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Abstract: Chewing areca nuts is a popular hobby in the Asian region, and areca nuts are rich in
polyphenols, although some alkaloids are included. In this study, we explored the antioxidant
activity of areca nut polyphenols (ANP) in lipopolysaccharides (LPS)-stimulated RAW264.7 cells.
The results revealed that ANP reduced the level of reactive oxygen species (ROS) in LPS-stimulated
RAW264.7 cells and enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and
heme oxygenase 1 (HO-1). RNA-seq analysis showed that ANP down-regulated the transcription of
genes related to the cancer pathway at 160 µg/mL, and the inflammatory pathway as well as viral
infection pathway at 320 µg/mL. The cellular signaling analysis further revealed that the expressions
of these genes were regulated by the mitogen-activated protein kinase (MAPK) pathway, and ANP
downregulated the activation of the MAPK signaling pathway stimulated by LPS. Collectively, our
findings showed that ANP inhibited the MAPK pathway and activated the Nrf2/HO-1 antioxidant
pathways to reduce ROS generation induced by LPS.

Keywords: areca nut polyphenol; ROS; Nrf2; HO-1; RNA-seq

1. Introduction

Areca catechu L. is a tropical fruit widely grown in China, India, and Southeast Asia [1].
Historically, it has been used as a chewing substance, and it possesses a certain addictive
nature. Moreover, the areca nut has been used in traditional Chinese medicine in China
and Ayurvedic medicine in India, since the areca nut can remove parasites from the body
and disperse effusions in the abdominal cavity [2,3]. On the other hand, the International
Agency for Research on Cancer classified areca nut as a Class I carcinogen in 2003 because
it contains a large number of alkaloids, such as arecoline, arecaidine, and guvacine, and
these arecolines are carcinogenic [4,5]. The safety of areca nuts has become a hotly debated
topic [6]. Therefore, the new direction of areca nut product applications is to separate the
alkaloids from the polyphenols and further focus on the research and development of the
polyphenols in the areca nut.

The antioxidant effects of plant polyphenols have received a lot of interest in recent
years, since free radical reactive oxygen species (ROS) are often produced when the body is
exposed to different biochemical conditions or pathological states. Therefore, the ability
to remove ROS is an important part of antioxidants. Several studies have shown that
areca leaf and areca nut extracts have antioxidant and radical scavenging activities [7,8].
However, the components of the areca nut contributing those antioxidant effects are unclear.
Areca nut contains two kinds of major bioactive compounds, which are polyphenols and
alkaloids. Alkaloids have been reported to be carcinogenic. RAW264.7 is a macrophage-like
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cell line, which is often used as a cellular model to study antioxidant and anti-inflammatory
activities at the cellular level. Especially, the stimulation of lipopolysaccharides (LPS) can
lead to the production of ROS and inflammation in RAW264.7 cells [9,10]. Therefore, in
this study, we used RAW264.7 cells to investigate how areca nut polyphenols play a role
against LPS-induced ROS and inflammation at the cellular level.

The balance between the generation and elimination of cellular ROS is critically
regulated by cellular antioxidant enzyme genes containing the antioxidant/electrophile-
responsive element (ARE/EpRE) in their promoters. Several molecules, such as nuclear
factor erythroid 2-related factor 2 (Nrf2), transcription factor Jun (c-Jun), activating tran-
scription factor 2 (ATF2), and activating transcription factor 4 (ATF4), are possible mod-
ulators of ARE/EpRE [11]. Of these, Nrf2 is a powerful activator of ARE-mediated gene
expression that regulates the expression of several antioxidant enzyme genes, including
heme oxygenase 1 (HO-1) [12]. Nrf2 could be activated by both Keap1-dependent and
Keap1-independent pathways. The phosphorylation of protein kinases C, MAPKs, and
PI3K is closely related to Nrf2 activity in a Keap1-independent way [13–18].

High-throughput RNA-sequencing technology has been shown to be an effective tool
for studying the bioactive effects and mechanisms of natural compounds at the genome-
wide gene expression level [19–21]. Thus, we ultimately used this technology to evaluate
the molecular mechanisms of antioxidant activity of APN in LPS-stimulated RAW264 cells.

2. Materials and Methods
2.1. Materials

LPS were purchased from Sigma (St. Louis, MO, USA). Dulbecco’s modified eagle
media (DMEM) and fetal bovine serum (FBS) were purchased from Biological Industries
(Kibbutz Beit Haemek, Israel). MTT cell proliferation and cytotoxicity assay kits were
purchased from Solarbio (Beijing, China). Reactive oxygen species assay kits were pur-
chased from Beyotime (Shanghai, China). Anti-Nrf2 antibody (Nrf2), anti-Heme Oxygenase
1 antibody (HO-1), and anti-GAPDH antibody (GAPDH) were purchased from Abcam
(Cambridge, UK); anti-MEK1 antibody (MEK1), anti-p-MEK1 antibody (p-MEK1), anti-
ERK antibody (ERK), anti-p-ERK antibody (p-ERK), anti-p-MKK3 antibody (p-MKK3),
anti-p38 antibody (p38), anti-p-p38 antibody (p-p38), anti-MKK4 antibody (MKK4), anti-
p-MKK4 antibody (p-MKK4), anti-JNK antibody (JNK), anti-p-JNK antibody (p-JNK),
anti-α-tubulin antibody (α-tubulin), and anti-rabbit antibody were purchased from CST
(Boston, MA, USA).

2.2. Preparation of Areca Nut Polyphenols

The raw materials of the areca nut, which was named by James A. Duke (Agricul-
tural Research Service, USDA), were obtained in January 2018 from Wanning city, Hainan,
China. Areca nut polyphenols (ANP) were extracted as described previously. In brief,
fresh areca nut was freeze-dried and ground into powder. The crude polyphenol from
areca nut powder was extracted with 50% (v/v) ethanol at 68 ◦C for 48 min and then
freeze-dried. The crude polyphenols were purified with XAD-7 macroporous resin by
washing them with 50% ethanol. The total polyphenol contents were estimated at 80% by
the Folin-Ciocalteu method [22]. In previous studies, the two kinds of polyphenol com-
positions of areca nuts were catechins (2060.44 ± 18.24 µg/mL) and proanthocyanidin B1
(2510.18 ± 62.40 µg/mL) [23].

2.3. Antioxidant Activity Assays in LPS-Stimulated RAW264.7 Macrophages
2.3.1. Cell Culture

RAW264.7 macrophages were obtained from the American Type Culture Collection
(VA, USA) and cultured in DMEM containing 10% FBS and 1% antibiotic at 37 ◦C in 5%
CO2 humidified air.
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2.3.2. Cell Viability Assay

Cell viability was assessed using the MTT cell proliferation and cytotoxicity assay
kit [24]. Briefly, RAW 264.7 cells (2 × 104 cells/well) were incubated into each well of a
96-well plate. After 24 h of culture, they were treated with different concentrations (40, 80,
160, 320, and 640 µg/mL) of ANP at different times (6, 9, 12, and 15 h). Then the culture
medium was removed, and 90 µL of the new medium and 10 µL of MTT solution were
added to continue the culture for 4 h. After the culture medium was removed, 150 µL
culture medium was added and shaken at low speed for 10 min on a shaker with light
protection and detected at 490 nm on a microplate reader (Thermo Scientific Multiskan,
version 1.00.79, Vantaa, Finland). The absorbance of the ANP-treated group was divided
by the absorbance of the control group to determine the percentage of cell viability.

2.3.3. Cellular ROS Detection by 2′,7′-Dichlorodihydrofluorescein Diacetate and
Fluorescence Inverted Microscope Observation

The intracellular formation of ROS was detected using the fluorescent probe
2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA). This compound easily passes the
cellular membrane into cells and is hydrolyzed by intracellular esterase to yield
2’,7’-dichlorodihydrofluorescein (DCFH). ROS produced by the cells oxidizes DCFH to
the highly fluorescent compound 2’,7’-dichlorofluorescein (DCF). Thus, the fluorescence
intensity is proportional to the amount of ROS produced by the cells. RAW264.7 cells
were plated in 96-well plates pre-incubation for 24 h; the cells were then stimulated by
LPS for 30 min, then treated with or without ANP for 12 h. After the prepared DCFH-DA
was added to the 96-well plates at 10 µM and incubated for 30 min at 37 ◦C. Then the
cells were washed three times with serum-free media. The fluorescence intensity was
measured at an excitation wavelength of 488 nm and an emission wavelength of 530 nm
using a fluorescence counter (FL 6500, Perkin-Elmer, Waltham, MA, USA) and observed
simultaneously by fluorescence inverted microscopy [25].

2.3.4. Western Blotting

The cells (1.2 × 106 cells/well) were incubated into each well of a 6-well plate. The
cultured cells were placed on ice and the culture medium was removed. After cells
were washed with 1 mL of pre-cooled phosphate-buffered saline (PBS) 3 times, the cell
lysis solution of 200 µL was added and cells were lysed on ice for 20 min. The cells on
the 6-well plate were scraped by the cell scraper and transfered to a 1.5-mL Eppendorf
(EP) tube. After the EP tube was centrifuged (3500, KUBOTA, Naniwa, Osaka, Japan) at
14,000 rpm at 4 ◦C for 10 min, the supernatant was placed into the new EP tube. The
protein content of the lysate was determined using a protein assay kit (A046-1-1, Nanjing
Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China) following the manufacturer’s
protocols. The protein loading buffer was added into the EP tube and denatured in a
thermostatic metal bath at 100 ◦C for 7 min. After cooling to room temperature, the
EP tube was stored at −20 ◦C until used. Proteins (20 µg/lane) were separeted on 10%
sodium dodecyl sulfate (SDS) polyacrylamide gels, transferred to polyvinylidene difluoride
(PVDF) membranes, and blocked with 5% skim milk powder in phosphate buffered saline
with Tween-20 (PBST). The membranes were treated with a primary monoclonal antibody
overnight at 4 ◦C before being incubated for 1 h at room temperature with a secondary
antibody that had been diluted in skim milk by 2000-fold. Blots were further treated with
an enhanced chemiluminescence kit (1705040, Bio-Rad, Hercules, CA, USA) and detected
on an ImageQuant LAS 4000 mini (Las 4000, GE, Boston, MA, USA). A quantitative density
analysis was performed using ImageJ software.

2.4. Transcriptome Analysis

Cells were pre-cultured on 6-well plates for 24 h. LPS (40 ng/mL) was added for
30 min, followed by 160 µg/mL and 320 µg/mL of ANP, and incubated for more than 12 h.
Four groups were set up: control group (Con), LPS group (LPS), LPS + 160 µg/mL group
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(160/LPS), and LPS + 320 µg/mL group (320/LPS). After incubation, the culture solution
was removed and washed with PBS. After the removal of PBS, RIPA lysis solution was
added for 20 min. After lysis, cells were scraped off with a cell scraper. Then, the cells were
collected in 1.5-mL enzyme-free centrifuge tubes. Collected cells were frozen at −80 ◦C.
RNA extraction and detection, library preparation for transcriptome sequencing, clustering,
and sequencing followed the procedures of Novogene (Beijing, China). Differential gene
analysis was performed using DESeq2, for significantly different expressions, a corrected
p-value of 0.05 and an absolute foldchange of 2 were established [26]. Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway en-
richment analysis of differentially expressed genes were implemented by the clusterProfiler
R package [27,28].

2.5. Data Analysis

All data were analyzed using one-way ANOVA SPSS (23, IBM, Armonk, NY, USA) and
the differences among treatment groups were evaluated using least significant difference
(LSD) and Duncan’s multiple range tests, with a significance threshold of p < 0.05 or
p < 0.01 [29].

3. Results
3.1. Antioxidant Activity of ANP in LPS-Stimulated RAW264.7 Macrophages
3.1.1. Cell Viability

RAW264.7 cells were incubated with indicated doses of ANP from 6 to 15 h and the
cell viability was shown in Table 1. The cell viability was increased in a time- and dose-
dependent manner. However, cell toxicity on the cells were observed when the time and
concentration reached 15 h and 640 µg/mL. Therefore, we chose the dose and the time of
treatment as 0–320 µg/mL and 12 h for the next experiments to avoid cellular toxicity.

Table 1. The effect of areca nut polyphenol extract on the viability of RAW264.7 cell.

Item Concentration 6 h 9 h 12 h 15 h

Control - 1.00 1.10 ± 0.03 1.16 ± 0.04 1.23 ± 0.06
ANP 40 µg/mL 1.02 ± 0.01 1.12 ± 0.10 1.20 ± 0.09 1.17 ± 0.05
ANP 80 µg/mL 1.07 ± 0.05 1.15 ± 0.11 1.25 ± 0.06 1.21 ± 0.06
ANP 160 µg/mL 1.04 ± 0.06 1.18 ± 0.05 1.27 ± 0.07 1.15 ± 0.05
ANP 320 µg/mL 1.02 ± 0.06 1.20 ± 0.01 1.20 ± 0.01 1.11 ± 0.07 #

ANP 640 µg/mL 1.01 ± 0.01 1.06 ± 0.10 1.03 ± 0.08 * 1.09 ± 0.04 #

Five replicates were used in the experiment. According to ANOVA, the means with different letters showed
significant differences (p < 0.05), * compared with the 12 h control group, # compared with the 15 h control group.
“-” means the concentration of ANP is zero.

3.1.2. The Ability of ANP to Eliminate Intracellular ROS in RAW264.7 Cells

ROS can oxidize DCFH to generate fluorescent DCF. Thus, the fluorescence intensity
is proportional to the amount of intracellular ROS [30]. The inhibitory effect of ANP on
LPS-stimulated ROS in RAW264.7 cells is represented as relative DCF fluorescence and
shown in Figure 1. LPS significantly increased the ROS level compared to the Con group.
The addition of ANP dose-dependently reduced ROS levels induced by LPS. The data
demonstrated that ANP could reduce intracellular ROS levels induced by LPS.
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Figure 1. Inhibitory effect of ANP on the intracellular ROS generation. The results shown are
expressed as means ± SD (n = 3). The different letters in the graph indicated significance (p < 0.05).

To confirm the cellular ROS levels after the addition of DCFH, we used fluorescence
microscopy to directly observe the substance. As shown in Figure 2, LPS exhibited a
markedly increased fluorescent intensity compared to that of Con. The addition of ANP
dose-dependently reduced the fluorescence intensity induced by LPS. These data directly
revealed that ANP could reduce intracellular ROS levels induced by LPS.
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Figure 2. Observation of cellular ROS by fluorescence inverted microscope.

3.1.3. Effect of ANP on The Expression of Antioxidant Enzymes in RAW264.7 Cells

The above data indicated that ANP could reduce ROS levels induced by LPS. To
clarify whether the ROS level reduction is related to the expression of antioxidant factors or
enzymes, we chose Nrf2 and HO-1 as their representatives and investigated their protein
levels after treatments with 0–320 µg/mL of ANP for 12 h. As shown in Figure 3, ANP
significantly enhanced Nrf2 and HO-1 levels from 40 µg/mL to 320 µg/mL of ANP.
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Figure 3. ANP enhancement of the Nrf2 and HO-1 proteins: (a) Nrf2 and HO-1 were detected by
Western blot and GAPDH was used as a control; (b,c) the densitometric quantification of bands
showing Nrf2 and HO-1. The results shown are presented as means ± SD (n = 3). The different letters
in the graph indicate significance (p < 0.05).

3.2. Transcriptome
3.2.1. The Foldchange of Differentially Expressed Genes

To evaluate the molecular mechanisms of antioxidant activity by ANP, we further
investigated the effects of APN on genome-wide gene expression in RAW264 cells by
high-throughput RNA-sequencing technology. The differentially expressed genes (DEGs)
between each group were compared to the LPS group (Table 2 and Figure 4). The 160/LPS
group generated a total of 10,504 DEGs, of which the expressions of 5263 genes were higher
and the expressions of 5241 genes were lower. The log2 foldchange of three genes was
higher than 10, and the variations of two hundred and eight genes were greater than 5 and
less than 10. The log2 foldchange of one gene was less than −10, whereas ninety-seven
genes had changes greater than −10 and less than −5. In the 320/LPS group, there were
9550 DEGs, of which 4846 genes’ expression levels increased and 4704 genes’ expression
levels decreased. There were log2 foldchange of 289 genes greater than 5 and less than 10.
Only one gene had a log2 foldchange less than −10, and genes had changes greater than
−10 and less than −5.
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Table 2. The statistical table of differentially expressed genes.

Log2 Fold Change 160/LPS 320/LPS

≥10 3 0
≤5 to <10 205 289
≤2 to <5 1061 1295

<−2 to <2 7655 7035
<−5 to ≤−2 1483 876

<−10 to ≤−5 96 54
≤−10 1 1
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3.2.2. Gene Ontology Analysis

Gene Ontology (GO) is a comprehensive database that describes gene functions in
three categories: biological process, cellular component, and molecular function [31]. The
functions of DEGs in RAW264.7 cells following LPS stimulation were classified using
GO analysis. Figure 5 depicts the results. Scatter plots were created using the 10 most
prominent GO phrases for each component. Treatment with the 160/LPS were mostly
targeted in the mitochondrial organization, kinase activity, and transferase activity.
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Figure 5. The GO analysis of all DEGs (a) gene ratio in 160/LPS, (b) gene ratio in 320/LPS, (c) number
of genes in 160/LPS, (d) number of genes in 320/LPS. The padj is a p-value after correction for multiple
hypothesis testing. The gene ratio is a ratio of the number of differential genes annotated to the GO
term to the total number of differential genes.

While treatment with the 320/LPS highly targeted in the endoplasmic reticulum,
mitochondria, protein binding, kinase activity, and transferase activity.

3.2.3. Kyoto Encyclopedia of Genes and Genomes Analysis

Further pathway enrichment analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) was performed to further understand the processes at a higher level.
Table 3 depicts the adjusted p-value (padj) of pathways that were related to disease, inflam-
mation, cancer, and virus infection. In the highly enriched pathways of 160/LPS, 13 path-
ways were enriched. In the substantially enriched pathways of 320/LPS, 16 pathways were
enriched. According to the DEGs results, the pathways of 160/LPS had 9 pathways related
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to the MAPK pathway. In the 320/LPS results, there were 12 pathways associated with the
MAPK pathway. Table 4 displayed the MAPK-related genes.

Table 3. The significantly enriched KEGG pathways in the treatment of 160/LPS and 320/LPS.

Pathway 160/LPS 320/LPS

NOD-like receptor signaling pathway 0.000182 0.0001367
Epstein-Barr virus infection 0.000229 0.0075382

Parkinson’s disease 0.005891 0.0016235
Alzheimer’s disease 0.015089 0.0003044

Non-alcoholic fatty liver disease (NAFLD) 0.015089 0.0000129
Herpes simplex infection 0.015089 0.0068945

Huntington’s disease 0.015089 0.0150887
Salmonella infection 0.017324 -

Tuberculosis 0.020583 0.0137757
Endometrial cancer 0.036453 -
Cellular senescence 0.036453 -

TNF signaling pathway 0.043539 0.006894
Kaposi’s sarcoma-associated herpesvirus

infection 0.047895 0.006997

Influenza A - 0.003123
Chagas disease (American trypanosomiasis) - 0.003123

Hepatitis B - 0.004054
Hepatitis C - 0.032155

Pancreatic cancer - 0.047466
Toll-like receptor signaling pathway - 4.15E-05

The “-” sign means the pathway was not significantly enriched.

Table 4. The MAPK pathway-related DEGs in the treatment of 160/LPS and 320/LPS.

Gene Name
Fold Change

160/LPS 320/LPS

p38-related gene
Mitogen-Activated Protein Kinase 14 (Mapk14) −1.13 −1.68
Mitogen-Activated Protein Kinase 11 (Mapk11) −1.43 −1.54

JNK-related gene
Mitogen-Activated Protein Kinase 9 (Mapk9) −2.35 −2.73
Mitogen-Activated Protein Kinase 8 (Mapk8) −1.84 −1.10

The “−” sign means the fold change was downregulated.

3.2.4. The Interaction Networks of MAPK Pathway-Related DEGs

The protein-protein interaction network (PPI) results were based on DEGs. The protein
network connections analysis was performed using DEGs from RNA-seq in 160/LPS and
320/LPS. After the original networks were built by Cytoscape, which allows visualization
of molecular interaction networks, the important subnetworks and connective degrees were
analyzed by MCODE and Cytohubba, which were two analysis programs in Cytoscape.
Figure 6 depicts the subnetwork results of 160/LPS. Among them, 21 genes were related to
the MAPK pathway and 17 genes were related to the cellular senescence pathway. A total
of six genes were presented in both pathways. Table 5 shows the results of the connection
degree, which indicates the degree to which the protein is connected to other proteins in
the pathway.
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Table 5. The six hub genes with the greatest degree of connection in subnetwork of 160/LPS.

Gene Symbol Gene Description Degree

Mapk3 Mitogen-activated protein kinase 3 20
Myc MYC proto-oncogene 18
Rela RELA proto-oncogene 12

Map2k2 Mitogen-activated protein kinase kinase 2 11
Map2k3 Mitogen-activated protein kinase kinase 3 9
Gadd45a Growth arrest and DNA-damage-inducible 45 alpha 2

Figure 7 depicted the subnetwork results in 320/LPS. Of these, 25 genes were asso-
ciated with the MAPK pathway; 21 genes were associated with the cellular senescence
pathway; and 44 genes were associated with the pathway in cancer. And seven genes were
presented in three pathways. Table 6 displayed the degree of connection.
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Table 6. The seven hub genes with higher degrees of connectivity.

Gene Symbol Gene Description Degree

Mapk1 Mitogen-activated protein kinase 1 33
Akt3 AKT serine/threonine kinase 3 32

Nfkb1 Nuclear factor kappa B subunit 1 32
Rela RELA proto-oncogene 25
Nras NRAS proto-oncogene 24

Map2k1 Mitogen-activated protein kinase kinase 1 22
Map2k2 Mitogen-activated protein kinase kinase 2 22

3.3. Inhibitory Effect of ANP on MAPK Pathway in LPS-Stimulated RAW264.7 Cells

Phosphorylation of MAPKs was reported to be strongly associated with the activity of
Nrf2 [32]. The results from KEGG and PPI suggested that ANP might inhibit the MAPK
signaling pathway. Therefore, we treated RAW264.7 cells with 0–320 µg/mL of ANP
for 12 h, and the phosphorylation of MAPKs was then examined using Western blot to
demonstrate the inhibitory impact of ANP on the MAPK signaling pathway. As shown
in Figure 8, ANP inhibited the phosphorylation of MEK1, ERK, MKK3, p38, MKK4, and
JNK induced by LPS in a dose-dependent manner and showed significant inhibition at
320 µg/mL of ANP.
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4. Discussion

Areca nuts are a popular tropical fruit in Asian areas, and they are rich in polyphenols.
However, there are limited investigations on the benefit to health because areca nut contains
some carcinogenic alkaloids, such as arecoline, arecaidine, and guvacine. The areca nut
alkaloids have been reported to have reproductive toxicity and ROS production [33,34]. On
the other hand, the extracts of areca nut were reported to have antioxidant potential [35,36],
and antibacterial activity [37,38].

In our previous study, two kinds of polyphenols, catechin and proanthocyanidin
B1 were found [23]. To further investigate the antioxidant activity of ANP, we used
a macrophage-like cell line, RAW264.7, which is a cellular model to study antioxidant
and anti-inflammatory activities at the cellular level. As a result, ANP had a significant
inhibitory effect on LPS-stimulated ROS (Figures 1 and 2). Moreover, ANP significantly
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increased Nrf2 and HO-1 levels (Figure 3). Moreover, continuous stimulation of LPS
causes inflammation of the cells, and MAPK pathway is associated with the production of
inflammation [39–41]. Our data revealed that ANP further downregulated the activation of
the MAPK signaling pathway (Figure 8). Thus, ANP inhibited not only LPS-stimulated
oxidative stress, but also the LPS-stimulated inflammation.

In order to further investigate how APN affects gene expression across the entire
genome in RAW264 cells; we used RNA sequencing and bioinformatics. Our data revealed
that ANP had a substantial influence on mitochondria, kinase activity, and transferase
activity according to GO analysis (Figure 5). Therefore, we speculate that ANP may alleviate
oxidative stress by regulating mitochondrial activity and protease activity. KEGG analysis
revealed that ANP affected some pathways that are related with diseases, NAFLD, virus
infections, and bacterial infections. Most of them are related to the MAPK pathway (Table 3).
ANP inhibited the expressions of MAPK-related genes (Table 4). These data also supported
the finding that ANP prevented LPS-stimulated oxidative damage via the MAPK signaling
pathways. A similar pathway was also reported: cryptochlorogenic acid activated the
Nrf2/HO-1 signaling pathway via the ROS-dependent MAPK pathway, and reduced the
LPS-stimulated inflammation [42].

In the PPI analysis according to the DEGs data, we found that the cellular senescence
pathway and the MAPK pathway interacted with each other (Figure 6). In the 160/LPS,
Mapk3, which is also known as Erk1 and activates the activity of many MAPK enzymes,
had the highest connectivity degree and was associated with most of the genes. Erk1/2
is reported to play a key role in cellular senescence [43]. In the 320/LPS, Mapk1, which
is also known as Erk2, had the highest connectivity degree, can activate the activity of
many protein kinases, and is involved in a variety of cellular processes (Figure 7). A
previous study showed that Erk1/2 and p38 play a key role in cellular senescence due to
smoking [44].

5. Conclusions

In conclusion, our work demonstrated that ANP reduced LPS-stimulated oxidative
stress through the MAPK-mediated Nrf2/HO-1 signaling pathway. These data provide the
molecular bases for understanding the antioxidant activity of ANP.
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