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Abstract: Natural deep eutectic solvent (NADES) is the eutectic mixture which is formed by hydrogen
bond donors (HBDs) and hydrogen bond acceptors (HBAs) with a certain molar ratio through
hydrogen bonding. NADES is a liquid with low cost, easy preparation, biodegradability, sustainability
and environmental friendliness at room temperature. At present, it is widely used in food, medicine
and other areas. First, the composition, preparation and properties of NADES are outlined. Second,
the potential mechanism of NADES in freezing preservation, the removal of heavy metals from food
and the extraction of phenolic compounds, and its application in cryopreservation, food analysis and
food component extraction, and as a food taste enhancer and food film, are summarized. Lastly, the
potential and challenges of its application in the food field are reviewed. This review could provide a
theoretical basis for the wide application of NADES in food processing and production.

Keywords: natural deep eutectic solvent; green solvent; properties; mechanism; application

1. Introduction

The term natural deep eutectic solvent (NADES), originally proposed by Choi et al. [1],
is a new class of mixtures formed by two or more liquids or solids in a certain ratio. The
eutectic point of NADES is significantly lower than that of the individual components due
to the formation of hydrogen bonds between the constituents [2]. In appearance, it appears
as a thick, transparent liquid [3]. NADES is found in some cold-tolerant animal species
such as frogs, insects and worms. It is mainly composed of biological metabolites such
as sugars, amino acids, organic acids and choline derivatives, and usually also contains a
certain mole ratio of water [1]. Structurally, NADES is composed of hydrogen bond donors
(HBDs) and hydrogen bond acceptors (HBAs) through hydrogen bonding with a certain
molar ratio. Therefore, the type of HBDs and HBAs, as well as the position and quantity of
hydrogen bonds, have an effect on the stability of NADES [4].

NADES has the advantages of low production cost [5], simple synthesis [5,6], wide
range of polarities [7] and biodegradability [8], and being sustainable, it can replace tra-
ditional solvents, especially because of its low or no toxicity [7,9]. Another important
feature is that it usually possesses some noteworthy chemical characteristics, including low
vapor pressure, relatively wide liquid range, good thermal stability or non-flammability. In
addition, NADES is non-toxic, high-purity, and free of waste, so it can be directly added
to food formulations as a new type of green solvent, which is its main advantage over
traditional green solvents [10]. At present, studies on NADES are concerned with using
it to extract various compounds, optimizing the extraction procedure and enhancing the
stability of the extracts. There are few review articles on the mechanism of action of NADES
and its application in food.

In this review, the composition, preparation method and characteristics of NADES are
introduced, the potential mechanism of NADES is disclosed, and the research progress of
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NADES application in food is also summarized. This review could provide a theoretical
reference for the widespread application of NADES in the food business.

2. Natural Deep Eutectic Solvents
2.1. Composition

Natural deep eutectic solvent (NADES) is composed of a variety of hydrogen bond
donors (HBDs) and hydrogen bond acceptors (HBAs). Typical HBAs include nontoxic
quaternary ammonium salts (e. g. choline chloride) and amino acids (e. g. alanine, glycine,
proline, histidine, glycine betaine), while HBDs mainly include organic acids (e. g. oxalic
acid, lactic acid, malic acid) and carbohydrates (e. g. maltose, fructose, glucose) (Figure 1).
Alcohols, amines, aldehydes, ketones and carboxyl groups have dual properties, they
can act as either HBA or HBD [5,8]. At present, 135 binary NADESs based on primary
metabolites (PRIM) have been discovered [11], which can further form multi-component
eutectic solvents, for instance, quaternary or ternary NADESs.
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Figure 1. Chemical structures of common HBDs and HBAs.

Other than PRIM, NADES can also be composed of more complicated highly evolu-
tionary metabolites (HEVO) or natural products. There are three ways of formation [11].
The first is where NADES is composed of low melting point components such as menthone,
D-limonene, p-cymene and menthol. The second is a NADES based on HEVO. For instance,
the NADES consists of menthol and organic acids. The third is a NADES which contains
glycoside natural substances. In addition, the other essential element of NADES is water,
and the NADES prepared in most studies contains a specific molar ratio of water.

2.2. Preparation

For preparation, NADES is usually synthesized by six physical methods: heating and
stirring, freeze-drying, evaporation, grinding, and ultrasound-assisted and microwave-
assisted synthesis (Figure 2).
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Figure 2. The preparation of NADES using choline chloride and malic acid by different
methods [6,7,12–15].

2.2.1. Heating and Stirring

Accurately weigh each component and transfer it to an aluminum foil sealed beaker.
Thereafter, the mixture is warmed to a certain temperature (50–100 ◦C) and stirred for
approximately 8–12 h at 100 rpm with a magnetic stirrer equipped with a heating plate,
until a kind of viscous and transparent liquid is formed [6,12].

2.2.2. Freeze-Drying

Weigh each component accurately and add a specific molar ratio of water. Thereafter,
the mixture is freeze-dried at 77 K and 253 K, and the water is sublimated to obtain NADES
in its pure state [13].

2.2.3. Evaporating

Accurately weigh each component and dissolve them in water, and they are subse-
quently placed on the rotary evaporator at 50 ◦C for evaporation. Finally, the solvent is
placed in the desiccator until constant weight [7].

2.2.4. Grinding

The mixture of the components is ground in a mortar and pestled at room temperature
until a homogeneous liquid is formed [14].

2.2.5. Ultrasound-Assisted Synthesis (UAS)

The accurately weighed mixture of each component is homogenized in a vortex
for about 1 min, followed by treatment for 30 min in an ultrasonic bath. The above
homogenization steps are repeated, followed by further treatment using an ultrasonic bath
for 15 min [15]. After synthesis, NADES is stored in a desiccator at room temperature.

2.2.6. Microwave-Assisted Synthesis (MAS)

The precisely weighed mixture of each component is homogenized in a vortex for
around 1 min, followed by treatment for 45 min at 80 ◦C in a microwave reactor operated
at 850 W and 600 rpm [15].
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Among these methods, freeze-drying, evaporation and grinding are easy to operate,
and ultrasonic and microwave-assisted synthesis are fast and efficient, because microwave
radiation will interact with materials and cause dipole rotation, resulting in collisions
between molecules and HBD and HBA components, and finally lead to dielectric heating,
thus shortening the synthesis time [16]. Similarly, the cavitation effect caused by ultrasonic
waves contributes to the interaction between HBD and HBA components [15]. However,
the most common methods for preparing a NADES is heating and stirring, due to the fact
that it is not only inexpensive and easy to operate, but also makes it simpler to regulate
and change the manufacturing conditions during NADES synthesis, which is important
when using thermally unstable components [17]. Santana et al. [15] used organic acid and
xylitol as raw materials to synthesize NADES by three different methods, and compared
their physical and chemical properties, demonstrating that NADESs obtained by different
synthesis methods have similar properties.

2.3. Properties and Impact Factors

NADES has the characteristics of biodegradation, antioxidation, being antibacterial,
low or no toxicity, wide polarity range and high viscosity, which are mainly affected by the
components, water content and temperature (Figure 3).
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Figure 3. Properties and impact factors of NADES.

2.3.1. Properties

The biodegradation of substances is critical for the ecological environment and human
health, and most of the reported NADESs are classified as compounds prone to biodegra-
dation. Radošević et al. [18] investigated the degradation rate of NADESs composed of
choline chloride, and the tests showed that the prepared NADESs were more than 60%
biodegradable, thus they were called biodegradable. However, Wen et al. [19] found that
only two of the eight NADESs tested were biodegradable.

Antioxidant activity improves the stability and shelf life of foods. Mitar et al. [20]
found that organic acid-based NADESs had superior antioxidant activity through oxygen
free radical measurement. However, a NADES which was composed of choline chloride
and polyols showed low antioxidant activity. Therefore, a NADES can be prepared by
using amino acids and organic acids with strong antioxidant properties as HBA and HBD
to improve its antioxidant properties [21].

The antibacterial activity of NADESs can effectively preserve food from microbial con-
tamination. Wen et al. [19] compared the growth status of Escherichia coli in media with and
without NADES, and observed that NADES containing quaternary ammonium salt showed
significant antimicrobial activity at higher concentrations. Similarly, Radošević et al. [18]
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explored how three bacteria including Escherichia coli responded to various NADESs, and
discovered that a NADES which contained organic acids had strong antibacterial action,
but its constituent parts did not show this property. Furthermore, NADES has a stronger
inhibitory effect on Gram-negative bacteria than on Gram-positive bacteria, which is most
likely a result of the components of the NADES interacting through hydrogen bonding
with the polysaccharide or peptide chains of the cell wall, causing cell damage [22].

The toxicity of NADES determines its application in food. Radošević et al. [18]
evaluated the toxicity of NADES for fish, wheat and human cell lines, and their data
showed that three choline chloride-based NADESs had low cytotoxicity, but did not inhibit
wheat seed germination. Paiva et al. [8] tested cell viability after exposure to different
NADESs, and found that NADESs containing tartaric acid inhibited cell metabolic activity.
However, Mitar et al. [20], regarding the toxicity tests of NADES on three human cell lines,
revealed that even at the largest concentration (2000 mg L−1), NADES did not inhibit the
growth of human HEK-293T, HeLa and McF-7 cells.

Furthermore, a key characteristic of NADES is its polarity, which has an impact on
its solubility. The polarity range of NADES is broad, ranging from 44.81 kcal mol−1 to
50.07 kcal mol−1. Among them, NADESs composed of malic acid, choline chloride and
water with a molar ratio of 1:1:2 had the largest polarity, followed by NADESs composed
of fructose, glucose, sucrose and water, while NADESs prepared from sugar and polyols
has the lowest polarity [7].

However, NADES has some limitations. The most obvious issue is the high viscosity,
which can be as high as 720 mm2/s at 40 ◦C [7], and high viscosity can affect the flow
of substances and reduce the extraction efficiency of NADES [23], so it needs to reduce
viscosity to promote its application. The following two methods can be used to lessen
NADES’s viscosity. The first is heating. Because of the increased intermolecular force at
high temperatures and the structural damage brought on by thermal expansion, NADES
viscosity reduces as temperature rises [24]. The second is water dilution, which causes a
significant reduction in NADES viscosity as the hydrogen bonding connection between the
components gradually weakens as the water content rises [6].

2.3.2. Impact Factors
Components

The properties of NADES are primarily determined by its composition. Zhao et al. [22]
measured the biodegradation values of 20 different NADESs. Among them, NADES com-
posed of quaternary ammonium salt and urea had the highest biodegradability (97.1%),
while NADES composed of quaternary ammonium salt and triethylene glycol exhibits
the lowest biodegradability (69.3%). This is because choline chloride is easily biodegrad-
able, reaching 93% degradation in 14 days. Similarly, Radoevi et al. [18] investigated the
biodegradability of NADES with choline chloride as the HBA and discovered that the
highest and lowest biodegradation levels were 96% and 68%, respectively, when the HBD
was glycerol and oxalic acid.

Studies on the antioxidative and antibacterial properties of NADES have shown
that organic acid-based NADESs exhibited better antibacterial activity and antioxidative
properties compared with NADESs of other components [18,20]. The toxicity of NADES
is also affected by their composition, because the decalcified charge in NADES damages
the bacterial cell wall. Jesus et al. [25] found that the NADES made of betaine, glycerol,
sucrose and water had higher toxicity than betaine, glycerol, trehalose and water at the
same proportion (2:1:3:5). Furthermore, many studies have shown that NADES containing
organic acids (e. g. malonic acid and tartaric acid) exhibits higher cytotoxicity in vitro than
sugar-based NADES [7].

The components also affect the polarity and viscosity of NADES. According to the
research data of Craveiro et al. [5], compared to NADESs made from choline chloride and
sugar, those made from organic acids exhibit higher polarity; the higher the proportion of
organic acids, the more polar the NADES is. In terms of the influence on viscosity, according
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to Altamash et al. [26], lactic acid was used to prepare NADES, which had good fluidity
and low viscosity, as opposed to malic acid, which was used to prepare NADES with poor
fluidity and high viscosity. Zannou et al. [27] showed that the viscosity of NADESs ranged
from 0.39 to 2063.67 mPa, among which choline chloride–sugar and organic-sugar NADESs
had the highest viscosity, while choline chloride–organic acid and choline chloride–alcohol
NADESs had the lowest viscosity, which was consistent with the results obtained by
Aroso et al. [28]. In addition, Xin et al. [29] discovered that the greater the percentage
of choline chloride, the more difficult the liquid flow, that is, the higher the viscosity
of NADES.

Water Content

Water content is another important factor affecting NADES characteristics. This is
because the components of NADES form an extensive hydrogen bonding system which
will gradually weaken with water dilution and will disappear when water content exceeds
50%. Water dilution is beneficial for the biodegradation of NADES. Studies have found that
the degradation rate of undiluted NADES is slow, but if enough water is added to NADES
before treatment, the rate of degradation is greatly improved [17]. The presence of water
also increases the polarity of the NADES. Craveiro et al. showed that when water content
increased by 4%, its polarity correspondingly increased by 1.2% [5]. Furthermore, viscosity
decreases with increasing water content. After adding 5% water, NADES’s viscosity reduces
by 1/3, and with 10% water, the viscosity reduces to 1/10 of the original value [7].

Temperature

The temperature mainly affects the viscosity of NADES. When the temperature in-
creases from 313 K to 344 K, the viscosity of NADES consisting of L-isoleucine and tetrabutyl
ammonium chloride is reduced from 1.58 Pa·s to 0.2 Pa·s [23]. Similarly, Dai et al. [7] in-
vestigated the viscosity change of NADES prepared with glucose, choline chloride and
water (2:5:5) in the temperature range of 20 to 60 ◦C. The results showed that the viscosity
decreased to 1/3 of its original value when the temperature increased to twice its origi-
nal value. In addition, Aroso et al. [28] found that the viscosity of NADES consisting of
choline chloride and xylose (1:1) is reduced from 100 Pa·s to 0.5 Pa·s when the temperature
increased from 300 to 360 T.

3. Action Mechanism of Natural Deep Eutectic Solvent
3.1. Potential Mechanism of Natural Deep Eutectic Solvent as a Cryoprotectant

In Figure 4A, A and B are the components of NADES, and TfχC, TfA and TfB represent
the freezing points (FP) of NADES, A and B, respectively, compared with the FP of a single
component, the FP of NADES is strongly inhibited [8,11]. This is due to the fact that NADES
is formed by the combination of HBAs and HBDs through hydrogen bonds. The charge
delocalization effect in the hydrogen bond network system will lead to the FP decrease in
NADES [30]. Numerous hydrogen bonds in the system provide supramolecular network
structure for NADES, which significantly increases the viscosity of NADES [6]. Therefore,
it is difficult to realize the molecular motion and reorientation of free water in the NADES
system, which makes it hard for water to nucleate.

For ice nucleation, the two necessary conditions are the primary ice core and the
subcooled water required for the ice growth process [31]. As the temperature decreases
during freezing, the transverse relaxation time migration of NADES is obvious, demon-
strating that at lower temperatures, the stability of the hydrogen bond network can be
significantly increased, and its viscosity further increases, and water molecules bind more
tightly [32]. A stronger hydrogen bond network can immobilize free water or hinder water
reorientation, thus preventing supercooled water from entering the ice surface and making
NADES accumulate more supercooled water without nucleation [33]. In general, the possi-
ble mechanism of NADES anti-freezing is that NADES inhibits molecular movement such
as water movement in the system by enhancing the strength of hydrogen bond networks at
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low temperature, which makes it difficult for water molecules to nucleate or move to the
ice core, thus inhibiting the nucleation and growth of ice crystals and providing the system
with excellent anti-freezing ability.
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NADES [34,35]; (C) phenolic compounds were extracted by ultrasound-assisted NADES [36].

3.2. Potential Mechanism of Heavy Metal Removal by Natural Deep Eutectic Solvent

Heavy metal removal mechanisms mainly include adsorption, ion exchange and
precipitation. The method of heavy metal removal by NADES is adsorption, primarily
chemisorption. As seen in Figure 4B, heavy metal ions act as HBAs to combine with organic
compounds (HBDs) in food, primarily proteins, by hydrogen bond complexation. When
acidic NADES are added to food contaminated with heavy metals, the introduced H+

will attack the electronic sites in the food and compete with metal ions for electron pairs,
thus releasing them from the surface of the food and combining with NADES anions in
the washing solution. That is, NADES removes heavy metals from food by destroying
hydrogen bonds between metal ions and organic compounds [37].

The removal process is separated into two phases. The first phase is the quick removal
phase, which is mainly controlled by the diffusion of the external surface. At this stage,
the abundance of heavy metal ions on the food surface is relatively high, and NADES
is able to provide numerous active adsorption sites that can be complexed with metal
ions on the cell membrane, resulting in a significant increase in removal rate. The second
phase is the slow removal phase, which is mostly the internal diffusion control stage.
As the adsorption process progresses, NADES gradually enters the interior of the food
for adsorption. However, because the number of active adsorption sites on its surface is
gradually declining, the adsorption rate gradually slows down, and the adsorption process
ends when NADES reaches saturation [34,35].
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3.3. Potential Mechanism of Extracting Phenolic Compounds by Natural Deep Eutectic Solvent

The mechanism of phenolic compound extraction by NADES was revealed using
pulsed ultrasonic-assisted extraction as an example. According to Figure 4C, the cell
structure of the dry specimen is complete. When extraction is performed with ultrasound-
assisted NADES, the intracellular structure is exposed due to the strong penetration and
erosion ability of NADES into the cell wall. The more the intracellular structure is exposed,
the more asymmetric collapsing jets will be generated, so that numerous NADESs will enter
the cell interior. At the same time, intracellular components such as phenolic compounds
flow out. Additionally, ultrasonic propagation mediated by NADES will undergo compres-
sion and rarefied cycles, and cavitation bubbles will be generated when the threshold is
exceeded. The implosion and collapse of cavitation bubbles will affect the properties of the
solvent and improve its extraction effect [36].

The microflow caused by the implosion and the micro-whirling generated by the
nonlinear oscillation of the bubble can effectively mix the suspended particles with the
solvent, break the barrier of the stagnant layer around the particles, and promote the mass
transfer of intracellular components to the bulk solvent. The collapse mainly comes in
two ways. On the one hand, the loosening and destruction of the food matrix will induce
transient high shear force and local turbulence around the bubble, which is conducive to
extraction. On the other hand, asymmetric collapse near the sample particle surface will
also release a high-speed jet to the particle. The associated effects caused by the cavitation
bubble will further damage the cell structure, causing more intracellular components to
flow outward and obtain more target compounds. In addition, the low vapor pressure
characteristic of NADES is conducive to the formation of high-strength cavitation, which
greatly improves the extraction efficiency [38].

4. Applications of Natural Deep Eutectic Solvent

The applications of NADES in food mainly include five aspects: food cryoprotectant,
determination and removal of heavy metals and other contaminants in food, extractant,
food taste enhancers and food films (Table 1).

Table 1. Application of NADES.

Application
Food Matrix NADES References

Types Target Compound

Cryoprotectant Chicken
breast

Proline: Glucose (1:1), Urea:
Glucose: Calcium chloride
(3:6:1)
Proline: Sorbitol (1:1), Proline:
Glucose (5:3),

[32]

Food analysis

Lead and cadmium Edible oils

Choline chloride: Urea (1:2),
Choline chloride: Oxalic acid
(1:2)
Choline chloride: Ethylene
glycol (1:2)

[39]

Cobalt Tea samples Choline chloride: Phenol (1:1,
1:2, 1:3, 1:4) [40]

Pesticide residues Fruit juices and
vegetables

Choline chloride: o-Cresol
(2:1), Choline chloride:
p-Cresol (2:1)
Choline chloride:
4-chlorophenol (2:1)

[41]
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Table 1. Cont.

Application
Food Matrix NADES References

Types Target Compound

Extractant

Phenolic compounds Orange
peel waste

Choline chloride: Ethylene
Glycol (1:2, 1:3, 1:4)
Choline chloride: Glycerol (1:2,
1:3, 1:4)

[42]

Carya cathayensis Choline chloride-Malic acid,
Choline chloride-Lactic acid [36]

Agro-food
Lactic acid: Glucose (5:1),
Citric acid: Glucose (1:1)
Fructose: Citric acid (1:1)

[43]

Sapodilla pulp

Choline chloride: Malic acid
(3:2), Choline chloride:
Glycerol (1:2)
Choline chloride: Lactic acid
(1:1), Choline chloride: Urea
(1:2)

[44]

Grain Choline chloride: Glycerol (1:2) [45]

Anthocyanins Grape pomace

Choline chloride: Citric acid
(2:1), Proline: Malic acid (1:1)
Betaine: Malic acid (1:1),
Betaine: Citric acid (1:1)
Choline chloride: Proline:
Malic acid(1:1:1)

[46]

Myrciariacauliflora

Choline chloride:
Propyleneglycol (1:2), Betaine:
Citric acid (3:1)
Choline chloride: Malic acid
(1:1), Citric acid: Glucose (1:1)
Choline chloride: Citric acid
(1:1)

[47]

Extractant

Anthocyanins Blackberry

Choline chloride: Acetic acid
(1:2), Choline chloride: Urea
(1:2)
Choline chloride: Glucose (1:2),
Choline chloride: Xylitol (1:2)
Choline chloride: Lactic acid
(1:2), Lactic acid: Sorbitol (1:2)
Choline chloride: Citric acid
(1:2), Acetic acid: Sorbitol (1:2)
Choline chloride: Butanediol
(1:2), Malic acid: Xylitol (1:2)
Choline chloride: Glycerol
(1:2), Citric acid: Xylitol (1:2)

[27]

Pectin Myrciaria
cauliflora

Choline chloride: Malic acid
(1:1), Choline chloride: Citric
acid (1:1)
Choline chloride:
Propyleneglycol (1:2), Betaine:
Citric acid (3:1)
Citric acid: Glucose: Water
(1:1:3)

[47]
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Table 1. Cont.

Application
Food Matrix NADES References

Types Target Compound

Soluble
sugars Banana

Glucose: Choline chloride (2:3),
Fructose: Choline chloride (2:3)
Malic acid: Choline chloride
(1:1), Malic acid: Fructose (1:1)
Malic acid: b-alanine (1:1),
Urea: Glucose (1:1)
Malic acid: Glucose (1:1), Urea:
Fructose (1:1)

[48]

β-carotene Pumpkin

Caprylic acid: Capric acid (2:1,
3:1, 4:1), Caprylic acid: Lauric
acid (3:1)
Pelargonic acid: Lauric acid
(3:1), Capric acid: Lauric acid
(2:1)
DL-menthol: Capric acid (2:1),
DL-menthol: Caprylic acid
(1:1)
Pelargonic acid: Capric acid:
Lauric acid (3:1:1)

[49]

Taste enhancer Novel taste
enhancers

Maillard-type
taste

enhancers

Choline chloride: Sucrose:
Water (4:1:4), Glucose: Sucrose:
Water (1:1:9)
Choline chloride: Urea: Water
(1:2:1), Malic acid: Sucrose:
Water (1:1:5)
Betaine: Sucrose: Water (2:1:9),
Betaine: Glycerol: Water (1:2:2)

[50]

Cling film Bioactive compounds Luma chequen
A. Gray berry

Lactic acid: Glycerol (1:1, 1:2,
2:1), Choline chloride: Citric
acid (5:4)
Tartaric acid: Glycerol (1:2, 1:3,
1:4), Choline chloride: Glycerol
(4:6)
Lactic acid: Glucose (8:1),
Glycerol: Glucose (8:1)

[51]

4.1. Cryoprotectant

Adverse reactions such as protein denaturation and lipid oxidation will occur during
the frozen storage of meat products [52–55]. Cryoprotectants prevent protein denaturation
during freezing and prolong the shelf life of meat products. NADES has the character-
istics of changing the thermal behavior of water, inhibiting crystallization and leading
to glass transition of water, so it has high potential as a cryoprotectant [12]. Lactic acid
bacteria (LAB) is the most typical probiotic, which is frequently utilized in all types of
food production. NADES is effective in penetrating LAB cells, inhibiting ice crystal forma-
tion and protein aggregation, and maintaining the activity of two intracellular enzymes.
Therefore, NADES can significantly improve the survival of lactic acid bacteria during
frozen storage [56]. NADES can also be used as antifreeze for food contact interfaces. The
freezing resistance of NADES was reflected by the anti-frosting ability and deicing ability
of NADES-coated steel substrate under extreme conditions. The results show that NADES
has great potential as a green and safe antifreeze in the frozen food industry [32]. Moreover,
Castro et al. [12] also proved that NADES showed excellent low-temperature protection
ability in a non-toxic, economical and green way. It is noteworthy that NADESs used as
cryoprotectants in different studies contained proline, which is probably because proline
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itself is an antifreeze agent with the advantages of safety, non-toxicity, wide source and
low price.

4.2. Food Analysis

NADES has been used for the determination and removal of heavy metals, pesticide
residues and other contaminants in food due to its non-toxic, biodegradable, green and
sustainable characteristics. Cadmium rice is a global food safety issue. The cadmium
removal effect of NADES on cadmium-contaminated rice flour showed that all the prepared
NADESs showed excellent removal ability, with a cadmium removal rate of up to 95.93%,
and that this method had no negative impact on the primary composition and structure
of rice. Furthermore, NADES may be effectively separated from rice flour because it is
highly soluble in water. It is achievable to lower the amount of NADES in rice noodles to an
acceptable level without causing secondary contamination [34]. Yang et al. [35] first studied
the elution effect of NADES on Pb, Cd, Cr, As and Cu in Porphyra haitanensis. Compared
with pure water in the control group, 28 kinds of NADESs significantly increased the
removal rate of heavy metals, and they did not affect the sensory quality of Porphyra
haitanensis. Ochratoxin A (OTA) is a food contaminant, which is great potential threat to
human health. Piemontese et al. [57] used NADES to extract OTA from wheat, breadcrumbs
and biscuits for the first time. According to the findings, the NADES, which was made
of choline chloride and urea, was efficient at extracting and solubilizing OTA, with a
recovery rate of up to 89%. Overall, choline chloride-based NADES is commonly used to
analyze heavy metals and other pollutants in food. This is because choline chloride is easily
biodegradable, reaching 93% degradation in 14 days.

4.3. Extractant

The effectiveness of an extractant is attributed to its solubility properties. The extensive
hydrogen bonding network within NADES allows it to exhibit excellent solubilization
and stabilization ability [58]. In fact, NADES has been reported as an extractant to extract
various compounds from food products (Table 1). Most of the studies used ultrasound-
and microwave-assisted NADES for extraction. On this basis, researchers further explored
the effect of NADES on the stability of the extract. Jelński et al. [59] compared the stabil-
ity of curcumin in extracts obtained with NADES and methanol, and they showed that
NADES could prevent the photodegradation of curcumin during storage. Stability testing
of carthamin showed that it was twice as stable in NADES at 60 ◦C as in water, and five
times more stable in NADES at 40 ◦C than at 60 ◦C. This is due to the molecular interac-
tion between sugary NADES and compounds to protect the extract from degradation by
heat, light and time, thus improving the stability of biological components [60]. Similarly,
Liu et al. [61] studied the curcuminoids’ antioxidant activities and stabilities in different sol-
vents. The results showed that curcuminoids were more stable and had better antioxidant
activity in NADES composed of organic acids and sugars than in organic solvents.

4.4. Taste Enhancer

NADES is used as a green flavor enhancer due to its non-toxicity, low cost and safe
consumption. The Maillard reaction is one of the typical reactions that gives food its unique
flavor. Kranz et al. [50] explored the effect of NADES on the Maillard reaction for the first
time, and studies showed that NADES could indeed improve the formation speed of various
Maillard-derived taste regulators. Among them, the sugar-based NADES showed the best
promotion, with a yield of 489.0 µmol/mmol of flavor enhancer obtained. Moreover, the
effect of NADES on the yield of thiamine-derived taste regulator was studied, and it was
observed that NADES composed of cysteine showed a higher productivity than a pure
water system. In addition, it was found that the production rate of thiamine-derived taste
regulator was higher in alkaline NADES, and increased with increasing NaOH content [62].
Interestingly, the yield of Maillard-derived flavor enhancers by NADES is temperature
dependent, while the rate of thiamine-derived flavor enhancers is pH dependent.
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4.5. Cling Film

NADES is also used in food films, and most studies have focused on the effects
of phenolic compounds obtained from food by-products by NADES, on the mechanical
and functional properties of food films, and individual researchers have explored the
incorporation of NADES into films as a plasticizer. Chitosan is usually used as a cling
film to improve food quality, and its film properties are mainly affected by the plasticizer.
Galvis-Sánchez et al. [63] studied four choline chlorate-based NADESs as plasticizers
for thermoplastic chitosan films, and found that films containing NADES had the best
elasticity, the lowest permeability and higher tensile strength values. The presence of
NADES will also change the water absorption performance of the film. Composite chitosan
films with more NADES have stronger water absorption capacity in high relative humidity
environment and better mechanical properties under low water content [64]. In particular,
synthetic foods coated with NADES contribute to the elimination of waste produced by
traditional outer packaging materials, enhancing the economic value of freshly coated
foods while also providing safety, economy and sustainability [65].

5. Limitations and Challenges

NADES has the advantages of low cost, simple synthesis, low vapor pressure, good
thermal stability and repeatability. It is widely used for food analysis, food films and
extracting different compounds. Although great progress has been made in the application
of NADES in the food field, there are still some limitations and challenges. Due to the low
toxicity of some NADESs, the application of NADES as a solvent is still in laboratory scale,
which limits its wide application in food processing. Moreover, NADES usually has a high
viscosity, which affects the extraction efficiency. Although ultrasound-assisted NADES
extraction is highly efficient, it is limited to small-scale extraction. Coupled with the fact
that NADES is non-volatile, the technology to extract bioactive compounds from food by
NADES is still limited. In addition, it has been explored how various synthesis approaches
affect the properties of NADES. However, the purity of NADES prepared using various
methods remains to be solved.

6. Conclusions

NADES is mainly composed of natural biological metabolites such as sugars, amino
acids, organic acids and choline derivatives, and can be synthesized by six physical meth-
ods. It has excellent properties such as biodegradability, antioxidant activity, antibacterial
activity, low or non-toxicity and wide polarity range, which are mainly influenced by com-
position, water content, and temperature. In addition, this review describes the mechanism
of action of NADES in the three aspects of cryoprotection, removal of heavy metals from
food and extraction of phenolic compounds. Based on this, the applications of NADES in
food cryopreservation, food analysis and extraction of active compounds, and as flavor
enhancers and food films, are summarized. Overall, as a novel green solvent, NADES
shows great potential for application in various aspects of food.

7. Future Prospect

In order to promote a broader and more comprehensive application of NADES, this
review gives an overview of the latest directions of NADES applications, which include
the following four main areas. (i) NADES provides a green alternative to conventional
organic solvents. Compared with organic solvents, NADES not only has a high extraction
efficiency, but it can also increase an extract’s stability. Green bioactive ingredients can
be extracted by NADES and applied to cosmetics, laying the foundation for the green
transformation of the cosmetics industry. (ii) Amino-acid-based NADES is safe, non-toxic,
widely sourced, low-cost and nutritious, and can be used as a new nutritional ingredient
in the food market or as a nutritional additive in the pharmaceutical field. (iii) Because
NADES’s characteristics can be adjusted, it provides the possibility to prepare solvents with
specific properties and opens up the prospect of creating specialized solvents. (iv) NADES
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has antifreeze and antibacterial properties, indicating the great potential of NADES as a
novel antifreeze agent in food. Moreover, this property of NADES provides a possibility
for the development of biomimetic antifreeze materials and opens a new path for novel
interfacial antifreeze agents.
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