mobile
phase: 50 mM phosphate buffer (pH 7.0) containing 30 mM sodium chloride; injection
volume: 10 µL; sample concentration: 10 mg/mL. Molecular mass standards include
bacitracin, aprotinin, myohemoglobin, bovine serum albumin, and thyroglobulin. The
molecular weight of the protein was determined using the regression equation for molecular
weight. Furthermore, the standard curve was plotted with the retention time of the standard
as the abscissa, and log (MW) as the ordinate to obtain the regression equation.

2.3.3. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE images of SPI, PSPI, and ASPI were analyzed by SDS-PAGE according to
the method of Jiang et al. [21]. The stacking and separating gels contained 4% and 12%
acrylamide, respectively. Equal volumes of samples were mixed with loading buffer in
the presence and absence of β-mercaptoethanol to a concentration of 2 mg/mL, and the
mixtures were boiled for 5 min at 100 ◦C. A standard medium molecular weight protein
was used as a molecular weight marker. Each lane was loaded with 15 µL of the sample,
and the initial voltage was set to 80 V. The voltage was increased to 120 V once the samples
reached the separating gel. Staining with BeyoBlue™ Coomassie Blue Super Fast Staining
Solution and destaining with distilled water was performed prior to scanning the gel image
with Bio-Rad’s Image Capture System.
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2.3.4. Surface Hydrophobicity Determination

Protein surface hydrophobicity (H0) was determined using the ANS probe assay [22].
All ANS (8 mM) and protein samples (0.2–1 mg/mL) were prepared in pH 7.0 phosphate
buffer (10 mM). The 4 mL protein samples were thoroughly mixed with 20 µL ANS.
After 3 min of reaction in the dark, the fluorescence intensity was measured using an
F-2700 spectrofluorometer (Hitachi, Tokyo, Japan) under the conditions described below.
Excitation wavelength: 390 nm; emission wavelength: 470 nm; slit width: 5 nm. The
standard curve was plotted with the protein concentration (mg/mL) of samples as the
abscissa and the fluorescence as the ordinate, and the slope of the curve was determined
as H0.

2.4. Preparation of Lutein-Loaded Nanoparticles

The lutein-loaded nanoparticles of SPI (SPI-LNPS), PSPI (PSPI-LNPS), and ASPI
(ASPI-LNPS) were fabricated using the method described by Chen et al. [23] with some
modifications. Protein (2.5 mg/mL) was dissolved using a 10 mM phosphate buffer (pH 7.0)
with complete hydration at 4 ◦C. Lutein solutions (0.25, 0.5, 0.75, and 1 mg/mL) in absolute
ethyl alcohol were prepared using a two-min sonication treatment with 5 s of sonication and
5 s of rest. At a ratio of 1:10, lutein solutions of various concentrations were injected into
protein solutions (v/v). After 2.5 h of magnetic stirring, the insoluble lutein was removed
via 15 min of centrifugation at 10,000 g and determined as free lutein. The supernatant
obtained was used as lutein-loaded nanoparticles.

2.5. Encapsulation Efficiency (EE) and Loading Capacity (LC) of Lutein

EE and LC were determined in accordance with Yuan et al. [15]. Ethanol was used
to extract the encapsulated lutein. The previously obtained supernatants were combined
with ethanol to achieve a final ethanol concentration of 90%. Following complete pro-
tein precipitation, the mixtures were centrifuged at 10,000× g for 20 min. The super-
natants were collected and, if necessary, diluted with 90% ethanol. The encapsulated
lutein was then quantified using spectrophotometric analysis at 445 nm against a known
lutein curve (R2 > 0.999). The EE and LC of lutein were determined using the following
Equations (2) and (3):

EE (%) = Encapsulated lutein (mg) / Lutein input (mg) × 100 (2)

LC = Encapsulated lutein (µg) / Total mass of protein (mg) (3)

2.6. Particle Characteristics
2.6.1. Particle Size, Polydispersity Index (PDI) and ζ-Potential

The particle size, PDI, and ζ-potential of protein solutions and nanoparticles were
determined using a Zetasizer Nano-ZS (Malvern Instruments, Malvern, UK) with reference
to the method of Wu et al. [24]. The fixed angle, refractive index, and test temperature were
all set to 173, 1.33, and 25 ◦C, respectively.

2.6.2. Atomic Force Microscopy (AFM) Images

AFM images were obtained according to the method of Feng et al. [25]. AFM images
were captured in the air using the tapping mode with an SNL-10 probe on a Dimension
Icon scanning probe microscope (Bruker Technology Co., Ltd., Bremen, Germany). The
scan rate was set to 256 Hz. Protein and lutein-loaded nanoparticles were diluted to a
protein concentration of 5 µg/mL by deionized water and 2 µL was added to the surface
of a freshly peeled mica sheet. The samples were dried overnight in the air before being
captured under the microscope. Nanoscope Analysis 1.9 software (Bruker Corp., Santa
Barbara, CA, USA), was used to further process the obtained images.
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2.7. Light Stability

The stability of light was investigated using the method described by Du et al. [17].
Unencapsulated lutein was dispersed in a 10 mM phosphate buffer (pH 7.0) using ultra-
sound, and nanoparticles loaded with an equivalent amount of lutein were exposed to
15,000 LX white light at 37 ◦C for 48 h using a GZP-150N illumination incubator (Senxin
Instruments Ltd., Shanghai, China). The amount of lutein retained was determined using
the method described previously (Section 2.5). Furthermore, to represent light stability, the
retention rate of lutein was plotted against time.

2.8. In Vitro Gastrointestinal Digestion

The in vitro digestive stability of unencapsulated and encapsulated lutein was deter-
mined using the method described by Li et al. [26]. In equal proportions, unencapsulated
lutein, SPI-LNPS, and PSPI-LNPS were combined with simulated gastric fluid (SGF). The
mixtures (pH 3.0) were shaken at 200 rpm for 2 h at 37 ◦C to simulate stomach digestion.
The mixtures were then mixed with simulated intestinal fluids (SIF) in equal parts. Then
the mixtures (pH 7.0) were shaken for 2 h to simulate intestinal digestion. With reference
to Jiao et al. [8], 0.5 mL suspensions were taken and extracted with 2.5 mL of ethanol.
After thorough mixing and complete protein precipitation, the mixtures were centrifuged
at 20,000× g for 20 min, and the supernatants were analyzed for retained lutein content
using an HPLC system (Waters 2695, Milford, MA, USA) equipped with a 2487 UV detector
(Waters Corp., Milford, MA, USA) operating at 445 nm.

In addition, the following conditions were used during testing: chromatography
column: XBridge C18 column (4.6 × 250 mm, 5 µm, Waters Corp., Milford, MA, USA);
wavelength: 445 nm; flow rate: 1 mL/min; column temperature: 30 ◦C; injection volume:
10 µL; mobile phase: (A) absolute methanol and (B) 0.1% methanoic acid with linear
gradient elution (0–20 min, 90%–100% A; 20–25 min, 100%–90% A).

2.9. Measurement of Intrinsic Fluorescence

This section was implemented according to the method described by Ma et al. [9].
Protein solutions (0.4 mg/mL) of SPI and PSPI were prepared in a 10 mM phosphate buffer
(pH 7.0). As a stock solution, lutein was dissolved in absolute ethanol at a concentration
of 0.1 mM. Subsequently, to achieve a final lutein concentration of 0−30 µM, various
concentrations of lutein stock solution were added to protein solutions with complete
mixing. At 34 ◦C, the intrinsic fluorescence was determined using an F-2700 fluorescence
spectrometer (Hitachi Ltd., Tokyo, Japan). The following parameters were used during the
test: excitation wavelength 280 nm, emission wavelength 300–450 nm, slit width 5.0 nm,
and scan speed 1500 nm/min.

The Stern-Volmer equation was used to investigate the fluorescence quenching process
of protein, in order to clarify fluorescence quenching mechanisms.

F0/F = 1 + Ksv[Q] = 1 + kqτ0[Q] (4)

where F0 is the fluorescence intensity before lutein addition; F is the fluorescence intensity
after lutein addition; [Q] is the final lutein concentration (µM); Ksv denotes Stern-Volmer
quenching; kq denotes the quenching rate constant; and τ0 denotes the fluorescence lifetime
of the fluorophore in the absence of quenching, which is typically 10−8 s.

The value of kq confirms the quenching type. The binding constant (Ka) and the
number of binding sites (n) for static quenching can be determined using the Stern-Volmer
logarithmic equation as follows:

log(F0−F) / F = logKa + nlog[Q] (5)

2.10. Circular Dichroism (Cd) Analysis

Secondary structures of SPI, PSPI, and their mixtures with lutein were determined
using the method of Shen et al. [19] on a Chirascan V100 CD Spectrometer (Applied
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Photophysics Ltd., Leatherhead, UK). Protein and lutein concentrations were adjusted to
0.1 mg/mL and 0.03 mg/mL, respectively. The CD spectral range was scanned between
190 and 260 nm. Additionally, the following parameters were demonstrated: a scanning
speed of 60 nm/min; spectral resolution of 0.2 nm; a response time of 0.25 s; and a slit
width of 1 nm. The CDPro software was used to determine the proportion of secondary
structure (Applied Photophysics).

2.11. The Fourier Transform Infrared Spectra (FTIR) and X-ray Diffraction (XRD) Analysis

The FT-IR and XRD spectra were obtained using the method described by Li et al. [26].
The FTIR spectra were recorded using a Nicolet IS10 spectrometer (Thermo Fisher Inc.,
Waltham, MA, USA). Lyophilized lutein, SPI, PSPI, and lutein-loaded nanoparticles were
fully blended at a ratio of 1:100 (w/w) with freshly dried KBr powder and compressed to
a pellet for measurement. The scanning wavelength was adjusted to be between 500 and
4000 cm−1.

A D2 Phaser diffractometer was used to obtain XRD spectra (Bruker). The 2θ angle
was adjustable between 5◦ and 50◦ with a step size of 0.05◦.

2.12. Statistical Analysis

The experiments were repeated three times, and data were presented as the mean ±
standard deviation (SD). Statistix 9.0 software was used to conduct the statistical analysis
(Analytical Software, Tallahassee, FL, USA). Significant differences were determined by the
least significance difference (LSD) method. When p < 0.05, a statistical difference existed.

3. Results and Discussion
3.1. Characteristics of SPI, PSPI, and ASPI

Enzymatic hydrolysis of food-derived protein for bioactive compound nanoencapsula-
tion has been widely reported previously [8,17]. Different DH values for proteins resulted
in varying degrees of encapsulation [9].

PSPI and ASPI had a DH of 6.00% and 14.96%, respectively (Table 1), indicating that
alcalase had a greater capacity for hydrolysis of SPI than pepsin. Consistent with the
result of DH, the MW distribution and nonreducing SDS-PAGE analysis of SPI and its
hydrolysates revealed a similar trend.

Table 1. Degree of hydrolysis (DH) and surface hydrophobicity (H0) of SPI, PSPI, and ASPI.

Sample DH (%) H0

SPI - 86.24 ± 0.51 b

PSPI 6.00 ± 0.05 a 140.27 ± 1.76 c

ASPI 14.96 ± 0.04 b 20.78 ± 0.12 a

Values are expressed as the mean ± SD. Different letters (a, b, and c) denote a significant difference (p < 0.05)
between samples in the same column.

As illustrated in Figure 1a, the larger peptides with an MW of >400 kDa of SPI were
predominantly hydrolyzed to peptides with an MW of 10–100 kDa by pepsin and alcalase.
Similar results were found in previous research that the proportion of peptides with low
MW for SPI increased after hydrolysis by alcalase and pepsin [24,27]. In comparison to
PSPI, the proportion of peptides with an MW of 10–50 kDa was approximately 17% higher
in ASPI. As shown in Figure 1b, the majority of MW bands in ASPI were less than 31 kDa
on the nonreducing gel. However, PSPI contained MW bands between 40 and 100 kDa.
According to reducing SDS-PAGE, α, α′, and β subunits of β-conglycinin remained in PSPI,
whereas the A and B subunits of glycinin were mostly hydrolyzed, which was consistent
with the findings of Chen et al. [28]. The hydrophobicity of β-conglycinin was found
to be greater than that of glycinin [29], which may explain why the H0 of PSPI, with a
higher proportion of β-conglycinin subunits, was greater than that of ASPI with no glycinin
or β-conglycinin subunits remaining (Table 1). The differences in the ASPI and PSPI
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characteristics may be due to the different enzymatic hydrolysis properties of pepsin and
alcalase on SPI. Alcalase possesses broad specificity endoprotease activity, which enables
it to obtain a DH value greater than 10% after a brief period of hydrolysis, resulting in a
relatively low H0 [30]. Pepsin is an aspartic protease that can hydrolyze glycinin but retain
its β-conglycinin of SPI [31].
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3.2. Encapsulation Properties and Particle Characteristics

According to Figure 2a,b, as the amount of lutein added increased, the EE of lutein in
PSPI-LNPS and ASPI-LNPS decreased, whereas the EE of lutein in SPI-LNPS reached the
highest at the mass ratio of 50:1. The LC of lutein increased and then decreased in SPI-LNPS
and PSPI-LNPS, whereas the LC of lutein in ASPI-LNPS decreased with lutein addition. It
is worth noting that when the lutein was added at a mass ratio of 100:3, the LC of lutein in
PSPI-LNPS was the highest (17.96 µg/mg protein), approximately 2.28%, and eight times
higher than that of SPI-LNPS and ASPI-LNPS, respectively, and the corresponding lutein EE
was 5.83%, and 10 times higher than that of the other two nanoparticles. So the mass ratio of
100:3 was chosen for further index determination. It was concluded that PSPI was the most
effective at encapsulating lutein at a relatively high lutein loading level, whereas ASPI was
the least effective. According to previous research, hydrophobic bonding was the primary
mechanism by which hydrophobic bioactives were encapsulated [8], which explains why
the EE and LC values of lutein in SPI, PSPI, and ASPI were positively correlated with their
H0 values in this study (Table 1).
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Figure 2. (a) Encapsulation efficiency (EE) of lutein in SPI-LNPS, PSPI-LNPS, and ASPI-LNPS;
(b) loading capacity (LC) of lutein in SPI-LNPS, PSPI-LNPS, and ASPI-LNPS; (c) SPI, PSPI, and ASPI
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of 100:3 between protein and lutein. The standard deviation is represented by the bars. Columns
denoted by different letters (a–j) indicate a statistically significant difference (p < 0.05).

For particle characteristics shown in Figure 2c,d, PSPI had a single peak distribution,
whereas SPI and ASPI had two and three peaks, respectively. This finding was consistent
with the data in Table 2, which indicated that the PDI of PSPI was <0.3. The addition
of lutein increased the particle sizes of SPI-LNPS, PSPI-LNPS, and ASPI-LNPS, which
was consistent with the previous research by Qi et al. [32]. It was discovered that the
addition of lutein dipalmitate increased the size of BSA, which could be related to the
interaction between BSA and lutein dipalmitate. However, the size distribution and PDI
of nanoparticle trends were similar to that of pure protein, with a single peak and the
lowest PDI of 0.11 in PSPI-LNPS. PSPI-LNPS was chosen for further investigation due to
its superior encapsulation properties, size distribution, and PDI.
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Table 2. Average particle size, PDI, and ζ-potential of SPI, PSPI, and ASPI and their lutein-loaded
nanoparticles.

Sample Average Particle Size (nm) PDI ζ-Potential (mV)

SPI 59.5 ± 0.34 a 0.55 ± 0.005 e −25.30 ± 0.99 c

PSPI 71.12 ± 0.37 b 0.26 ± 0.003 b −20.50 ± 0.71 a

ASPI 76.23 ± 5.17 b 0.52 ± 0.03 d −23.10 ± 0.57 b

SPI–LNPS 124.43 ± 1.85 d 0.48 ± 0.01 c −23.25 ± 0.92 b

PSPI–LNPS 114.47 ± 1.45 c 0.11 ± 0.009 a −23.45 ± 0.78 b

ASPI–LNPS 236.10 ± 8.20 e 1.00 ± 0.00 f −25.35 ± 0.07 c

Values are expressed as the mean ± SD. Different letters (a–f) denote a significant difference (p < 0.05) between
samples in the same column.

3.3. Effect of Light and Digestive Environment on the Stability of Lutein-Loaded Nanoparticles

The lutein retention rate was determined to investigate the stability of lutein in SPI-
LNPS, PSPI-LNPS, and unencapsulated lutein when exposed to strong light and gastroin-
testinal digestion in vitro.

As illustrated in Figure 3a, lutein in SPI-LNPS showed rapid degradation after 48 h
of light exposure, which contrasted with the previous research showing that β-carotene’s
light stability was significantly improved when encapsulated in α-Lactalbumin [17]. This
may be due to the nonuniformity of particles with large aggregates present in SPI-LNPS,
as depicted by the size distribution results in Figure 2d, indicating that SPI-LNPS may
be easily degraded when exposed to intermediate products derived from lutein autoxida-
tion [33]. After 48 h of light exposure, lutein retention in PSPI-LNPS was 85.05%, which
was approximately 11.13% higher than that of unencapsulated lutein. This result may also
be reflected in the fact that PSPI-LNPS has a darker color than unencapsulated lutein and
SPI-LNPS in Figure 3a.
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Figure 3. (a) Lutein retention rate of unencapsulated lutein, SPI-LNPS, and PSPI-LNPS after 48 h of
light exposure; (b) Lutein retention rate of unencapsulated lutein, SPI-LNPS, and PSPI-LNPS after 4
h of digestion. Lutein (1), SPI-LNPS (2), and PSPI-LNPS (3) were photographed in (a) after 48 h of
exposure to light. The standard deviation is represented by the bars. Columns with different letters
(a–e) indicate a significant difference between samples (p < 0.05).

As illustrated in Figure 3b, the retention rate of lutein in SPI-LNPS was found to
be 5.32% greater than that of unencapsulated lutein following in vitro gastric digestion
(p < 0.05). When lutein was encapsulated with PSPI, the retention rate increased by 5.52%
(p < 0.05), when compared with SPI-LNPS. After intestinal digestion, SPI-LNPS retained
lutein at a non-significantly higher rate (p > 0.05) than unencapsulated lutein, whereas PSPI-
LNPS retained lutein at a significantly higher rate with an improvement of approximately
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8.40% (p < 0.05). Jiao et al. [8] also reported that encapsulating lutein via zein-derived
peptides significantly reduced lutein degradation in SGF and SIF. These findings indicated
that encapsulating lutein with SPI hydrolysates via pepsin significantly improved lutein
stability in the presence of light and a simulated digestive environment.

3.4. Fluorescence Spectroscopy Analysis

In order to understand why PSPI-LNPS had a better encapsulation performance and
stability against light and in vitro digestion, fluorescence emission spectroscopy was used
to analyze the interaction between protein and lutein. Due to the presence of tryptophan
(Trp), tyrosine (Tyr), and phenylalanine (Phe) residues in proteins, endogenous fluorescence
can occur [34]. The fluorescence intensity towards wavelength changed in a diverse solvent
environment.

In Figure 4a,b, SPI emitted at a high fluorescence intensity of 339 nm, whereas a
redshift to the highest fluorescence emission wavelength of 350 nm happened in PSPI,
indicating a more open structure of the protein caused by the demasking of peptide bonds
following hydrolysis [35].
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The fluorescence intensity of SPI and PSPI decreased as lutein concentration was
increased (Figure 4a,b), indicating that the interaction between protein and lutein quenched
the protein’s intrinsic fluorescence. Meanwhile, the addition of lutein resulted in a slight
blueshift of about 3 nm, indicating that the aromatic residues were shifted to a more
hydrophobic environment [15].

As illustrated in Figure 4a,b, a strong linear relationship between F0/F and lutein
concentration was observed in both SPI and PSPI. The Stern-Volmer equation was used to
calculate the quenching constant Ksv and the quenching rate constant kq. As the values
of kq in SPI-LNPS and PSPI-LNPS were significantly greater than 2.0 × 1010 M−1 s−1, the
quenching mechanism was static [32]. In order to further compare the binding capacity of
lutein between SPI and PSPI, the Stern-Volmer logarithmic equation was used to determine
the binding constant (Ka) and the number of binding sites (n).

In Table 3, the values of Ka and n for lutein-PSPI were both greater than those for
lutein-SPI, indicating that lutein had a greater binding capacity for PSPI than SPI. The
stronger interaction between lutein and PSPI was positively associated with lutein’s in-
creased loading capacity and increased stability against light exposure and a simulated
digestive environment in PSPI-LNPS. This result was also consistent with a previous work
of Ma et al. [9] on lutein encapsulation using zein-derived peptides. The difference in
lutein binding capacity between SPI and PSPI was most likely caused by the fact that PSPI
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exposed more hydrophobic binding sites to the surface of the protein following hydrolysis
with pepsin with a higher H0 than SPI (Table 1).

Table 3. The quenching constant (Ksv), the quenching rate constant (kq), the binding constant (Ka),
and the number of binding sites (n) for Lutein (0–30 µM) binding to SPI and PSPI.

kq/1012 M−1 s−1 Ksv/104 M−1 Ka/105 M−1 n

Lut-SPI 5.27 ± 0.12 b 5.27 ± 0.12 b 0.63 ± 0.03 a 1.02 ± 0.01 a

Lut-PSPI 3.87 ± 0.17 a 3.87 ± 0.17 a 1.04 ± 0.12 b 1.10 ± 0.03 b

Values are expressed as the mean ± SD. Different letters (a and b) denote a significant difference (p < 0.05) between
samples in the same column.

3.5. CD Analysis

The secondary structure of SPI and PSPI was determined by CD spectra. The mean
ellipticity of the residues between 206 and 220 nm indicates the presence of α-helixes in
the protein [36]. As shown in Figure 5, SPI exhibited a positive peak around 196 nm and a
broad negative peak at 206 nm. The positive peak vanished after pepsin hydrolysis, while
the negative peak blue shifted to 202 nm with a larger negative value. This result was
consistent with previous research using alcalase to hydrolyze SPI [24]. The ratio of α-Helix
to β-Sheet can be used to demonstrate the flexibility and stiffness of proteins [19].
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According to Table 4, the proportion of α-Helix in SPI decreased and was converted
to a random coil following pepsin hydrolysis, indicating that the increased flexibility in
PSPI was consistent with the fluorescence spectrum analysis result. This phenomenon was
also reflected by a decrease in the mean residue ellipticity at approximately 206 nm, which
corresponds to the α-Helix content. With the addition of lutein, the secondary structure
composition of SPI and PSPI remained nearly unchanged, as previously demonstrated in a
study on the interaction of proanthocyanidins and soybean seed ferritin [37].

Table 4. The secondary structure content evaluated by CDPro of SPI and PSPI with and without the
addition of lutein.

Secondary Structure α-Helix (%) β-Sheet (%) β-Turns (%) Random Coil (%)

SPI 16.24 ± 0.08 b 32.84 ± 0.47 a 22.24 ± 0.06 c 28.69 ± 0.45 b

PSPI 9.27 ± 0.05 c 31.67 ± 0.27 b 23.00 ± 0.02 a 36.07 ± 0.28 a

SPI-Lut 16.94 ± 0.51 a 31.67 ± 0.68 b 22.31 ± 0.09 c 29.08 ± 0.11 b

PSPI-Lut 8.74 ± 0.25 c 32.92 ± 0.34 a 22.78 ± 0.15 b 35.56 ± 0.40 a

Values are expressed as the mean ± SD. Different letters (a–c) denote a significant difference (p < 0.05) between
samples in the same column.
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3.6. FT-IR and XRD Analysis

The total composition of biomaterials was determined using FT-IR. According to
Figure 6a, lutein exhibited distinct peaks at 2956, 2917, 2850, 1600, 1157, 1042, and 964 cm−1.
Three of these peaks were previously identified by Jiao et al. [8]. Three peaks at 1157, 1066,
and 952 cm−1, which did not exist in SPI or PSPI, were detected in SPI-LNPS and PSPI-
LNPS, respectively. This phenomenon was also observed in a previous study conducted by
Feng et al. [38], which demonstrated the successful encapsulation of lutein in nanoparticles.
Additionally, FT-IR can provide information about the structure of proteins. The Amide
I band between 1600 and 1700 cm−1 is attributed to the C=O stretch and can be used to
analyze protein secondary structure. Between 1500 and 1600 cm−1, the Amide II band
indicates the vibrations of N–H bending and C–N stretching. As shown in Figure 6a, both
the Amide I and II bands of PSPI showed a redshift when compared to SPI, indicating that
the structure of SPI changed following hydrolysis. The Amide I and II bands in SPI-LNPS
and PSPI-LNPS seldom shifted when lutein was added, indicating that the protein structure
remained nearly unchanged, consistent with their CD results.
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lutein (0.07 mg/mL).

XRD was used to confirm the lutein’s physical state (Figure 6b). In unencapsulated
lutein, strong crystal diffraction peaks with two thetas ranging from 5◦ to 25◦ were observed.
SPI revealed two broad weak peaks at 9.1◦ and 20.5◦. PSPI, SPI-LNPS, and PSPI-LNPS
exhibited almost no diffraction peaks. Similarly, when lutein was encapsulated in glyco-
sylated casein, similar results were obtained [7]. This result confirmed that the protein
and nanoparticles were amorphous [39], indicating that the lutein was encapsulated in the
protein’s hydrophobic core, which was more advantageous for the delivery system than
unencapsulated lutein [40].

3.7. Morphology Analysis

The morphology of the protein and lutein-loaded nanoparticles depicted in Figure 7
was consistent with the particle size determination result. SPI contained some large ag-
gregated particles (Figure 7a), whereas PSPI contained particles that were uniformly dis-
tributed and had similar particle sizes (Figure 7c). Increased particle size was also observed
with the addition of lutein in both SPI-LNPS (Figure 7b) and PSPI-LNPS (Figure 7d), which
was due to the interaction of lutein and protein [32]. These findings strongly suggest
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that hydrolysis of SPI with pepsin can result in the formation of more uniform spherical
nanoparticles.
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4. Conclusions

In this study, SPI and its hydrolysates via pepsin and alcalase (PSPI, ASPI) were used
to encapsulate lutein. Compared to SPI-LNPS, PSPI-LNPS demonstrated increased lutein
loading capacity, uniform particle size distribution, and improved lutein stability against
light exposure and simulated gastric environment, whereas ASPI-LNPS demonstrated
the poorest encapsulation properties and particle characteristics, which were positively
related to the β-conglycinin content and surface hydrophobicity of the protein. Fluorescence
spectroscopy and CD spectra revealed that after pepsin hydrolysis, the SPI structure became
more open and flexible, and the PSPI exhibited a greater binding strength for lutein than the
SPI, primarily due to hydrophobic interaction, thereby contributing to lutein’s improved
encapsulation property, light and digestive stability in PSPI-LNPS. These findings indicate
that certain SPI-derived peptides have the potential to significantly increase the stability of
lutein and be used as a nanoencapsulation material for lutein-enriched nutraceuticals.
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