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Abstract: Tartary buckwheat microgreens (TBM) are popular worldwide products but display an
extremely short shelf life. Thus, the effects of storage temperature, packaging material, and wash
treatment on the quality and shelf life were analyzed. Headspace composition, weight loss, electrolyte
leakage, microbial population and sensory quality were investigated during storage. Results showed
that shelf life and quality of TBM decreased with the increment of storage temperature when stored
at 5–25 ◦C. During 5 ◦C storage, LDPE bags were the best packaging materials for preserving the
quality of LDPE, PE and HDPE bags. On the basis of 5 ◦C and LDPE packages, ClO2 + citric acid
wash treatment could further inhibit quality deterioration and extend the shelf life. The results
demonstrated bioactive constituents and antioxidant capacity were significantly affected by storage
time. The study provides insights into developing optimal packaging and storage conditions for TBM.

Keywords: Tartary buckwheat microgreens; storage temperature; packaging material; wash
treatment; postharvest quality

1. Introduction

Microgreens, also known as “tender immature greens” or “salad crop shoots”, are cul-
tivated from the seeds of vegetables, herbs or crops and harvested after 10 to 20 days of seed
germination [1–3]. As the living standards have risen, tens of microgreens have appeared in
upscale markets, specialty grocery stores, and restaurants and gained great popularity due
to their excellent sensory and nutritional attributes over the past decades [2,4]. However,
microgreens are perishable and have an extremely short shelf life during ambient storage
for 1–2 days [5]. Moreover, there is an increasing food safety concern since microgreens are
mainly consumed raw [6].

Temperature is one of the most significant storage factors for the quality and shelf life
of postharvest microgreens [7]. Studies in various microgreens, such as radish microgreens,
buckwheat microgreens, and mustard microgreens, demonstrated the importance of tem-
perature control in postponing postharvest quality deterioration and extending shelf life
via reducing weight loss, atmosphere component and growth of food spoilage-associated
microorganisms [7–9]. Moreover, optimal storage temperature varies for different kinds of
microgreens, for example, 1 ◦C for radish microgreens and 5 ◦C for buckwheat (Fagopyrum
esculentum) microgreens [7,9], indicating the cruciality of storage temperature selection.

The atmosphere component is another important storage factor affecting the charac-
teristics of postharvest microgreens [7,9,10]. The package atmosphere of microgreens is
determined by several elements, among which packaging film selection is a convenient
and effective way to keep freshness, extend shelf life and protect microgreens from food
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spoilage-associated microorganisms and other environmental pollutants [7,9,10]. However,
information about packaging film selection for microgreens is still scarce.

In addition, water washing is an important processing step protecting fresh-cut prod-
ucts from contamination, which helps to remove dust, debris and cell exudates caused by
the harvesting procedure and kill microorganisms. Conventionally, the washing process is
performed with chlorinated water or organic acids, and its application has been reported
in postharvest microgreens, such as buckwheat and radish microgreens [7,9,11]. Thus,
systemic analysis of wash treatment on postharvest TBM also needs more attention.

Tartary buckwheat (Fagopyrum tataricum) is abundant in protein, lipids, vitamins,
flavonoids and polyphenolic compounds, which are beneficial for human health due
to the free radicals scavenging and oxidative damage reduction activities [12]. Tartary
buckwheat sprouts and microgreens, germinated from Tartary buckwheat seeds, contain
higher amounts of flavonoids and are gluten-free, which jointly make them widely spread in
the world as healthcare products [13,14]. However, the supply of fresh Tartary buckwheat
sprouts and microgreens in the food chain is still very limited due to their perishable
characteristics and lack of postharvest techniques.

2. Materials and Methods
2.1. Sample Preparation and Packaging

Tartary buckwheat seeds (Cultivar Xiqiao No. 1 of Fagopyrum tataricum), supplied by
the Coarse Cereal Processing Center of Chengdu University (Chengdu, Sichuan, China),
were immersed for 12 h in deionized water (dH2O) at room temperature after rinsing
in dH2O till the liquid is transparent. Afterward, the seeds were sown in the soil in a
growth chamber at 22 ± 1 ◦C. The seeds were kept in darkness for the first 4 days and then
illuminated by light-emitting diodes (LEDs) with the intensity of 50 µmol m−2 s−1 (16/8 h,
light/dark). After 12 days of cultivation, the samples were harvested, and microgreens
without blemishes and mechanic injuries were used for further analysis.

2.2. Temperature, Packaging and Wash Treatments

For all the treatments, microgreens were kept in bags of 20 cm × 30 cm with 30 g per
bag. For temperature analysis, microgreens were packed in polyethylene (PE) (12 µm) bags.
Samples were stored at 5, 10, 15, 20, or 25 ◦C for 8 days and were periodically analyzed on
0, 2, 4, 6 and 8 d. For packaging material analysis, microgreens were sealed in PE (12 µm),
low-density polyethylene (LDPE) (38 µm) and high-density polyethylene (HDPE) (6.8 µm)
bags, respectively. Samples were stored at 5 ◦C for 8 days and evaluated on 0, 2, 4, 6 and
8 d. For wash treatment analysis, microgreens were divided into four groups randomly.
The first three groups were immersed in tap water, chlorinated water (2 mg L−1 ClO2) and
citric acid solution (1% citric acid (w/v)) for 10 min, respectively. The fourth group was
firstly immersed in chlorinated water (2 mg L−1 ClO2) for 5 min and then in citric acid
solution (1% citric acid (w/v)) for 5 min. After being air-dried, microgreens were sealed in
LDPE bags and stored at 5 ◦C for 12 days and evaluated on 0, 4, 8 and 12 d.

2.3. Analysis of Packaging Headspace Atmosphere Composition

A gas analyzer (CYES-II, NANBEI Instrument Co. Ltd., Zhengzhou, China) was used
to measure the contents of CO2 and O2 in the headspace of TBM in the bags according to
the instruction of the manufacturer. 2 mL of headspace air was injected into the analyzer
slowly. The content of O2 was recorded when the gas flow was stopped, and the content of
CO2 was recorded till the value of the analyzer was stable.

2.4. Overall Quality and Off-Odor Analysis

The overall quality and off-odor analysis were performed by a six-member trained
panel according to the method of Xiao et al. [15]. The overall visual quality was evaluated
with a 9-point hedonic scale, where 9, 5 and 1 represent “like extremely”, “neither like nor
dislike”, and “dislike extremely”, respectively [16]. Off-odor was determined by a 0–4 scale,
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where 0, 1, 2, 3 and 4 denote the extent of off-odor representing “no”, “slight”, “moderate”,
“strong”, and “extremely strong”, respectively.

2.5. Weight Loss and Electrolyte Leakage Analysis

Weight loss was performed by scaling the microgreens before and after storage. Weight
loss was computed according to the following formula:

Weight loss (%) = (m0 −m1)/m0 × 100%

m0 = the weight of microgreens before storage, g; and m1 = the weight of microgreens
after storage, g.

Electrolyte leakage was analyzed according to the method of Xiao et al. [7] with minor
modifications. Firstly, TBM (3 g) was soaked in distilled water (150 mL) for 30 min at 25 ◦C.
Then, samples were frozen at −20 ◦C for 24 h and then thawed at 25 ◦C with tap water.
The electrical conductivity of the solution was detected with a conductivity meter (model
DDS-307A; Shanghai INESA & Scientific Instrument Co. Ltd., Shanghai, China) before
freezing and after thawing. Relative electrolyte leakage was calculated by the following
formula:

Relative electrolyte leakage (%) = G0/G1 × 100%

G0 = the electrical conductivity of the sample before freezing, and G1 = the electrical
conductivity of the sample after thawing.

2.6. Microbial Counts

Microbial enumeration of microgreens was carried out according to the method of
Chun and Song [17] with minor modifications. Briefly, 25 g of TBM were put into 225 mL
of peptone water (0.1% sterile peptone, w/v), homogenized and diluted serially by peptone
water. 1 mL sample of appropriate dilution was spread on Plate Count Agar (PCA, Difco
Co., Berkaa, Lebanon) and Potato Dextrose Agar (PDA, Difco Co., Berkaa, Lebanon) to
determine the counts of total coliforms and yeasts and molds, respectively. PCA plates
were incubated at 37 ◦C for 48 h, while PDA plates were incubated at 28 ◦C for 72 h. Each
microbial count was performed in triplicates and expressed as log CFU (colony forming
units) g−1.

2.7. Determination of Total Phenolics, Total Flavonoids and Main Phenolic Compounds

Tartary buckwheat microgreens were dried in a drying oven at 50 ◦C to a constant
weight, powdered, filtered by a sieve with 60 mesh and stored at −20 ◦C for future analysis.
A weight of 0.2 g powder of dried microgreens was put into 12 mL of methanol solution
(60%, v/v) and subjected to ultrasound (200 W) for 30 min at 50 ◦C. Subsequently, samples
were centrifuged at 8000 rpm for 10 min. The supernatant was collected for future analysis.

Total phenolic content was detected by the colorimetric method according to the
method of Singleton and Rossi [18] with Folin-Ciocalteu’s phenol reagent. The content was
expressed as g gallic acid equivalents per kg dry weight (g GAE kg−1).

Total flavonoid contents were detected by aluminum nitrate colorimetric assay accord-
ing to the formation of a complex flavonoid-aluminum, exhibiting a maximum absorbance
at 510 nm [19]. Rutin was used as a standard compound. 1 mL of sample or rutin standard
solution was added into a 10 mL volumetric flask, mixed with 2.5 mL of distilled water
and 0.15 mL of 5% NaNO2 for 6 min; after that, 0.3 mL of 10% Al(NO3)3 was added and
reacted for another 6 min. A volume of 2 mL of 4% NaOH was added to stop the reaction,
and the mixture was kept in the dark for 15 min. The absorbance was detected at 510 nm.
The content was expressed as g rutin equivalents per kg dry weight (g RE kg−1).

The main phenolic compounds were measured according to the method of Lee et al. [20]
with minor modifications. The supernatant was filtered through a disposable syringe filter
(PTFE, 0.45 µm, hydrophobic; Advantec, Tokyo, Japan), and the filtrate was measured by
an HPLC system (LC-20A; Shimadzu Co., Kyoto, Japan) equipped with an InertSustain-C18



Foods 2022, 11, 3630 4 of 13

column (4.6 mm × 150 mm, 5 µm). The analytical conditions were as follows: column oven
temperature, 45 ◦C; UV detector: 350 nm; injection volume: 10 µL; flow rate: 1.0 mL min−1;
solvent system, a mixture of (A) MeOH: water: acetic acid (5:92.5:2.5, v/v/v) and (B) MeOH:
water: acetic acid (95:2.5:2.5, v/v/v); gradient program, 20% to 36% solvent B, from 0 to
23 min, 36% to 60% solvent B, from 23 to 26 min, 60% solvent B, from 26 to 34 min, 20%
solvent B, 34.1 min, 20% solvent B, from 34.1 to 40 min. The content of each phenolic
compound was quantified based on HPLC peak areas and calculated as equivalents of
seven respective standard compounds. All phenolic contents were expressed as g per kg
dry weight (g kg−1).

2.8. Determination of Antioxidant Capacity

The antioxidant capacities of TBM were performed with diphenylpicrylhydrazyl
(DPPH, %) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS, %) [21,22].
About 0.2 g of TBM powder was extracted in 80% ethanol and centrifuged at 12,000 rpm
for 30 min.

For ABTS, an equal volume of 7 mM ABTS and 2.45 mM potassium persulphate were
mixed and incubated in darkness at room temperature for 12–16 h. After incubation, the
ABTS stock was diluted till the absorbance was 0.7 ± 0.002 at 734 nm. Sample: 0.2 mL of
diluted extract was mixed with 3 mL of ABTS solution; Control: 0.2 mL of Trolox was mixed
with 3 mL of ABTS solution. The mixtures were incubated in the dark at room temperature
for 10 min and detected at 734 nm. The ABTS scavenging activity was expressed as mmol
Trolox per kg dry weight (mmol kg−1 DW).

For DPPH, sample: 0.5 mL of diluted extract was added into 4 mL of DPPH solution;
control: 0.5 mL of diluted extract was added into 4 mL of DPPH solution; blank: 0.5 mL of
methanol was added into 4 mL of DPPH solution. The mixtures were incubated in the dark
at room temperature for 30 min and detected at 517 nm.

DPPH scavenging activity (%) = (1 − (A1 − A2)/A0) × 100%

A0: absorbance of blank; A1: absorbance of sample; A2: absorbance of control.

2.9. Statistical Analysis

All the experiments were performed in three replicates by a totally randomized design.
Data were analyzed via a one-way analysis of ANOVA at a significance level of 0.05 using
SPSS version 26.0 (SPSS Inc., Chicago, IL, USA) at a significance level of 0.05. Data were
presented as the mean ± SE.

3. Results and Discussion
3.1. Effect of Storage Temperatures on Quality and Shelf Life of TBM

The headspace atmosphere composition of packed TBM was notably (p < 0.05) influ-
enced by storage temperature and time (Figure 1A,B). All the packed microgreens exhibited
a rapid decrease in O2 concentration in the first 2 d storage and then kept a relatively stable
O2 concentration till the end of the storage (Figure 1A). Conversely, the CO2 concentration
of all the packed microgreens increased dramatically in the initial 2 d storage and then
maintained at a nearly stable level till the end of storage (Figure 1B). Moreover, O2 in
packed microgreens stored at 5 ◦C was less depleted than those stored at 10 ◦C, 15 ◦C,
20 ◦C and 25 ◦C during the whole storage, which might be due to the inhibitory effect of
low temperature on respiratory rate [23]. These results were in agreement with the reports
on various microgreens or sprouts, such as buckwheat microgreens, radish microgreens
and mung bean sprouts [7,9,23].
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Figure 1. Effect of storage temperature on the changes in O2 (A) and CO2 (B) partial pressures within
packages, weight loss (C), electrolyte leakage (D), counts of total coliforms (E) and yeast and mold
(Y&M) (F), overall quality score (G) and off-odor score (H) of TBM packed by PE bags. The vertical
bar represents ± standard error. Significant differences between samples (within the same time point)
are indicated with different lowercase letters above the plots.

All the packed microgreens lost weight during the storage, and the microgreens stored
at higher temperatures displayed a higher rate of weight loss (Figure 1C). As for storage
at 5 ◦C and 10 ◦C, weight loss rose up to 1.6% and 1.9% at 8 d, while those of storage at
15 ◦C and 20 ◦C increased to about 2.1% and 4.3% at 4 d already (Figure 1C). These are
in accordance with findings of previous studies [23], indicating low-temperature storage
could inhibit respiration rate, resulting in slower weight loss [24].

Electrolyte leakage is an indicator of cell membrane integrity, which could be affected
by ripening, stress or mechanical injury [25]. In the study, electrolyte leakage of microgreens
was significantly influenced by the storage temperature (Figure 1D). There was an obvious
drop (significant at p < 0.05) in electrolyte leakage of microgreens stored at all temperatures
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during the initial storage, which was also reported in radish microgreens and buckwheat
microgreens [7,9]. Moreover, electrolyte leakage of microgreens stored at 15 ◦C, 20 ◦C and
25 ◦C decreased more than those of microgreens stored at 5 ◦C and 10 ◦C (Figure 1D),
indicating that storage temperature might affect the recovery process of a mechanical injury
caused by harvest. In addition, microgreens stored at 5 ◦C and 10 ◦C showed higher
electrolyte leakage than those stored at 15 ◦C (Figure 1D), suggesting that TBM stored at
5 ◦C and 10 ◦C might be susceptible to chilling injury during prolonged storage.

The growth of total coliforms and yeast and mold (Y&M) was significantly affected by
storage temperature and time (Figure 1E,F). The count of total coliforms in TBM increased
along with the storage in all treatments (Figure 1E). Total coliforms counts of microgreens
stored at 25 ◦C increased more rapidly than those of microgreens stored at 5 ◦C, 10 ◦C,
15 ◦C and 20 ◦C (Figure 1E). Noteworthily, total coliforms counts of microgreens stored
at 25 ◦C reached around 7.3 log CFU g−1 after 2 d storage, while those of microgreens
stored at 5 ◦C and 10 ◦C exhibited 6.9 and 7.2 log CFU g−1 after 8 d storage (Figure 1E).
The population of Y&M in microgreens exhibited a similar trend as those of total coliforms.
These results indicated that low temperature inhibited the growth of coliforms and Y&M
(Figure 1F), which is consistent with the findings of other microgreens or sprouts [7,9,23].

The overall quality and off-odor scores are vital parameters for determining the
marketability and popularity of fresh products. Similarly, overall quality and off-odor
changes of TBM were notably influenced by storage temperature and time (Figure 1G,H).
During the whole storage, the overall quality of microgreens stored at 5 ◦C ranked highest
on each sampling day, followed by those stored at 10 ◦C, 15 ◦C, 20 ◦C and 25 ◦C serially.
There was a sharp decrease in the overall quality of microgreens stored at 25 ◦C (around
5.5) during the initial 2 d storage, while the overall quality of microgreens stored at 5 ◦C
decreased much more slowly and displayed an overall quality of about 5.7 after 8 d of
storage. Off-odor scores of microgreens stored at all temperatures increased during storage,
and the higher the storage temperature was, the stronger the off-odor was measured
(Figure 1H). After 2 d, TBM stored at 20 ◦C, and 25 ◦C exhibited moderate off-odor (score
1.3 and 1.8, respectively), while only slight off-odor was detected in microgreens stored at
5 ◦C, 10 ◦C and 15 ◦C (score 0.5, 0.5 and 0.8, respectively) (Figure 1H). An off-odor score of
microgreens stored at 20 ◦C increased to 2.3 after 4 d storage, while that of microgreens
stored at 5 ◦C and 10 ◦C came to 2.4 and 2.5 after 8 d storage, respectively (Figure 1H).
The development of off-odor was highly related to the O2 concentration reduction due
to undesirable fermentation and microbial growth, which agreed with the findings on
buckwheat microgreens and baby spinach [9,26].

These findings demonstrated that storage temperature is crucial for quality preserva-
tion and safety control of the delicate TBM. Microgreens stored at 5 ◦C exhibited the longest
shelf life and optimum quality. Thus, 5 ◦C was chosen as the ideal storage temperature for
TBM and used for the subsequent experiments.

3.2. Effect of Packaging Materials on the Quality of TBM Stored at 5 ◦C

The headspace atmosphere composition of packed TBM stored at 5 ◦C was notably
(p < 0.05) influenced by packaging materials (Figure 2A,B). Packages packed with LDPE
films exhibited a significantly more rapid reduction of O2 and an increase of CO2 than
those packed with PE and HDPE films. The O2 levels in packages packed with LDPE
films decreased dramatically during the initial 2 d storage and then decreased relatively
slowly during the later storage, while those of packages packed with HDPE and PE films
decreased rapidly during the first 2 d storage and maintained at a relatively stable state
till the end of storage except an obvious reduction occurred from 6 d to 8 d in packages
packed with PE films (Figure 2A). In addition, the CO2 levels in all the packages reached
an equilibrium around 1.5–2.0 kPa after the rapid increase in the initial 2 d storage and
then maintained the state till the end of storage (Figure 2B).
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packages, weight loss (C), electrolyte leakage (D), counts of total coliforms (E) and yeast and mold
(Y&M) (F), overall quality score (G) and off-odor score (H) of TBM during 5 ◦C storage. The vertical
bar represents ± standard error. Significant differences between samples (within the same time point)
are indicated with different lowercase letters above the plots.

All the packed microgreens lost weight during the storage, and microgreens packed
with HDPE bags exhibited the highest rate of weight loss, followed by those of microgreens
packed with PE bags, while those of microgreens packed with LDPE bags were the least
(Figure 2C).

A significant difference was observed in the electrolyte leakage of TBM packed by
different packaging films (Figure 2D). The electrolyte leakage of microgreens packed by
LDPE bags was lower than those of HDPE and PE-packed microgreens. A sharp decrease
occurred in the electrolyte leakage of microgreens packed by all the packaging films from
0 d to 6 d, followed by an obvious but relatively small increase in microgreens packed
by LDPE bags from 6 d to 8 d, while the electrolyte leakage of those packaged by PE and
HDPE bags just fluctuated slightly around 4.0 ± 0.1% during this period.

The initial microorganisms counts of packed microgreens (both total coliforms and
Y&M) were less than those reported in radish microgreens and mung bean sprouts [7,23].
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Even though the packaging materials obviously affected the atmosphere compositions
in the packed microgreens, no significant difference was observed among counts of total
coliforms on microgreens packed by all the packaging materials and only a slight difference
was detected among counts of Y&M on 4 d and 8 d (Figure 2E,F). These results indicated
that the growth of total coliforms and Y&M of TBM were not affected by packaging
materials when stored at 5 ◦C, which was similar to the findings on radish microgreens
and fresh-cut cilantro leaves [7,27]. These data suggest that temperature is the paramount
factor determining the growth of the great majority of microorganisms.

The overall quality and off-odor changes of TBM were notably affected by packaging
materials and storage time when stored at 5 ◦C (Figure 2G,H). Generally, scores of visual
quality decreased gradually during the storage in all treatments, while those of off-odor
increased along the storage. TBM packed by LDPE bags maintained the best visual quality
during the entire storage duration, followed by those in PE and HDPE bags sequentially.
The off-odor score in microgreens packed by PE bags was the lowest during the initial 2 d
storage, but a sharp increase occurred from 2 d to 4 d, resulting in the strongest off-odor
detected in the later storage compared to those packed by LDPE and HDPE bags.

These results indicated that there was no markable difference in keeping the quality
and extending the shelf life of TBM among all the packaging materials, which was in
accordance with the report on radish microgreens [7]. However, relatively better quality
was observed after 8 d storage at 5 ◦C in microgreens packed by LDPE bags, with the
lowest electrolyte leakage and weight loss and the best visual quality score. In this case,
LDPE bags were selected for further analysis of wash treatment on TBM.

3.3. Effect of Wash Treatment on the Quality of TBM Packed in LDPE Bags Stored at 5 ◦C

The headspace atmosphere composition of packaged TBM was significantly affected
by wash treatments (Figure 3A,B). There was more O2 and less CO2 in packages of water
-washed microgreens during the storage compared to those washed with ClO2, citric acid
and ClO2 + citric acid. The difference might be due to the higher respiration rate of
microgreens induced by wash procedures with ClO2, citric acid and ClO2 + citric acid.

From 0 d to 8 d storage, there was no significant difference in weight loss of TBM
observed among all the wash treatments (Figure 3C). From 8 d to 12 d storage, the weight
loss rate of water -washed microgreens was the highest, indicating that washing with
chemical disinfectants or organic acids was beneficial to reduce the weight loss rate during
the later storage of packaged TBM.

The electrolyte leakage of microgreens was significantly influenced by wash treatments
and storage time (Figure 3D). The initial electrolyte leakage of microgreens washed by
citric acid and ClO2 + citric acid was slightly higher than those of microgreens washed by
water and ClO2. From 0 d to 8 d storage, the electrolyte leakage of microgreens in all the
wash treatments fluctuated in a range of 1.5 to 3.5, while that of ClO2 washed microgreens
increased sharply to 8.7 from 8 d to 12 d, followed by 7.0, 5.3 and 4.5 of microgreens washed
by water, citric acid and ClO2 + citric acid, respectively. These results indicated that citric
acid and ClO2 + citric acid might play a positive role in slowing the quality deterioration of
TBM during later storage.

The overall growth of coliforms and Y&M on microgreens were notably affected by
wash treatments and storage time (Figure 3E,F). The growth of total coliforms and Y&M
on microgreens were relatively slow during the initial 8 d storage and increased obviously
from 8 d to 12 d storage. During the entire storage, microgreens washed by water and
ClO2 exhibited more coliforms and Y&M than those washed by citric acid and ClO2 + citric
acid, which was in accordance with the effect of those treatments on electrolyte leakage.
Jointly, these results indicated that citric acid and ClO2 + citric acid might maintain the
tissue integrity of microgreens by inhibiting the growth of coliforms and Y&M.
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(within the same time point) are indicated with different lowercase letters above the plots.

There were no obvious changes in visual quality and off-odor in all the treated micro-
greens during the initial 4 d storage (Figure 3G,H). The visual quality decreased slightly
from 4 d to 8 d storage to 8 and decreased rapidly to about 4.5 from 8 d to 12 d storage,
while the off-odor score increased to around 3 with a relatively stable rate from 4 d to 12 d
storage. Considering the obvious decrease of visual quality and development of off-odor in
the initial 4 d storage, and lower visual quality (around 5.5) and higher off-odor (around 2.7)
scores after 8 d storage in unwashed microgreens (Figure 2G,H), the results indicated that
these wash treatments played a positive role in maintaining the postharvest quality of TBM.
Consistent with the results of electrolyte leakage, the microgreens washed by citric acid
and ClO2 + citric acid maintained better visual quality and lower off-odor development,
revealing that visual quality loss and off-odor development of postharvest TBM was highly
related to tissue deterioration as reported in radish microgreens [7].
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These results indicated that wash treatment could play a positive role in preserving the
quality and elongating the shelf life of TBM. Especially microgreens washed with ClO2 +
citric acid exhibited the best sensory quality, lowest electrolyte leakage and microorganisms
during the whole storage. Thus, the changes in bioactive compounds and antioxidant
activity during postharvest storage in TBM washed with water and ClO2 + citric acid were
analyzed in the following study.

3.4. Changes in Bioactive Compounds and Antioxidant Activity of TBM during Postharvest
Storage

During the 12 d storage, the total phenolics content of TBM in the two treatment groups
changed in similar trends, and there was no significant difference found between the two
groups (Figure 4A,B). Phenolic compounds are important secondary metabolites, and the
accumulation of phenolic compounds in the plant is significantly affected by environmental
stresses [28]. ClO2 + citric acid -washed microgreens exhibited higher contents of total
phenolics and flavonoids after wash treatment, implying ClO2 + citric acid induced the
accumulation of phenolic compounds in microgreens (Figure 4A,B). Total phenolics in
microgreens increased during the first 8 d storage and then decreased during the later
storage, indicating that low temperature and mechanic injury caused by harvest and wash
treatment induced the accumulation of total phenolics. The content of total flavonoids in
microgreens of both groups was maintained at a relatively stable level during the initial 4 d
storage and decreased with an increasing rate during the later storage. ClO2 + citric acid
-washed microgreens exhibited higher content of total flavonoids than those washed by
water during the whole storage.
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Figure 4. The changes in contents of total phenolics (A) and total flavonoids (B), and 2,2′-
azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (C) and Diphenylpicrylhydrazyl (DPPH)
(D) radical scavenging activity of TBM packed by LDPE bags during 5 ◦C storage. The vertical bar
represents ± standard error. Significant differences between samples (within the same time point)
are indicated with different lowercase letters above the plots.

As reported by Lee et al. [20], chlorogenic acid, orientin, isoorientin, vitexin, isovitexin,
rutin and quercetin are the main phenolic compounds in Tartary buckwheat sprouts. Thus,
the content of these compounds in TBM was detected via LC-MS analysis during storage
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(Table 1). Similar to the changes of total flavonoids in microgreens during storage, the
content of these compounds was maintained in the initial 4 d storage and then decreased
till the end of storage in both groups. Moreover, ClO2 + citric acid -washed microgreens
also exhibited higher contents of all these compounds during the whole storage.

Table 1. Changes in the contents of major phenolic compounds.

Storage
Time (d)

Chlorogenic
Acid

(g kg−1)

Orientin
(g kg−1)

Isoorientin
(g kg−1)

Vitexin
(g kg−1)

Isovitexin
(g kg−1)

Rutin
(g kg−1)

Quercetin
(g kg−1)

Water/0 1.29 b ± 0.05 0.18 a ± 0.02 0.42 b ± 0.01 1.19 a ± 0.02 1.70 b ± 0.04 78.53 a ± 0.85 0.61 a ± 0.16
ClO2 + ctric

acid/0 1.38 a ± 0.09 0.20 a ± 0.03 0.48 a ± 0.02 1.24 a ± 0.08 1.78 a ± 0.10 79.34 a ± 2.09 0.63 a ± 0.21

Water/4 1.26 b ± 0.01 0.17 a ± 0.01 0.44 b ± 0.01 1.18 b ± 0.01 1.68 b ± 0.02 78.36 a ± 0.65 0.61 a ± 0.09
ClO2 + ctric

acid/4 1.61 a ± 0.00 0.19 a ± 0.00 0.49 a ± 0.00 1.25 a ± 0.01 1.79 a ± 0.01 79.61 a ± 0.40 0.60 a ± 0.11

Water/8 1.19 b ± 0.02 0.22 a ± 0.01 0.43 b ± 0.01 1.20 b ± 0.01 1.69 b ± 0.02 74.89 a ± 1.07 0.41 a ± 0.13
ClO2 + ctric

acid/8 1.50 a ± 0.01 0.23 a ± 0.00 0.49 a ± 0.00 1.29 a ± 0.01 1.83 a ± 0.02 76.53 a ± 0.79 0.40 a ± 0.09

Water/12 1.06 b ± 0.02 0.17 b ± 0.03 0.41 b ± 0.00 1.16 a ± 0.00 1.61 b ± 0.01 64.15 b ± 0.64 0.52 a ± 0.12
ClO2 + ctric

acid/12 1.34 a ± 0.01 0.21 a ± 0.02 0.47 a ± 0.01 1.22 a ± 0.02 1.76 a ± 0.03 66.76 a ± 1.32 0.55 a ± 0.07

Different lowercase letters indicated significant differences between samples (within the same time point).

ABTS and DPPH radical scavenging capacity were notably affected by storage time
but not wash treatment (Figure 4C,D). The trends of ABTS and DPPH radical scavenging
capacity were both similar to that of total phenolics, indicating that phenolic compounds
were the main antioxidants in TBM during storage. However, the changes in antioxidant
activities were not consistent with those of individual flavonoid compounds. Interestingly,
both results were also found in radish microgreens during storage [15], indicating that
further studies in changes of individual bioactive constituents are needed to uncover the
mechanism of antioxidant activities in microgreens during storage.

4. Conclusions

In the study, various postharvest processing circumstances on the quality and shelf
life of TBM were investigated. Results indicated the quality of harvested TBM was sig-
nificantly affected by storage temperature, followed by wash treatment and packaging
material sequentially. Storage temperature significantly affected the changes in O2 and CO2
composition, microbial growth, visual quality and off-odor development during storage.
The packaging materials significantly influenced the changes in O2 and CO2 composition,
weight loss rate and electrolyte leakage. However, there were no major differences in
overall quality among package materials until the end of storage. Wash treatment notably
affected the sensory quality and microbial growth, especially ClO2 + citric acid washing. As
a flavonoid-rich food, contents of total phenolics, total flavonoids and individual flavonoid
compounds, and antioxidant capacity increased or fluctuated slightly during the initial
8 d storage and declined sharply from 8 d to 12 d storage. Change patterns of antioxidant
capacity were similar to those of total phenolics but not individual flavonoid compounds.
These results demonstrated that combined 5 ◦C storage, LDPE bags and ClO2 + citric acid
wash treatment is a promising processing procedure to prolong the shelf life and preserve
the quality of TBM. Further studies are needed to illustrate the regulation mechanism of
the procedure on the antioxidant capacity of TBM.
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