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Abstract: The present study investigated the additive effects of L-Arginine (L-Arg) with potassium
carbonate (PC) on the quality characteristics of phosphate-free frankfurters. The results showed
that L-Arg combined with PC could act as a viable phosphate replacer by decreasing cooking loss
and improving the textural properties of phosphate-free frankfurters (p < 0.05), mainly because of
its pH-raising ability. Moreover, L-Arg could assist PC in effectively retarding lipid oxidation in
phosphate-free frankfurters during storage (p < 0.05). Furthermore, 0.1% L-Arg combined with 0.15%
PC was found to exhibit the best optimal phosphate-replacing effect. This combination could also
overcome quality defects and promote the sensory attributes of phosphate-free frankfurters to the
maximum extent. Therefore, our results suggest that L-Arg combined with PC can be considered a
feasible alternative for the processing of phosphate-free frankfurters with an improved quality profile
and superior health benefits.

Keywords: L-Arginine; potassium carbonate; additive effects; phosphate-free frankfurters; quality
profile; sensory evaluation

1. Introduction

Food-grade phosphates of various chemical forms (e.g., orthophosphates, pyro-phosphates,
and polyphosphates, etc.) have been broadly used as synthetic food additives in the meat
industry to manufacture meat products, mainly due to their positive effects on the quality
profile, sensory attributes, and shelf life of the final products [1]. Phosphates have a unique
characteristic of synergistically functioning with sodium chloride to increase the solubility
of salt-soluble myofibrillar proteins, subsequently promoting the cooking yield and gel
properties of meat products [2,3]. Moreover, phosphates can efficiently raise pH values
to alkaline levels and increase ionic strength, eventually increasing the water-holding
capacity of meat products [4]. Phosphates also possess the ability to split the complex
of actomyosin formed during rigor mortis mainly through the sequestration of calcium
or magnesium cations [5]. Furthermore, because of their excellent antioxidant potential,
phosphates can effectively retard lipid oxidation, while protecting the flavor and color of
meat products during storage [6]. However, with the increasing demand and consump-
tion of processed meat products in many countries, the daily intake of phosphates has
become more than two- to threefold higher than intake in the 1990s [7]. The excessive
intake amounts of phosphates from processed meat products contributes to an increased
risk to health. For example, as reported by Leon, Sullivan, and Sehgal [8], the daily intake
of phosphates has already exceeded 1200 mg in some countries, which was significantly
higher than the recommended daily intake (700 to 800 mg) by the Food and Agriculture
Organization (FAO). Karp, Ekholm, Kemi, Hirvonen, and Lamberg-Allardt announced
that a high dietary phosphorus intake could increase the risk of cardiovascular disease,
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chronic kidney disease, and a poorer bone status [9]. Zhang et al. [10] also indicated that
increased phosphorus consumption could significantly break the balance of calcium to
phosphorus ratio, resulting in hypercalcemia or hypocalcemia. Consequently, due to their
nutritional drawbacks and negative connotation, phosphates have been seriously consid-
ered as components that must be partially or completely replaced from the formulation
of meat products [11]. However, simply reducing or eliminating phosphates from meat
products may compromise the quality profile of the final products. In the last decade,
some available phosphate replacers (e.g., non-meat proteins, native or modified starches,
hydrocolloids, fibres, seaweeds, plant or vegetable powders, carbonate salts, and alkaline
electrolyzed water) and novel processing technologies (e.g., power ultrasound processing
and high-pressure processing) have attracted considerable interest for the processing of
phosphate-free or reduced-phosphate meat products, with focus on specific quality profiles,
including water-holding capacity, emulsion stability, textural properties, colour, sensory at-
tributes, and oxidative stability [7]. However, the commercial viability of these approaches
for creating processed meat products with reduced or removed phosphates has been very
limited because of the higher manufacturing costs of the final products, particularly in
the case of some relatively low-price emulsified meat products (e.g., frankfurters, Vienna
sausages, bologna, hot dogs, and meatloaf). Thus, the way to promote the quality profiles
of reduced phosphates or phosphate-free processed meat products without increasing the
manufacturing cost is challenging for the meat industry.

Carbonates (e.g., sodium or potassium carbonate (PC)), which are classified as acidity
regulators, have been used for the processing of meat products, mainly due to their alka-
lization effects [12]. Xiong indicated that the alkaline carbonates effectively increased the
net negative charge of myofibrillar proteins and then promoted the swelling degree of my-
ofibrils, subsequently increasing the water-holding capacity of myofibrillar proteins during
thermal treatment [13]. Moreover, because their size is smaller than that of phosphates,
carbonates can more easily penetrate the muscle tissue and interact with higher amounts of
side chains of meat proteins, significantly promoting the repulsive forces among meat pro-
teins and resulting in higher water retention [14]. In the last decade, numerous concentrated
studies have reported that carbonates could be used as phosphate replacers to prepare
marinade solutions for enhancing the quality profile (e.g., color, tenderness, water-holding
capacity, and flavor) of fresh meat or aquatic products [15–17]. Currently, the increasing
market trend or consumer demand for manufacturing phosphate-free meat products (e.g.,
sausage, meatball, meatloaf, and ham) has accelerated the use of phosphate-replacing
carbonates by numerous researchers and food industry stakeholders. Furthermore, consid-
ering sodium reduction in meat products, PC has been thought to be a preferred phosphate
replacer, more so than sodium carbonate. However, our previous, unpublished work
indicated that higher concentration (more than 0.20%, w/w) of PC rendered some negative
effects on the quality profile of phosphate-free frankfurters, such as increased porous sec-
tions (induced by carbon dioxide during heating treatment) and an unacceptable darker
color, which are considered undesirable visual attributes for consumers. Kaewthong and
Wattanachant also suggested that a higher concentration of carbonates led to some adverse
effects on the function and integrity of actomyosin [14]. However, a lower concentration
of PC did not exhibit the optimal substitution effect. Thus, more research is required
to identify some suitable techno-functional additives to combine with PC to completely
replace phosphates from meat products.

Most recently, some basic amino acids, such as L-Arginine (L-Arg) and L-Lysine
(L-Lys), have attracted interest in the meat industry, mainly attributed to their ability to
enhance the water-holding capacity, textural properties, and physical/oxidative stability of
meat products [18]. In the study of Li et al., they reported that L-Arg or L-Lys promoted the
molecular unfolding of myosin and obtained more negative charges, ultimately enhancing
the solubility of myosin [19]. Zhang et al. also announced that L-Arg promoted the
dissociation of actomyosin and improved the tenderness of chicken breast more efficiently
than L-Lys [20]. Thus, we hypothesized that L-Arg possesses the ability to combine with PC



Foods 2022, 11, 3581 3 of 19

and act as a potential phosphate replacer for improving the quality profile of phosphate-free
frankfurters. However, to date, there is no available information on this aspect. Therefore,
the present study aimed to evaluate the additive effects of L-Arg with PC on the quality
profile, flavor attributes, and sensory properties of the resulting phosphate-free frankfurters.

2. Materials and Methods
2.1. Materials

Post-rigor lean pork shoulder meat (moisture 73.90%, protein 21.36%, and fat 3.17%,
based on total weight) and pork back fat (moisture 7.46% and fat 86.95%, based on total
weight) were purchased from Gaojin Meat Co., Ltd. (Harbin, China), and were stored on ice
while being transported to the laboratory and used on the same day. Food-grade PC (99.5%)
and L-Arg (99.5%) were kindly provided by Wangbang Industrial Co., Ltd. (Zhengzhou,
China). Composite phosphates (mainly containing sodium tripolyphosphate, sodium
hexametaphosphate, and sodium pyrophosphate) were provided by Hens Food Co., Ltd.
(Xuzhou, China). The pH value of 0.4% composite phosphate solution (prepared with pH
7.0 ultrapure water) was 9.21 ± 0.02. All spices were kindly provided by McCormick Ltd.
(Shanghai, China). Collagen casing (20 mm in diameter) was provided by Qian-ao Co.,
Ltd. (Harbin, China). All other chemicals and reagents used in the experiments were of
analytical grade.

2.2. Preparation of Frankfurters

The formulations of frankfurters in each group are shown in Table 1. The phosphate
content in the control group was 0.4% (w/w, based on the total weight of lean pork meat,
pork back fat, and ice). The phosphate-free group (PF group) with no added phosphate
was considered the negative control group. Moreover, L-Arg and PC were added to the
meat batter of the PF group as follows: T0 group (0.15% PC), T1 group (0.15% PC + 0.025%
L-Arg), T2 group (0.15% PC + 0.05% L-Arg), T3 group (0.15% PC + 0.075% L-Arg), T4
group (0.15% PC + 0.1% L-Arg), and T5 group (0.15% PC + 0.125% L-Arg). According to
the experimental design, three independent batches of samples (replicates) were prepared
on different days, and different treatments in accordance with different formulas were
performed for each batch. For each treatment per replicate batch, the meat batter was
stuffed into collagen casings (diameter 20 mm) to produce frankfurters with approximate
total weights of 2.00 kg (about 70–80 g per sausage). The whole processing procedure of
frankfurters was according to the same method described by Choi et al. [21]. Finally, all
the frankfurters were vacuum-packed and stored at 4 ◦C in a refrigerator until further
instrumental analyses and sensory evaluation.

Table 1. Formulations (%) of phosphate-containing frankfurters or phosphate-free frankfurters added
with the combination of L-Arginine (L-Arg) and potassium carbonate (PC).

Control PF T0 T1 T2 T3 T4 T5

Ingredients
Lean meat 50 50 50 50 50 50 50 50
Pork back-fat 25 25 25 25 25 25 25 25
Ice 25 25 25 25 25 25 25 25
Total 100 100 100 100 100 100 100 100
Additives *
Sodium chloride 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
Sodium nitrite 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
Composite phosphates 0.4 0 0 0 0 0 0 0
Potassium carbonate 0 0 0.15 0.15 0.15 0.15 0.15 0.15
L-Arginine 0 0 0 0.025 0.050 0.075 0.100 0.125
Coriander seed powder 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Macis powder 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
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Table 1. Cont.

Control PF T0 T1 T2 T3 T4 T5

Red bell peppers powder 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Ginger powder 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
White pepper powder 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Monosodium glutamate 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Sodium erythorbate 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152

* The addition levels of additives were based on the total weight of lean pork meat, pork back fat, and ice. PF
group: no added phosphate. T0 group: 0.15% PC and no added phosphate. T1 group: 0.15% PC + 0.025% L-Arg,
and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added phosphate. T3 group: 0.15% PC +
0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and no added phosphate. T5 group:
0.15% PC + 0.125% L-Arg, and no added phosphate.

2.3. Proximate Composition Analysis

The moisture, protein, fat, and ash content of each frankfurter was measured according
to the AOAC guidelines [22].

2.4. Measurement of PH

The pH values of frankfurters from each group were determined according to the
method of Choe et al. [4] with some modifications. Briefly, 10.0 g of each frankfurter was
mixed with 90.0 mL of ultrapure water (pH 7.0) and then homogenized by using an IKA
high-shear homogenizer (T25 basic, Staufen, Germany) at 5000 rpm for 15 s. Following this,
each homogenate was filtered through a Whatman No. 4 filter paper. The pH of the filtrate
was then measured by using a pH metre (PB-10, Sartorius Scientific Instruments Co., Ltd.,
Beijing, China) at room temperature (20–22 ◦C).

2.5. Cooking Loss

The cooking loss (%) was determined by using the same method of Jiang, Cao, Xia,
Liu, and Kong [23].

2.6. Emulsion Stability

The emulsion stability was determined according to the same procedure as described
by Cao et al. [24].

2.7. Color

The color of the samples was determined by using the method as described by Chen
et al. [25] with a ZE-6000 colourimeter (Nippon Denshoku, Kogyo Co., Tokyo, Japan). The
color parameters were expressed as the L*-value (lightness), a*-value (redness/greenness)
and b*-value (yellowness/blueness), respectively. This colourimeter had a D65 light source,
a 10◦ observer with an 8-mm-diameter measuring area, and a 50-mm-diameter illumination
area. The total color difference (∆E*) was calculated by using the following equation:

∆E∗ =
√

(L 0
∗−L∗)2+(a 0

∗−a∗)2+(b 0
∗−b∗)2

where, the values of L0*-, a0*-, and b0*-values were obtained from the control samples, and
the values of L*-, a*-, and b*-values were measured from the phosphate-free frankfurters
prepared with varying amounts of L-Arg and PC.

2.8. Texture Analysis

Before analysis, all the samples were maintained at room temperature (20–22 ◦C) for
at least two hours. Two deformation tests (TDT) were used to evaluate the texture of the
frankfurters by using a TA-TX plusC texture analyzer (Stable Micro Systems Co., Ltd.,
Godalming, UK), which equipped with a P/2 cylindrical probe (diameter 2.0 mm) under
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the “Hold & Penetration” mode according to the same testing parameters and testing
procedure as described by Cao et al. [26].

2.9. Electronic Nose Analysis

Electronic nose determinations were performed by using the same method of Zhang,
Hu, Wang, Kong, and Chen [27] with a PEN 3.5 electronic nose (Win Muster Airsense
Analytics Inc., Schwerin, Germany). The specific types of volatile organic compounds
(VOCs) that could be detected by each sensor are shown in Table 2.

Table 2. Information of 10 sensors for electronic nose.

Sensors Representative Material Species Description

W1C Aromatic compounds Sensitive to aromatic constituents, benzene
W5S Broad range Sensitive to nitrogen oxides
W3C Aromatic Sensitive to aroma, ammonia
W6S Hydrogen Sensitive to hydrides

W5C Arom-aliph Sensitive to short-chain alkane aromatic
component

W1S Broad-methane Sensitive to methyl
W1W Sulphur-organic Sensitive to sulfides
W2S Broad-alcohol Sensitive to alcohols, aldehydes and ketones
W2W Sulph-chlor Sensitive to organic sulfides
W3S Methane-aliph Sensitive to long-chain alkanes

2.10. Electronic Tongue (E-Tongue) Analysis

E-tongue measurements were performed according to the procedure of Yin et al. [28]
with the SA402B E-tongue (Insent Company, Atsugi-Shi, Japan) with five test sensors and
two reference sensors.

2.11. Assessment of Lipid Oxidation

Lipid oxidation was expressed as the content of malonaldehyde (MDA) and deter-
mined in accordance with the method of Wang and Xiong [29] with slight modification.
Briefly, 2.0 g of each frankfurter was mixed with 3.0 mL of 1.0% thiobarbituric acid (TBA)
solution and 17.0 mL of 2.5% trichloroacetic acid-hydrochloric acid (TCA-HCl) buffer and
then vortexed by using a vortex mixer (3030A, Scientific Industries, INC., Bohemia, NY,
USA). After that, each of the mixture was heated in the boiling water bath for 30 min and
cooled to the room temperature (22–25 ◦C). Then, 4.0 mL of the above supernatant was
mixed with 4.0 mL of chloroform and centrifuged at 3000 rpm for 10 min. The absorbance of
supernatant was measured at 532 nm. The thiobarbituric acid reactive substances (TBARS)
value was calculated as follows:

TBARS/(mg/kg) =
A532

m
×9.48 ,

where, A532 represented the absorbance at 532 nm, m represented the weight of the sample
(g), 9.48 was the constant.

2.12. Sensory Analysis

Sensory evaluation was performed by using the same procedure and testing param-
eters as those used by Yuan et al. [30]. The sensory evaluation was carried out under
the approval permission of the Ethics in Research Committee of Northeast Agricultural
University (ERCNEAU-2018-001). All the panelists agreed voluntarily to participate in the
sensory evaluation.

Before sensory evaluation, all the frankfurters were maintained at room temperature
(25 ◦C) for two hours. Briefly, 16 panelists (comprising eight females and eight males) with
a wealth of experiences in meat products sensorial evaluations were chosen from a pool of
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graduate students. The detailed selection method of the panelists and preparatory session
for the panelists were according to the same methods of Zhang et al. [31]. The sensory tests
were performed through three independent sessions with the same panelists. Frankfurters
from each group were evaluated by each panelist for each session through a sensory
descriptive analysis based on the following parameters on a 7-point descriptive scale:
for interior color of frankfurters (1 = yellowness; 7 = pinkness), for degree of uniformity
among frankfurters (1 = low; 7 = high), for juiciness of frankfurters (1 = extremely dry;
7 = extremely juicy), for flavor intensity of frankfurters (1 = less intense; 7 = most intense).
The final vocabulary and keywords for the interpretation of the attributes can be found in
Table 3.

Table 3. Attributes, definitions, scale anchors and standard references used in descriptive sensory
analysis of frankfurters with different formulas.

Attribute Definitions Scale Anchors Standard Reference

Interior color Characteristic color of the
frankfurters slice

1 = no pinkness, with
light yellowness

Commercial
frankfurters4 = light pinkness

7 = pinkness

Homogeneous Degree of uniformity of the
frankfurters slice

1 = lower uniform
and compact

Commercial
frankfurters

4 = intermediate
uniform and compact

7 = higher uniform
and compact

Juiciness
Feeling of the moisture of
the frankfurters during
chewing

1 = extremely dry
Commercial
frankfurters

4 = juicy

7 = extremely juicy

Flavor

Intensity of the
characteristic flavor of the
frankfurters, a mixture of
meat and seasonings

1 = bland, not intense
Commercial
frankfurters

4 = neutral

7 = very intense

2.13. Statistical Analyses

Three independent batches of frankfurters (replicates) were prepared on different
days. For each batch, measurements of related traits were performed in triplicate. All
data are expressed as the mean ± standard deviations (SD). To evaluate the significance of
the main effects (p < 0.05), one-way analysis of variance (ANOVA) along with Duncan’s
multiple comparison was performed via SPSS Statistics 25.0 software (SPSS Inc., Chicago,
IL, USA). ORIGIN software (2018, 64 bit) was used to assess the results of electronic nose
and e-tongue measurements based on principal component analysis (PCA).

3. Results and Discussion
3.1. Proximate Composition

The proximate compositions (e.g., moisture, protein, fat, and ash contents) of frank-
furters are shown in Table 4. The PF group exhibited significantly lower protein, water, fat,
and ash contents compared to the control group (p < 0.05). Desmond reported that phos-
phates could increase the ionic strength of the meat system and promote the solubilization
of myofibrillar protein by the synergistic effect with sodium chloride, which contributed to
improving the water-holding capacity in meat products [32]. Huang et al. also indicated
that phosphates increased the ionic strength and pH, which contributed to the dissociation
of actomyosin into actin and myosin, thus retaining more water in myofibrillar protein [33].
Moreover, the incorporation of 0.15% PC alone (T0 group) remarkably increased the protein,
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water, and fat contents of phosphate-free frankfurters (PF group) (p < 0.05), even obviously
lower than that of the control group, which only contained phosphates (p < 0.05). LeMaster
et al. reported that PC could increase the pH and ionic strength, which exposed charged
areas to water which binds to the myofibrillar proteins, thus separating the myofibrils by
repulsive forces to enhance the water-holding capacity [17]. Meanwhile, when L-Arg was
added to in combination with PC, the protein, water, and fat contents of PF group gradually
increased with the increasing addition level of L-Arg compared with that of the T0 group
(p < 0.05). However, no significant differences for ash contents were noted among T0, T1,
T2, T3, T4, and T5 group (p > 0.05). Similar results were observed in the study of Silva
et al., who reported that the addition of L-Arg increased the protein and fat contents of
low-sodium bologna-type sausages [34]. This phenomenon was in accordance with the
result of cooking loss and emulsion stability.

Table 4. Proximate compositions of phosphate-containing frankfurters or phosphate-free frankfurters
added with the combination of L-Arg and PC.

Moisture (%) Protein (%) Fat (%) Ash (%)

Control 59.36 ± 0.13 A 15.94 ± 0.14 A 21.03 ± 0.29 C 3.57 ± 0.12 A

PF 58.08 ± 0.05 D 14.15 ± 0.31 D 19.46 ± 0.31 E 3.15 ± 0.04 B

T0 58.59 ± 0.05 C 15.41 ± 0.28 C 20.54 ± 0.15 D 3.26 ± 0.13 B

T1 58.69 ± 0.14 C 15.58 ± 0.12 BC 21.17 ± 0.04 C 3.31 ± 0.22 B

T2 58.87 ± 0.25 BC 15.61 ± 0.03 ABC 21.42 ± 0.25 BC 3.29 ± 0.23 B

T3 58.96 ± 0.18 B 15.72 ± 0.12 ABC 21.71 ± 0.41 AB 3.25 ± 0.17 B

T4 59.08 ± 0.07 B 15.72 ± 0.21 ABC 21.78 ± 0.46 AB 3.19 ± 0.23 B

T5 59.06 ± 0.21 B 15.79 ± 0.11 AB 21.91 ± 0.15 A 3.14 ± 0.25 B

Values are given as means ± SD from triplicate determinations; A–E in each column represent statistically
significant differences (p < 0.05). PF group: no added phosphate. T0 group: 0.15% PC and no added phosphate.
T1 group: 0.15% PC + 0.025% L-Arg, and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added
phosphate. T3 group: 0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and
no added phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate.

3.2. PH Values

The changes in pH values of frankfurters from various groups are shown in Figure 1.
As expected, the removal of phosphates significantly decreased the pH value of the PF
frankfurters when compared with the control group (p < 0.05), which was most likely the
consequence of the described effect of phosphates on the pH values of meat products.
Moreover, the incorporation of 0.15% PC alone (T0 group) remarkably enhanced the
pH values of phosphate-free frankfurters (PF group) (p < 0.05), showing no differences
compared with the pH values of the control group, which only contained phosphates
(p > 0.05). Our results indicated that PC effectively enhanced the pH values of frankfurters
at lower levels in contrast to phosphates. LeMaster et al. reported that PC is the conjugate
base of a weak acid (pKa = 10.25) with a strong base and buffering capacity, which efficiently
increased the pH values of meat products [17]. Furthermore, when L-Arg was added to
combine with PC, with the addition levels of L-Arg increased from 0.025% to 0.125%, the
pH values of phosphate-free frankfurters gradually increased from 6.62 to 6.83 (p < 0.05).
Even on adding the lowest level of L-Arg (T1 group), the pH value was clearly higher
than that of the control group (p < 0.05). Zhou, Li, Tan, and Sun also reported that L-
Arg could deviate the pH values of pork meat from its isoelectric point, subsequently
significantly increasing the pH values of pork sausage [35]. Thus, our results indicated
the additive effects of L-Arg with PC generated a stronger alkaline power to completely
replace phosphates and then satisfied the effect of phosphates on pH values of frankfurters.
Additionally, the pH-enhancing ability of the combination of PC and L-Arg can justify the
quality improvement of phosphate-free frankfurters.
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Figure 1. pH values of phosphate-containing frankfurters or phosphate-free frankfurters added with
the combination of L-Arginine (L-Arg) and potassium carbonate (PC). The different uppercase letters
(A–E) represent statistically significant differences for the different samples (p < 0.05). PF group: no
added phosphate. T0 group: 0.15% PC and no added phosphate. T1 group: 0.15% PC + 0.025% L-Arg,
and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added phosphate. T3 group:
0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and no added
phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate.

3.3. Cooking Loss and Emulsion Stability

Cooking loss is a crucial indicator that is associated with the water- or fat-binding
capacities of frankfurters during heating and subsequent cooling treatments. As shown in
Table 5, the PF group exhibited a higher cooking loss than the control group (p < 0.05), re-
vealing that more water or fat was released from the meat protein matrix upon the removal
of phosphates. Choe et al. indicated that emulsion-type sausages without phosphates had
a higher cooking loss (21.31%) than those with 0.3% phosphates [4]. Resconi et al. also
suggested that adding phosphates to emulsified meat products promoted the extraction
and solubility of myofibril proteins to form a stronger gel network, thereby increasing
the water-holding capacity of the resulting emulsified meat products and reducing their
cooking loss [36]. Hence, phosphate removal rendered more serious quality defects in
frankfurters. Moreover, the incorporation of 0.15% PC alone (T0 group) remarkably de-
creased the cooking loss of phosphate-free frankfurters (PF group) (p < 0.05), even obviously
lower than that of the control group which only contained phosphates (p < 0.05). LeMaster
et al. [17] indicated that the application of 0.3% PC significantly decreased the cooking
loss of pork loin chops compared with the application of 0.3% phosphates. Meanwhile,
when L-Arg was added in combination with PC, the addition of higher levels (0.075%, 0.1%
and 0.125%) of L-Arg significantly lowered the cooking loss of the PF group compared
with that of the T0 group (p < 0.05). Some previous studies have indicated that L-Arg
effectively decreased the cooking loss of meat products [35,37]. Thus, the decreased cooking
loss of phosphate-free frankfurters in our present work was closely associated with the
enhancement of pH values induced by the additive effects of L-Arg with PC.

As shown in Table 5, the total released liquid, including released fat and released water
of the PF group were remarkably higher than that of the control group (p < 0.05), which
implied that the absence of phosphates obviously decreased the emulsion stability of the
frankfurters. Moreover, the incorporation of 0.15% PC alone (T0 group) obviously decreased
the total released liquid of phosphate-free frankfurters (PF group) (p < 0.05), showing no
differences compared with that of the control group (p > 0.05). Meanwhile, when L-Arg
was added to in combination with PC, the addition of higher levels (0.1% and 0.125%) of
L-Arg resulted in significantly higher emulsion stability of phosphate-free frankfurters in
comparison with that of the T0 group (p < 0.05), as indicated by the obviously lower values
of total released liquid, including released water and released fat. As mentioned above,
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higher pH values induced by the combination of L-Arg and PC effectively increased the net
negative charges of meat proteins and enhanced their water-holding capacity, subsequently
decreasing the exudation of water or fat [38]. Roldán, Antequera, Pérez-Palacios, and
Ruiz also indicated that the increased pH value of meat promoted larger gaps between
myofilaments through electrostatic repulsion and then reinforced interactions between
myosin and water, which subsequently contributed to increasing the emulsion stability of
the meat batter [39]. Furthermore, the guanidinium group of L-Arg positively participated
in inhibiting proteins aggregation [40], which mainly contributed to lowering the water or
fat release. In addition, da Silva et al. indicated that ionic interactions and the formation
of hydrogen bonds between the side chain of L-Arg and water decreased the water/fat
exudation of traditional bologna sausage [34].

Table 5. Cooking loss and emulsion stability of phosphate-containing frankfurters or phosphate-free
frankfurters added with the combination of L-Arg and PC.

Cooking loss (%)
Emulsion Stability

Total Released Liquid (%) Released Water (%) Released Fat (%)

Control 7.47 ± 0.36 B 6.50 ± 0.83 B 6.01 ± 0.79 B 0.48 ± 0.05 B

PF 22.18 ± 0.24 A 21.35 ± 0.76 A 19.02 ± 0.53 A 2.33 ± 0.23 A

T0 6.93 ± 0.11 C 6.45 ± 0.22 B 5.95 ± 0.17 B 0.50 ± 0.03 B

T1 6.75 ± 0.09 CD 6.38 ± 0.30 B 5.89 ± 0.25 B 0.49 ± 0.08 B

T2 6.65 ± 0.20 CD 5.89 ± 0.65 B 5.46 ± 0.61 B 0.44 ± 0.04 BC

T3 6.39 ± 0.15 D 5.61 ± 0.23 B 5.20 ± 0.23 B 0.41 ± 0.01 BC

T4 5.51 ± 0.27 E 4.24 ± 0.31 C 3.92 ± 0.30 C 0.32 ± 0.01 C

T5 5.36 ± 0.05 E 4.11 ± 0.58 C 3.79 ± 0.55 C 0.31 ± 0.03 C

Values are given as means ± SD from triplicate determinations; A–E in each column represent statistically
significant differences (p < 0.05). PF group: no added phosphate. T0 group: 0.15% PC and no added phosphate.
T1 group: 0.15% PC + 0.025% L-Arg, and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added
phosphate. T3 group: 0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and
no added phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate.

3.4. Color Determination

The color of meat products is a critical factor that can intuitively influence consumer
preference. As shown in Table 6, the PF group had significantly lower L*- and a*-values,
as well as obviously higher b*-value compared to those of the control group (p < 0.05).
Choe et al. indicated that the decreased L*-values and increased b*-values of emulsion-
type sausages without phosphates were mainly attributed to their lower pH values and
higher cooking loss [4]. Meanwhile, the same amount of sodium nitrite was added to
frankfurters of each group. However, the lower pH value (acidic condition) efficiently
accelerated the decomposition of sodium nitrite [41], which probably altered the color
parameters of frankfurters of the PF group. Moreover, the incorporation of 0.15% PC
alone (T0 group) obviously increased the L*-value and decreased the a*- and b*-values
compared with those of phosphate-free frankfurters (PF group) (p < 0.05). When L-Arg
was added in combination with PC, except for the sample with the addition of 0.025%
L-Arg (T1 group), all other samples showed obviously higher L*-values than those of the
T0 group (p < 0.05). However, no significant differences were noted among the samples of
the T2, T3, T4, and T5 groups (p > 0.05). Furthermore, on increasing the concentration of
L-Arg, the b*-values of phosphate-free frankfurters significantly decreased (p < 0.05). As
mentioned above, the additive effects of L-Arg and PC obviously enhanced the pH values
of phosphate-free frankfurters, which efficiently decreased the oxidation rate of myoglobin
to metmyoglobin [42]. Ning et al. [43] indicated that L-Arg exhibited synergistic effects with
sodium nitrite to promote the formation of nitrosylmyoglobin (a kind of typically cured
pigment) and decrease the content of metmyoglobin, which subsequently led to lowering
the b*-values of sausage. In addition, the higher addition levels (0.1% and 0.125%) of
L-Arg significantly increased the a*-values of phosphate-free frankfurters when compared
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with those of the T0 group (p < 0.05). Given the excellent antioxidant capacities of L-
Arg (particularly its metal chelation activity), the oxidation of oxy-myoglobin induced by
metallic ions was effectively inhibited [35], which subsequently enhanced the a*-values of
phosphate-free frankfurters with higher levels of L-Arg. Ning et al. also indicated that the
addition of L-Arg efficiently promoted the conversion of myoglobin to nitrosylmyoglobin
and then enhanced the a*-values of sausage [44].

Table 6. Color of phosphate-containing frankfurters or phosphate-free frankfurters added with the
combination of L-Arg and PC.

L* a* b* ∆E*

Control 63.56 ± 0.01 A 13.45 ± 0.02 A 20.14 ± 0.02 E -
PF 62.13 ± 0.08 D 13.19 ± 0.07 B 24.21 ± 0.07 A 4.34 ± 0.18 A

T0 62.40 ± 0.05 C 12.52 ± 0.05 D 23.55 ± 0.11 B 3.50 ± 0.22 B

T1 62.45 ± 0.02 C 12.58 ± 0.20 D 23.16 ± 0.11 C 3.12 ± 0.07 C

T2 62.56 ± 0.01 B 12.77 ± 0.17 CD 20.50 ± 0.06 D 1.18 ± 0.13 D

T3 62.58 ± 0.04 B 12.79 ± 0.11 CD 20.24 ± 0.03 E 1.05 ± 0.14 DE

T4 62.59 ± 0.07 B 12.98 ± 0.24 BC 19.92 ± 0.17 F 0.92 ± 0.03 E

T5 62.60 ± 0.02 B 13.03 ± 0.08 B 19.85 ± 0.07 F 0.88 ± 0.01 E

Values are given as means ± SD from triplicate determinations; A–F in each column represent statistically significant
differences (p < 0.05). PF group: no added phosphate. T0 group: 0.15% PC and no added phosphate. T1 group:
0.15% PC + 0.025% L-Arg, and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added phosphate.
T3 group: 0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and no added
phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate. L*: lightness, a*: redness/greenness,
b*: yellowness/blueness, ∆E*: the total color difference.

The ∆E*-value is an index used to evaluate the total color differences among different
groups by accounting for the combined changes in L*-, a*-, and b*-values [45,46]. A higher
∆E*-value represents larger color changes compared to the control sample. As depicted in
Table 6, the ∆E*-value of the PF group was higher than 3, which indicated that the color
difference between the control and PF groups have been perceived even by an inexperienced
observer. Brainard also indicated that the color differences were prone to detected by an
observer when the ∆E*-value ranged from 2 to 10 [47]. Moreover, as the levels of L-Arg
increased, the ∆E*-value of phosphate-free frankfurters obviously decreased (p < 0.05). In
particular, in the T4 and T5 groups, the ∆E*-values were lower than 1, indicating that the
color was difficult to be distinguished from that of the control group by an experienced
observer. Therefore, our results indicated that the combination of L-Arg and PC could
improve the color acceptance of phosphate-free frankfurters.

3.5. Texture

As shown in Table 7, because of the absence of phosphates, the PF group exhibited
obviously higher hardness, as well as significantly lower resilience, springiness, chewiness,
fracturability, and adhesiveness than the control group (p < 0.05). Our results were similar
with the study of Schutte, Marais, Muller, and Hoffman, who reported that the removal
of phosphates generated harder and more compact textures of meat products [48]. The
reason for this quality deterioration was mainly attributed to the higher amount of water
or fat release during the processing of emulsified meat products [49]. Choe et al. also
indicated that phosphates effectively promoted the extraction of myofibrillar proteins and
subsequently facilitate the formation of more stable textures of meat products after heat-
ing treatment [4]. Moreover, the incorporation of 0.15% PC alone (T0 group) remarkably
decreased the hardness, as well as obviously increased the springiness and chewiness
than those of phosphate-free frankfurters (PF group) (p < 0.05), which mainly attributed
to the higher ionic strength and pH values. However, compared with the control group,
the T0 group showed obviously lower hardness, resilience, fracturability, chewiness, and
adhesiveness (p < 0.05), indicating that PC alone did not completely replace phosphates
to maintain the quality profile of frankfurters. Furthermore, when L-Arg was added in
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combination with PC, as the addition levels of L-Arg increased, the resilience, springiness,
fracturability, and chewiness of phosphate-free frankfurters significantly increased com-
parison with those of the T0 group (p < 0.05). However, the hardness of phosphate-free
frankfurters with the addition of L-Arg at each level was lower than that of the T0 group
(p < 0.05), which was in accordance with the decreased cooking loss. Zhou et al. [35] indi-
cated that L-Arg significantly enhanced the springiness and chewiness of non-phosphate
pork sausage. The combination of L-Arg and PC deviated the pH values of phosphate-free
frankfurters from the isoelectric point and increased the solubility of meat proteins, which
effectively promoted the formation of a better gel matrix after heating [37]. Additionally,
L-Arg was found to exert a stronger inhibitory effect on protein aggregation and protein
refolding [50], which significantly promoted the gel properties of protein gels. In particular,
the phosphate-free frankfurters containing 0.15% PC and 0.1% L-Arg (T4 group) showed
similar springiness, fracturability, and adhesiveness to those of the control group (p > 0.05),
which indicated that the textural properties of phosphate-free frankfurters can be improved
by the additive effects of L-Arg with PC.

Table 7. Textural properties of phosphate-containing frankfurters or phosphate-free frankfurters
added with the combination of L-Arg and PC.

Hardness (g) Resilience (g) Springiness (%) Fracturability (g) Chewiness (g·s) Adhesiveness (g·s)

Control 48.68 ± 0.73 B 35.18 ± 0.72 A 69.08 ± 0.57 ABC 348.15 ± 12.64 A 807.86 ± 15.23 A 24.40 ± 1.15 A

PF 51.55 ± 0.69 A 27.16 ± 1.26 D 64.27 ± 0.42 D 283.03 ± 8.02 D 642.61 ± 8.69 E 19.25 ± 1.03 D

T0 46.12 ± 2.00 C 25.39 ± 1.38 D 67.94 ± 0.70 C 287.49 ± 3.25 D 676.07 ± 14.68 D 19.33 ± 0.37 D

T1 43.60 ± 0.07 D 26.68 ± 0.96 D 68.12 ± 0.70 BC 291.65 ± 7.58 D 692.98 ± 18.71 CD 19.72 ± 0.60 D

T2 41.59 ± 0.82 DE 29.39 ± 0.57 C 69.55 ± 0.98 AB 305.27 ± 6.80 C 717.41 ± 17.79 C 21.60 ± 0.84 C

T3 41.36 ± 1.40 E 29.71 ± 0.25 C 69.75 ± 1.74 A 328.27 ± 14.27 B 722.97 ± 16.99 C 23.93 ± 0.93 AB

T4 40.70 ± 1.30 E 30.35 ± 1.17 BC 70.38 ± 0.81 A 347.64 ± 8.55 A 772.44 ± 23.42 B 24.51 ± 0.83 A

T5 39.88 ± 0.59 E 32.22 ± 0.50 B 70.61 ± 0.93 A 335.62 ± 3.31 AB 815.36 ± 15.67 A 22.69 ± 0.83 BC

Values are given as means ± SD from triplicate determinations; A–E in each column represent statistically
significant differences (p < 0.05). PF group: no added phosphate. T0 group: 0.15% PC and no added phosphate.
T1 group: 0.15% PC + 0.025% L-Arg, and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added
phosphate. T3 group: 0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and
no added phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate.

3.6. Electronic Nose Analysis

Electronic nose analysis is an effective method for assessing the aroma of meat prod-
ucts. As depicted in Figure 2A, the W6S, W1S, W5S, W2S, and W1W sensors exhibited
strong responses to VOCs of all frankfurters, indicating that the frankfurters contained
higher levels of hydrides, methyl compounds, nitrogen oxides, alcohols, aldehydes, ketones,
and sulfide compounds. Moreover, the PF group received the stronger signals from the
W1C, W3C, W2S, W2W, W3S, and W1S sensors and weaker signals from the W5S, W1W and
W6S sensors than the control group, which indicated that the incorporation of phosphates
promoted the generation and volatilization of aromatic constituents, benzene, and methyl
compounds and inhibited the generation and volatilization of aromatic, broad-alcohol,
sulph-chlor, methane-aliph, and broad-methane compounds. Furthermore, the incorpora-
tion of 0.15% PC alone (T0 group) rendered weaker signals from the W5S, W6S, and W1S
sensors in response to VOCs of phosphate-free frankfurters (PF group), suggesting that PC
inhibited the formation and release of nitrogen oxides, hydrides, and methyl compounds.
When L-Arg was combined with PC, the W6S, W1S, W2S, and W3S sensors exhibited
a declining value in response to VOCs of the T0 group, implying that the combination
of L-Arg with PC inhibited the formation and release of hydrides, methyl compounds,
alcohols, aldehydes, ketones, and long-chain alkanes. However, compared with the T0
group, the signals from the W5S and W5C sensors enhanced when L-Arg was combined
with PC, and the highest signals were observed in the T5 group. This suggested that the
incorporation of PC and L-Arg promoted the generation and volatilization of nitrogen
oxides, and short-chain alkane aromatic components of phosphate-free frankfurters.
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Figure 2. Radar chart (A) and principal component analysis (B) of the electronic nose data for phosphate-
containing frankfurters or phosphate-free frankfurters added with the combination of L-Arg and PC.
PF group: no added phosphate. T0 group: 0.15% PC and no added phosphate. T1 group: 0.15% PC +
0.025% L-Arg, and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added phosphate.
T3 group: 0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and
no added phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate.

As presented in Figure 2B, the frankfurters from different groups were obviously
separated on the PCA chart, the control, PF, T0, T1, and T2 groups were situated on the
positive PC1 axis, whereas all the other groups were situated on the negative axis. The
control group related to the W1W and W6S sensors was kept away from the PF group,
illustrating that the sulfide and hydride content in the control group were higher than
those in the PF group. Moreover, the PF, T0, T1, T2, and T3 groups were close to each other
and related to the W3S, W2S, and W1S sensors, indicating that the contents of long-chain
alkanes, alcohols, aldehydes, ketones, and methyl were similar in these groups. On the
negative PC1 axis, the signals of W5S and W5C sensors in the T5 group were stronger than
those in the T3 and T4 groups, indicating that the T5 group had higher amounts of nitrogen
oxides and short-chain alkane aromatic components.

3.7. E-Tongue Analysis

E-tongue analysis is a precise method used to evaluate the flavor profile of meat products.
It can efficiently eliminate the subjectivity of sensory evaluation by panelists. As shown in
Figure 3A, the PF group had stronger signals of sourness, bitterness, astringency, aftertaste-A
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(aftertaste of astringency), aftertaste-B (aftertaste of bitterness), and saltiness than the control
group. The increase in sourness in the PF group may have been caused by the removal of
phosphates, and this result was in accordance with that of the pH value of meat products.
Moreover, compared with the PF group, the incorporation of PC alone (T0 group) decreased
the sourness, astringency, and aftertaste-A. Furthermore, the combination of L-Arg and PC
obviously decreased the sourness, bitterness, astringency, and aftertaste-A significantly, as
well as increased the aftertaste-B, umami, richness, and saltiness. Additionally, compared
with the control group, the samples prepared with the combination of L-Arg and PC showed
obvious higher aftertaste-B, umami, richness, and saltiness, as well as lower sourness, which
indicated that the additive effect of L-Arg and PC clearly enhanced the aftertaste-B, umami,
richness, and saltiness of phosphate-free frankfurters.
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Figure 3. Radar chart (A) and principal component analysis (B) of the electronic tongue data for
phosphate-containing frankfurters or phosphate-free frankfurters added with the combination of L-Arg
and PC. PF group: no added phosphate. T0 group: 0.15% PC and no added phosphate. T1 group:
0.15% PC + 0.025% L-Arg, and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added
phosphate. T3 group: 0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1%
L-Arg, and no added phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate.

The results of PCA of the e-tongue from all the groups are presented in Figure 3B. The
control, PF, T0, and T1 groups were situated on the negative PC1 axis, whereas the other
groups were situated on the positive axis. On the negative axis, the T0 and T1 groups were
far from the control and PF groups based on the differences in their astringency, aftertaste-A,
and bitterness. On the positive axis, the T4 and T5 groups were far from the T2 and T3
groups based on their richness, which indicated that the combination of L-Arg and PC at
higher levels (0.1% or 0.125%) led to higher richness than that of the other groups. Our
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findings suggested that e-tongue analysis effectively distinguished the differences in flavor
profiles of phosphate-free frankfurters produced with the combination of L-Arg and PC.

3.8. Lipid Oxidation

Lipid oxidation is a crucial factor that can induce quality deterioration in meat products
during storage. As shown in Table 8, the TBARS values of all the frankfurters were
extremely significantly affected by different formulations and storage times, as well as with
interactions between the two factors. As the storage time increased, the TBARS values
of frankfurters from each group were significantly increased (p < 0.05), suggesting the
occurrence of lipid oxidation. Moreover, compared with the control group, the PF group
exhibited obviously higher TBARS values during the entire storage period (p < 0.05), which
was mainly due to the absence of phosphates. Bae, Cho, and Jeong indicated that effectively
retarding lipid oxidation was one of the primary functions of phosphates in emulsified meat
products, although phosphates were not classified as antioxidants [51]. Kılıç et al. also reported
that phosphates could potentially delay lipid oxidation in cooked meat products by binding
metal ions that act as catalysts for oxidation [6]. Furthermore, the incorporation of 0.15% PC
alone (T0 group) evidently rendered lower TBARS values than the PF group during the same
storage time (p < 0.05). However, the TBARS values were higher than those of the control group
(p < 0.05), which is mainly due to the increase in pH values by the addition of PC. Kanner and
Doll indicated that increased pH values probably inhibited the release of “free iron” from iron-
carrying proteins [52]. This “free iron” can react with hydrogen peroxide to generate hydroxyl
radicals and ultimately promote the degree of lipid oxidation [53]. However, our results
implied that a lower concentration (0.15%) of PC alone did not completely replace phosphates
to retard lipid oxidation in phosphate-free frankfurters during storage. Additionally, L-Arg in
combination with PC significantly decreased the TBARS values of phosphate-free frankfurters
than those of the T0 group (p < 0.05), regardless of the L-Arg levels or storage days. This
phenomenon was due to the stronger antioxidant activities of L-Arg, which effectively inhibited
lipid oxidation in phosphate-free frankfurters to some extent. Xu, Zheng, Zhu, Li, and Zhou
indicated that the addition of L-Arg efficiently retarded lipid oxidation in emulsion-type
sausages, mainly through its higher radical-scavenging and metal-chelating activities [54].
Zhang, Guo, Peng, and Jamali also indicated that the concentration of basic amino acids (e.g.,
L-Arg, L-Lys, and L-His) and the time of oxidation were crucial factors to determine the
ability to inhibit lipid oxidation in meat products [55]. Overall, our findings suggested that the
combination of L-Arg and PC could serve as an efficient functional ingredient to retard lipid
oxidation in phosphate-free frankfurters.

Table 8. The thiobarbituric acid reactive substances (TBARS) value (mg malonaldehyde/kg sample)
of phosphate-containing frankfurters or phosphate-free frankfurters added with the combination of
L-Arg and PC during 21 days of storage.

Storage Time (Days)

1 d 7 d 14 d 21 d

Control 0.355 ± 0.012 Ec 0.448 ± 0.010 Db 0.463 ± 0.010 Fb 0.493 ± 0.017 Fa

PF 0.445 ± 0.013 Ad 0.588 ± 0.010 Ac 0.623 ± 0.005 Ab 0.733 ± 0.005 Aa

T0 0.425 ± 0.003 Bd 0.517 ± 0.005 Bc 0.597 ± 0.010 Bb 0.623± 0.005 Ca

T1 0.407 ± 0.005 Cc 0.505 ± 0.013 BCb 0.595 ± 0.010 Ba 0.605 ± 0.004 CDa

T2 0.379 ± 0.007 Dd 0.500 ± 0.014 BCc 0.547 ± 0.018 Db 0.593 ± 0.015 DEa

T3 0.386 ± 0.006 Dc 0.497 ± 0.012 BCb 0.503 ± 0.014 Eb 0.577 ± 0.005 Ea

T4 0.383 ± 0.005 Dd 0.493 ± 0.017 Cc 0.575 ± 0.006 Cb 0.623 ± 0.005 Ca

T5 0.387 ± 0.005 Dd 0.458 ± 0.013 Dc 0.590 ± 0.014 BCb 0.660 ± 0.018 Ba

Values are given as means ± SD from triplicate determinations; A–F in each column represent statistically significant
differences (p < 0.05). a–d in each row represent statistically significant differences (p < 0.05). PF group: no added
phosphate. T0 group: 0.15% PC and no added phosphate. T1 group: 0.15% PC + 0.025% L-Arg, and no added
phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added phosphate. T3 group: 0.15% PC + 0.075% L-Arg,
and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and no added phosphate. T5 group: 0.15% PC +
0.125% L-Arg, and no added phosphate.
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3.9. Sensory Evaluation

The sensory attributes of frankfurters with or without phosphates were assessed in
terms of the interior color, homogeneous, juiciness, and flavor. As shown in Table 9, the PF
group exhibited lower sensory scores compared with the control group (p < 0.05), which
indicated that the absence of phosphates resulted in severe quality defects in frankfurters.
Petracci, Bianchi, Mudalal, and Cavani indicated that phosphates were considered vital
functional additives for enhancing the water-holding capacity, cooking yield, and quality
profile of meat products [56]. O’Flynna, Cruz-Romero, Troy, Mullen, and Kerry also
reported that eliminating phosphates obviously inhibited the formation of the meat protein
gel network, which led to a direct decrease in the scores of juiciness, flavor, firmness, and
texture of breakfast sausages [57]. Moreover, compared with the PF group, the incorporation
of 0.15% PC alone (T0 group) had remarkably higher scores of interior color, homogeneous,
and flavor (p < 0.05). However, no significant differences were noted in the scores of
juiciness between the PF and the T0 groups (p > 0.05). On the other hand, the T0 group
also clearly exhibited lower sensory scores than the control group (p < 0.05). Our results
indicated that PC alone did not completely replace phosphates without compromising
the palatability of phosphate-free frankfurters. Furthermore, when L-Arg was added in
combination with PC, except for the homogeneous scores, the scores of interior color,
juiciness, and flavor were initially, gradually enhanced and then decreased with an increase
in the addition levels of L-Arg (p < 0.05), and T4 group had the highest sensory scores among
all the samples of phosphate-free frankfurters (p < 0.05). Meanwhile, the T4 group had
similar score of uniformity with the control group (p > 0.05), which implied that combination
of 0.1% L-Arg and 0.15% PC completely replaced 0.4% phosphates and successfully avoid
some negative effects on the sensory properties of phosphate-free frankfurters to the
maximum extent. Zhou et al. also reported that the incorporation of L-Arg efficiently
masked the sensory defects in non-phosphate sausages [35]. In addition, the differences in
sensory properties induced by different phosphate-replacing strategies are evident in the
representative cross-sectional images of frankfurters from different groups. As shown in
Figure 4, the combination of L-Arg and PC could overcome the quality defects and promote
the sensory scores of phosphate-free frankfurters to some extent. However, the occurrence
of some small voids in the structure of frankfurters seems to be a new quality defect which
should be addressed in the future.

Table 9. Sensory evaluation of phosphate-containing frankfurters or phosphate-free frankfurters
added with the combination of L-Arg and PC.

Interior Color Homogeneous Juiciness Flavor

Control 6.17 ± 0.41 A 5.38 ± 0.38 A 6.00 ± 0.35 A 6.17 ± 0.26 A

PF 2.38 ± 0.48 F 3.08 ± 0.58 E 3.30 ± 0.27 E 2.50 ± 0.50 E

T0 3.25 ± 0.10 E 3.77 ± 0.22 D 3.42 ± 0.11 E 3.20 ± 0.22 D

T1 3.50 ± 0.50 E 4.53 ± 0.25 C 3.50 ± 0.50 E 3.38 ± 0.15 CD

T2 3.90 ± 0.55 D 4.88 ± 0.38 B 4.17 ± 0.26 D 3.83 ± 0.41 C

T3 4.42 ± 0.58 C 5.00 ± 0.32 B 4.58 ± 0.38 C 4.74 ± 0.49 B

T4 5.58 ± 0.49 B 5.43 ± 0.38 A 5.33 ± 0.26 B 5.75 ± 0.42 A

T5 4.50 ± 0.55 C 5.32 ± 0.33 A 4.42 ± 0.49 C 4.67 ± 0.61 B

Values are given as means ± SD from triplicate determinations; A–F in each column represent statistically significant
differences (p < 0.05). PF group: no added phosphate. T0 group: 0.15% PC and no added phosphate. T1 group:
0.15% PC + 0.025% L-Arg, and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added phosphate.
T3 group: 0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg, and no added
phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate.
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Figure 4. Images of phosphate-containing frankfurters or phosphate-free frankfurters added with
the combination of L-Arg and PC. (A) the entire frankfurters. (B) cross section of frankfurters. PF
group: no added phosphate. T0 group: 0.15% PC and no added phosphate. T1 group: 0.15% PC +
0.025% L-Arg, and no added phosphate. T2 group: 0.15% PC + 0.05% L-Arg, and no added phosphate.
T3 group: 0.15% PC + 0.075% L-Arg, and no added phosphate. T4 group: 0.15% PC + 0.1% L-Arg,
and no added phosphate. T5 group: 0.15% PC + 0.125% L-Arg, and no added phosphate.

4. Conclusions

Successfully replacing phosphates without compromising the quality characteristics
of emulsified meat products is challenging. Given its efficient pH-raising ability, PC has
been considered a potential alternative to phosphates for overcoming quality defects in
phosphate-free frankfurters. However, lower levels of PC could not exhibit the optimal
phosphate-replacing effect, whereas higher levels of PC had adverse effects on the quality
profile of the final products. The present finding indicated that compared with PC alone, the
combination of L-Arg and PC could alleviate the quality defects and retard lipid oxidation
in phosphate-free frankfurters more effectively and positively. In particular, 0.1% L-Arg
combined with 0.15% PC was found to exhibit the best phosphate-replacing effect without
increasing the manufacturing cost of phosphate-free frankfurters, except for the relatively
softer textures (lower hardness, resilience, or chewiness) than those in the presence of
phosphates, which was still a technological issue that should be addressed. Therefore, the
phosphate replacement strategy proposed in the present study could be considered a viable
alternative for the production of phosphate-free frankfurters with an improved quality
profile and superior health benefits. Further research will focus on evaluating the formation
of polycyclic aromatic hydrocarbons or biogenic amines and addressing the small voids in
phosphate-free frankfurters when replacing phosphates with a L-Arg and PC.
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