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Abstract: Macroalgae, as one of the important photosynthetic organisms in the marine environment
are widely used in various fields, particularly in the production of food and pharmaceuticals. Given
their wide distribution, easy accessibility and high efficiency in fixing carbon dioxide through the
carbon concentrating mechanism, they can produce abundant nutriments or metabolites. Moreover,
macroalgae can assimilate nitrogen and phosphorus bases on the purification of wastewater, and thus
further accumulate high levels of bioactive substances. This review mainly introduces the distribution
characteristics of macroalgae and their unique bioactive applications in food, medicine and envi-
ronmental remediation. Their functional ingredients and bioactive substances are beneficial in food
production and/or medicine development. Resource utilization of macroalgae coupled with wastew-
ater and waste gas treatment would provide a sustainable path for bioactive substances production.

Keywords: macroalgae; bioactive substances; food applications; wastewater and waste gas treatment;
resource utilization

1. Introduction

In recent years, research on sustainable bioenergy and bio-based high-value products
is gaining increasing attention as the global population increases. Macroalgae are one of
the most ubiquitous photosynthetic organisms worldwide and they can grow and survive
under extreme conditions [1]. In general, algae are divided into microalgae and macroalgae
according to their cell sizes [2]. Macroalgae have more than 1200 species and are commonly
found in freshwater and marine environments. Moreover, they are essential primary
producers that maintain marine ecosystems, providing more than 40% of O2 worldwide [3].

In detail, macroalgae are multicellular eukaryotic autotrophs on intertidal or subtidal
rocky reefs with pseudo roots and viable solid growth. Their structure is complex and
diverse in form and colour. Some species of macroalgae can be more than 60 m long and are
the largest in shape. In general, macroalgae can be classified into three phyla based on the
colour of the foliage: red algae, green algae and brown algae. Green algae produce orange-
yellow pigments and contain carotene, lutein, chlorophyll a and chlorophyll b. Meanwhile,
red algae (most common in hot oceans) have chlorophylls a and d and carotenoids. The
staining of red algae is caused by the presence of phycoerythrin (pigment) in the cells.
Brown algae contain the pigments lithophane, chlorophylls a and c, and carotenoids, it
also contains oils and polysaccharides as the storage substances [4,5]. Macroalgae have the
potential to accumulate bioactive compounds, which provide an extensive source for the
applications of food and pharmaceuticals.

Macroalgae can be used as biological indicators of water quality, and they can greatly
contribute to the global carbon, water and nutrient cycling, thereby reducing the greenhouse
effect. Previous studies have shown that macroalgae treat pollutants from wastewater can
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sequester 10 times more carbon than other terrestrial plants [6–8]. Moreover, macroalgae
have a high value in food production that directly affects the yield and quality of some
aquatic economic animals and an important link in the biological food chain of water bodies.
Some macroalgae such as Ulva spp. and Artemia japonica are rich in trace elements such as
N, I, and K that can be used to feed animals and are widely processed into aquatic bio-bait.
Notably, macroalgae have special properties such as antioxidant, antibacterial, antiviral
and antifungal because they are rich in a variety of bioactive compounds. These bioactive
compounds include some primary and secondary metabolites such as phytochromes
(lutein and carotenoids), DHA, phenolic compounds, tannins, peptides, lipids, enzymes
and vitamins, terpenoids and so on. Dietary fibre supplementation from macroalgae aids
the maintenance and growth of beneficial intestinal flora and potential in reducing the risk
of colorectal cancer. It was reported that regularly consuming some macroalgae can reduce
the incidence of breast cancer [9]. Extracting industrial algal gums or compounds with
antiviral, antibacterial or antitumour activities can be utilised as nutritional supplements
and are applicable to humans or animals [2].

This review mainly provides an overview of the distribution characteristics of macroal-
gae and their bioactive substances application in food, pharmaceuticals and environmental
protection (Figure 1) [10,11]. However, wastewater treatment with macroalgae and their
utilisation in food and medicine is unpredictable and anticipated. Additionally, this review
further prospected the wastewater and waste gas treatment and utilization for macroal-
gae, which aims to provide a useful and informative basis for macroalgae production and
resource utilization.
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2. The Distribution Characteristics of Macroalgae

The seasonal change in seawater temperature is an important environmental factor
for the change in macroalgae distribution. There is an evident seasonal alternation of
macroalgae and there are differences in the number of species and biomass of macroalgae
in varying seasons [12]. In general, springtime is when macroalgae vigorously grow and
there are also various species of algae, and they can accumulate the most nutrients during
this time.

In general, the distribution areas of macroalgae includes horizontal, vertical and spatial
and temporal regional differences. Horizontal distribution refers to the distribution along
latitude, that is, zonal distribution; meanwhile, vertical distribution is the distribution
along the tidal zone. Different environmental factors in different seasons influence the
change in benthic macroalgal habitat, thus making the benthic macroalgal community
change in species composition and structure [13]. Macroalgal communities have a key role
in maintaining the stability of coastal ecosystems. The different geographical distributions
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of macroalgae create unique environments that provide necessary sites for epiphytic and
symbiotic macroalgae and habitats for small marine animals (Figure 2).
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2.1. Distribution of Macroalgae in Intertidal Areas

The intertidal zone refers to the intersection of terrestrial and marine ecosystems and is
one of the most sensitive ecosystems in the biosphere [14]. Intertidal organisms are affected
by tides and waves and show zonal distributions from high to low tide zones. Macroalgae
are among the major communities that live in rocky reefs or gravel intertidal ecosystems.
Macroalgae and their community structure is closely related to intertidal ecological factors
such as substrate type, temperature, light, salinity, etc., and also directly related to human
activities [15].

A clear vertical distribution of macroalgal populations in the intertidal zone with
green algae gradually decreases from high tide to low tide, brown algae showing a zonal
distribution in the middle tide zone, and red algae gradually increasing from high tide
to low tide. The number of macroalgae species tend to increase from the high intertidal
zone to the low intertidal zone. The high intertidal zone is subject to rapid changes in
diurnal temperature and light and is mostly distributed with species of the green algae
phylum. These species can tolerate strong light exposure and wet and dry changes in
high and low tides twice daily. Brown algae are mainly dominant in the middle tide zone,
supplemented by green algae with more species in spring, whilst most of these algae
disappear in autumn. Meanwhile, red algae are mainly dominant in the lower part of
the mid-tide and the low-tide zone. Coralline algae, Sargassum and Grateloupia filicina are
the most common macroalgae, especially in areas near the low tide line where waves are
crashing [16–18].

2.2. Distribution of Macroalgae in Mangrove Areas

Mangroves are a group of trees that grow in tropical and subtropical intertidal zones.
They help purify seawater and maintain biodiversity. Mangrove areas are above the
mid-tidal zone of the intertidal zone, and most of them are vast flat mudflats. Therefore,
the algae growing in mangrove areas do not have evident characteristics of the vertical
distribution of high, middle and low tidal zones.

Macroalgae distributions in mangrove areas are affected by changes in subsurface
height, the distribution of higher plants and other growth environments. The clear vertical
distribution of macroalgae on the mangrove plant body is an important difference between



Foods 2022, 11, 3455 4 of 16

the distribution of them in mangrove areas and open intertidal areas. There is a clear
difference in the ecological distribution of macroalgae in mangrove areas from that in
open intertidal areas. Considering the shading effects of mangrove plants, the algae
distributed under them are less exposed to light conditions and they are distributed less in
quantity. According to the distribution characteristics, red algae prefer shaded and humid
environments whilst green algae are suitable for better light conditions.

3. Nutritional Value of Macroalgae

Many macroalgae have high nutritional value, such as rich in vitamins, minerals and
dietary fibre, and they can be taken as a low-calorie food. However, the extraction methods
and/or processes of these bioactive substances from different species of macroalgae are
different (Table 1). Some functions of macroalgae in food applications are popular in
various Southeast Asian countries. Currently, the nutritional value of the polysaccharides
and proteins of macroalgae is widely used in the food industry. It is applied as gels and
thickeners and nutritional additives that can be used as animal feed.

Protein is an essential part of a healthy diet and the material basis of life. Protein is
the basic organic substance that constitutes cells and is the essential nutrient for humans.
Common food sources of high protein include animal protein, vegetable protein and soy
products. Given the limited availability and high cost of animal protein sources, researchers
are gradually focusing on plant protein as an alternative. They investigated polymerised
essential amino acids, energy and minerals to form certain nutritional factors, thereby utilis-
ing plant proteins to improve the nutritional quality of products or as functional ingredients
in plant chelated proteins (e.g., the use of soy and whey chelated proteins) [19,20].

Algae are rich in vitamins, minerals and proteins and have a high yield at a low cost.
Considering that macroalgae have a high content of essential amino acids and unsaturated
fatty acids, their proteins and lipids are more suitable to consume and have corresponding
nutrition than other plant sources. Red algae have a large amount of protein, particularly
the Kappaphycus alvarezii [21]. The protein concentrate (PC) of the macroalgae K. alvarezii
was 62.3 ± 1.62%, thereby making the PC of K. alvarezii suitable for consumption as a
cost-effective source of protein [21].

Table 1. Extraction and production of bioactive substances from macroalgae.

Macroalgae Photosynthetic
Pigments

Photosynthetic
Rate Algae Process Process Conditions Generated

Products References

Rhodophyta Phycoerythrin
20–1808.7

(µmol CO2/h)
g/dry

Gracilaria
corticata SLE Water, 12 h, 4 ◦C; UMFb, 200 kDa

cut-off poly sulphone membrane

Pigments (R-PE
and R-PC)

Mineral-rich water
[22]

Gracilaria
gracilis Fast pyrolysis

400, 500 and 600 ◦C, heating rate
50 ◦C, atmospheric pressure, inert

atmosphere
Liquid [23]

Kappa-phycus
alvarezii

Thermal acid
hydrolysis

30–110 mM H2SO4, 30–120 min,
121 ◦C, pH 5.0 with NaOH Agar [24]

Gracilaria
vermiculophylla

Water
Extraction

Pre-treatment (5% NaOH, 80 ◦C, 2 h);
neutralization (1.5% H2SO4, 2 h);

water extraction at boiling
tempera-ture (90 min), 50 g/L

Agar [25]

Chlorophyta

Chlorophyll a,
b, carotene

and
Xanthophyll

30 to 1786
(µmol CO2/h)

g/dry

Ulva fasciata SLE Water, 500 g/L, grinding
MRLE

(mineral-rich liquid
extract)

[26]

Ulva lactuca SLE
500 g/L, Water, crushing (biomass

mechanically disintegrated into tiny
particles) and filtration

Sap [27]

Ulva lactuca Lipids
extraction

Lyophilization, cell destruction with a
high-pressure homogenizer,

sequen-tial solvent extraction (3 times)
with Folch solution

Lipids [28]

Ulva lactuca SLE 0.25 M NaOH (optimized alkali
con-centration), 50 g/L, 60 ◦C, 1 h Proteins [29]
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Table 1. Cont.

Macroalgae Photosynthetic
Pigments

Photosynthetic
Rate Algae Process Process Conditions Generated

Products References

Phaeophyt Fucoxanthin
100–500

(µmol CO2/h)
g/dry

Laminaria
digitata MAE

0.1 M HCl, microwave irradiation,
15 min, 90 ◦C; Alginate removal by 2%

CaCl2; Fucoidan precipitation
by ethanol

Fucoidan [30]

Laminaria
digitata

Enzymatic
hydrolysis Enzymatic hydrolysis Bioethanol [31]

Sargassum
muticum

Ethanolic
extraction and

SC-CO2

Pilot plant extractor, 1 h, 50 ◦C, 10 and
35 MPa, 25 g CO2 min−1 Fucoxanthin [32]

Saccharina
japonica SLE 0.5–4.0 wt% sodium carbonate,

100 g/L, 40–80 ◦C, 60–120 min Alginate [33]

Note: SLE: solid–liquid extraction, MAE: microwave-assisted extraction.

3.1. Food Additives
3.1.1. Flavor Supplements

Thermally processed flavourings have been widely used in various products such as
soups, sauces, snacks and ready-to-eat foods. Meat flavour supplements have been studied
and produced by processing animal proteins, mainly in the production of soybeans, wheat
and other plant sources [34]. However, seafood flavour supplements produced from marine
organisms such as fish, shrimp, and crab are having difficulty maintaining high production
quality because of the high sensitivity of aquaculture organisms to lipid oxidation and
the costly abnormal fat removal. Therefore, it is important to employ raw materials with
high flavour and low cost to produce seafood flavour supplements. Moreover, macroalgae
are abundant in various nutrients and have the potential to produce seafood flavour
supplements because of their fresh flavour that has been used in soups and other kinds
of foods.

Macroalgae contain taste-active amino acids such as aspartic acid, glutamic acid, argi-
nine and lysine, which can be used to produce seafood flavour supplements [35]. Their
protein can form the corresponding protein hydrolysate (PH) under the hydrolysis of
bromelain. PH is the precursor of the heat-processed seafood flavour. Its special flavour
substance after heat-processing can be used in the production of seafood flavour supple-
ments. Laohakunjit [35] investigated the preparation of enzymatic bromelain seaweed
protein hydrolysate (eb-SWPH) from Gracilaria sp. by using the response surface and the
optimal hydrolysis conditions of pineapple protease for 3 h were 10%. With this method,
the yield and degree of hydrolysis were 38.15% and 62.91%, respectively. In addition, the
optimal hydrolysate contains three free amino acids, arginine, lysine and leucine. It is con-
firmed that the seafood essence has the flavour of grilled seafood after thermal processing
by eb-SWPH.

3.1.2. Quality Improver

The metabolites of macroalgae have been widely used in the food industry. Alginate
is a high molecular weight structured polysaccharide obtained from macroalgae which
forms viscous solutions when dissolved in water, therefore it is commonly used as a food
quality enhancer during food processing. Algins mainly include agar and carrageenan from
the red algae family and sodium alginate from brown algae, all of which have different
commercial significance.

The agar is mainly extracted from the Gelidium amansii and Gracilaria sp. The agar
consists of strong gel agarose and non-gel agarose lectins. Agarose consists of agarose
units, that is the D-galactose moiety is bound to the β-1,4-glycosidic bond of 3,6-anhydro-L-
galactose [36]. The greatest advantage of agar gels is their thermal reversibility. Depending
on the species, agar gel melts at 85 ◦C or higher; however, it becomes a colourless and
odourless gel after cooling [25]. Agar is mainly used as a thickening agent, emulsifier and
gelling agent in the food industry, such as fruit jellies and canned meat. Given that agar
does not melt in the oven, it is also used for filling and glazing pastries before baking [37].
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Macroalgae carrageenan is an ionic polysaccharide that consists of galactose and
sulfate distributed in polymer chains [38]. Carrageenan is the most commonly used algae
gum in food processing and is a stabiliser and emulsifier in dessert mousse, salad dressings,
ice cream and other various types of foods [39]. Adding carrageenan would affect the colour
and texture of the bread during baking thereby giving it a special flavour. Carrageenan
is also used in dairy products because of its unique ability to bind milk proteins. In
addition, carrageenan keeps milk solids in suspension even at very low concentrations,
thus stabilizing the dairy product [40]. Moreover, this prevents the separation of whey
in cheese products and contributes to the formation of crystals in milk ice cream, thereby
giving a smoother texture. Therefore, carrageenan is usually used in the production of
cheese, cocoa and chocolate dairy products. Another area of application for carrageenan is
the meat industry, where it is used in the production of ham, burgers, seafood and poultry
products because of its water retention properties [41].

3.1.3. Preservatives and Nutritional Supplements

Sodium alginate is often extracted from Saccharina japonica and Thallus laminariae.
Similar to other algins, sodium alginate forms viscous solutions and gels when dissolved
in water [42]. Sodium alginate can quickly absorb water and can chelate metal ions, and
it is a part of the cell wall and intercellular matrix of all brown algae. Sodium alginate
provides the elasticity and mechanical strength in macroalgae needed to survive in the
ocean. Sodium alginate is widely used in the production of gels or as a viscosity modifier
in the food industry to improve the appearance of bakery products and ensure the smooth
texture of frozen foods. It is even dehydrated to enhance the appearance of dairy products
and canned foods and water retention [43]. In addition, sodium alginate is often used as a
stabiliser for beer foam [41].

Synthetic preservatives are the most common preservatives used in the food industry,
but they may have harmful effects on the human body, thereby causing certain neurological
disorders or immune abnormalities (e.g., ADHD, allergies, etc.). In addition, given the
increasing focus on the naturalness of food products, the search for certain preservatives of
natural biological origin has become a priority in the food industry. Macroalgae extract is
a safe and environmentally friendly natural antioxidant that exhibits good antibacterial
and anti-biofilm properties. Macroalgae extract has no side effects because it is rich in
phenols, alkaloids and terpenoids such as butylated hydroxytoluene (BHT) and butylated
hydroxyanisole (BHA) [44]. Studies have confirmed that adding antioxidants obtained
from macroalgae can inhibit or delay lipid oxidation thus extending the shelf life of foods.
Fucoidan and fucoidan polysaccharides extracted from brown algae such as Sargassum
natto have been repeatedly used to develop biodegradable films [45–47].

Macroalgae have a high nutritional value and are used as dietary supplements because
of their active compounds that have antioxidant and anti-radiation properties. Reactive
oxygen species (ROS) play an important role in various biochemical processes, such as
vasodilation, neurotransmission, oxidative signaling and other activities. When the body is
stimulated by large amounts of external radiation, the mitogen-activated protein kinase
(MAPK) pathway is activated and induces the production of specific proteins, including
nuclear factor-kappa B (NF-kB), c-Fos/c-Jun AP-1 complex, lipid raft protein caveolin-1
and other pro-inflammatory factors, which lead to cell damage. It has been shown that
the active substances from macroalgae can act as potential blockers in the ROS metabolic
pathway to reduce cellular damage and thus have the antioxidant effect after digestion or
absorption (Figure 3) [48]. The inclusion of some macroalgae is beneficial to the human
body and can also bring greater commercial value whether in people’s daily diet or in the
food processing industry.
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3.2. Animal Feeds

Animal feeds are mainly produced from a mixture of various insects, fish and shrimp,
eggs, meat and fishmeal in different proportions. Macroalgae as the sources of bioac-
tive compounds in feed are considered as promising alternatives to conventional feed
resources [47]. Macroalgae is a rich source of carbohydrates, protein, minerals, vitamins
and dietary fibre in animal feed. Macroalgae has a relatively balanced amino acid structure
and unique biologically active compounds, which can provide for the various nutritional
needs of animals (Table 2) [49].

Adding macroalgae into poultry diets aims to increase the efficacy of feed absorption
and can improve the quality of meat and eggs, whilst maintaining or improving poultry
health. Green alga is often used as feed for broilers in food processing. Adding 3.0% of Ulva
lactuca to broiler diets from the 12 to 33 days after egg hatching could improve breast muscle
production and slaughter rate [50]. Brown algae by-products are often used as dietary
supplements for broilers. Adding 0.5% of brown algae by-products to broiler diets can
increase body weight, improve serum levels, immune responses and reduce mortality [51].
In addition, adding red macroalgae such as Chondrus crispus (1%) and Gaudichadii (2%) to
poultry diets can also improve the egg quality. Meanwhile, adding kappa algae (1.5%) to
broiler diets significantly reduced egg-laying age in laying hens and improved egg quality
traits (e.g., egg production, egg weight and shell thickness) [52].

Moreover, macroalgae not only play a nutritional role in aquafeeds, but they also con-
tribute to the overall health of the fish. It was reported that supplementing of Ascophyllum
nodosum, Porphyra yezoensis or Ulva pertusa (5%) to red snapper (Pagrus major) diet in-
creased body weight, feed utilisation and muscle protein deposition when compared to
the normal diet [53]. Meanwhile, adding macroalgae (U. lithospermum, P. yezoensis and
U. pertusa) to the diet can improve the immune and antioxidant response of European sea
bass (Dicentrarchus labrax) without affecting growth performance [54].
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Table 2. Application of macroalgae in animal feeds and its effect on product quality.

Livestock Seaweed Species Extract Add the Amount Main Biological Effects
in the Animals References

Barramundi
(Lates calcarifer) Gracilaria pualvinata Dry 3%, 6%, and 9%

Increased levels of seaweed
supplementation were negatively

correlated with the serum triglycerides
and cholesterol in the animals.

[55]

Buck and doe
rabbits Ulva lactuca Fresh or dry 1% and 2%

Seaweed supplementation improved the
reproductive

performance of rabbits by improving the
semen fertility

characteristics of bucks.

[56]

Female pigs Seaweed extract
(No species mentioned) Fresh or dry

180 mg laminarin and
340 mg fucoidan per

kilogram feed

Seaweed extracts reduced the gene
expression of pro-inflammatory cytokines
in the colon of supplemented pigs after an

experimental infection with Salmonella
Typhimurium compared to animals

receiving a basal diet.

[57]

Lohmann Lite
hens

Chondrus
crispus and

Sarcodiotheca
gaudichaudii

Fresh or dry 2% and 4%

The incorporation of seaweed in the diet of
hens reduced the negative effects on body
weight and egg production of a challenge
with Salmonella enteritidis compared to

birds receiving a basal diet.

[58]

Nile tilapia
(Oreochiromisniloticx)

Ulva sp. (mixture of
Ulva rigida 5% and 10%

and ulva lactaca)
Fresh or dry 5% and 10%

Seaweed meal increased total carotenoid
contents in the skin and enhanced immune
responses in supplemented fish. Seaweed
supplementation showed no effects on the
growth performance or the organoleptic

properties of the flesh with respect to fish
receiving a basal diet.

[59]

Red tilapia
(Oreochronis

miloticus)

Fermented
Enteromorpha prolifera Dry 1%, 2%, 3%, 4% and 5%

Fermented seaweed had positive effects on
the growth performance, the activity of the

digestive enzymes and the
immunity of the fish from the

supplemented group with respect to
control. The recommended optimum level
of inclusion of this algal product in the diet

of fish ranged between 3.7% and 4.19%.

[60]

4. The potential Medicinal Applications of Macroalgae

Different from terrestrial plants, macroalgae are abundant in active components such
as polyphenols, polysaccharides, and amino acids, which are beneficial for the treatment of
tumours, inflammation and cardiovascular diseases (Table 3). Therefore, the application of
algae extracts in medicine is increasingly extensive and promising.

Table 3. Polysaccharides, polyphenols, peptides from macroalgae and their active applications.

Macroalgae Polysaccharides Polyphenols Peptides Biological Activity Applications References

Chlorophyta Ulvan Alkaloids NbrbcS1-1,
NbrbcS1-2

Anti-tumour, anti-oxidant
anti-thrombolytic immunal

modulation, anti-influenza, and
anti-coagulant

Tissue engineering [61–63]

Rhodophyta

Carrageenan Terpenoids

FQIN [M(O)] CILR,
TGAPCR

Anti-coagulant, plateletaggregation
inhibition, anti-viral,
anti-tumuor activity

Anti-oxidant,
drug delivery [61,63,64]

Porphyran Phenolic
compounds

Degraded and untreated porphyran
possesses scavenging-free radical

activity and functions as a
reducing power

Cytotoxic,
drug delivery [61,63,65,66]

Agar Rutin Extracted for gelling and stabilising
capabilities, anti-inflammatory

Anti-oxidant,
drug delivery [62,63]
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Table 3. Cont.

Macroalgae Polysaccharides Polyphenols Peptides Biological Activity Applications References

Phaeophyceae

Alginate Catechol

Aβ peptides

Commercial alginate salts have
immunal modulation properties

Drug delivery,
anti-fungal,
anti-tumour

[61–63]

Laminarin Hesperidin
Anti-tumour, anti-inflammatory,

immune-stimulatory, anti-coagulant
and anti-oxidant activity

[63,67]

Fucoidan Fucoxanthins

Anti-viral, anti-tumor,
immune-stimulatory, anti-oxidant,

anti-inflammatory, anti-coagulantand,
anti-thrombotic activity.

Ability to reduce cholesterol,
triglyceride and LDL-C,

andincrease HDL-C.
Gastric protection (e.g., antiulcer,

anti-adhesion for Helicobacter pyroli),
protection against urinary tract, kidney

and liver diseases.

[63,67,68]

4.1. Polyphenols

Phenols are the main secondary metabolites of plants and are rich in various biological
activities such as antioxidant, antitumour and immunomodulatory. Phloroglucinol is the
polyphenol in most macroalgae, it has higher antioxidant and anticancer potential than the
phenolic compounds of land plants (gallic acid and ellagic acid) [69].

It was reported that polyphenols from macroalgae (Ecklonia cava) protect cells from
radiation-induced damage and oxidative stress. Three types of antioxidant-acting polyphe-
nolic compounds, including mulberry pigment, catechol and epicatechin, isolated from Ulva
lactuca Linn have strong scavenging activity of ABTs radicals, hydroxyl radicals and DPPH
radicals [70]. Adding a large quantity of bromophenolic compounds from Polysiphonia
urceolata, which has excellent antioxidant activity and inhibits α-glucosidase activity, can
effectively reduce blood glucose in mice suffering from diabetes [71,72]. The free radical
scavenging activity of polyphenolic fractions with molecular mass greater than 30 kD
extracted from Hizikia fusifarme was higher than that of gallic acid, Vc and VE [73]. In
addition, in vitro experiments with H. fusifarme polyphenols showed that the polyphenolic
fractions were resistant to four types of tumour cells including HepG2, RAW264.7, HT29
and A-549 [74–76]. TDB isolated from the methanolic extract of S. latiuscula (Harv) Yamada
also showed some antiviral effects against herpes simplex virus type 1 (HSV-1) [77].

4.2. Polysaccharides

In general, some polysaccharides synthesised by macroalgae can be used as algal cell
components and energy storage substances for self-protection when subjected to external
stimuli. Macroalgae polysaccharide residues mostly contain sulfate groups. The residues
contain antioxidant and antiviral activities and are mostly related to the molecular size,
structure, and the connection.

Polysaccharides extracted from green algae have anti-peroxidation and anti-
hyperlipidaemia effects. It can effectively inhibit tissue abnormalities induced by D-
galactosamine in mice [78]. The polysaccharide of Codium fragile can effectively inhibit the
growth of human lung adenocarcinoma A549 cells [79]. Chaetomorpha aerea water-soluble
galactan sulfate extract that consists of 18% arabinose, 24% glucose and 58% galactose
show antibacterial activity against three Gram-positive bacteria including Staphylococcus
aureus and its minimum inhibitory concentration is 40 mg/mL [80]. The polysaccharide of
Gloipeltis furcata extracted from red algae has anti-tumour and mouse liver protection effects
on tumour-bearing mice. Hence, when the physiological activity was improved, the tumour
inhibition rate in the administration group reached 35.64% [81]. Dedhia isolated and puri-
fied three water-soluble sulfated polysaccharide fractions from G. livida (GLP-1, GLP-2 and
GLP-3), and all with anticoagulant and antioxidant activities [82]. The purified G. turuturu
polysaccharide fraction showed a minimum IC50 of 3.91 µg/mL against HSV-1 [83]. It
was confirmed that polysaccharides from Undaria pinnatifida significantly inhibited the
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growth of human hepatocellular carcinoma cells HepG-2 with a tumour inhibition rate of
57.20% [84]. Wen studied the anti-inflammatory activity of polysaccharides from S. horneri
and the results showed that polysaccharides from S. horneri can activate macrophages and
produce strong anti-inflammatory effects [85].

4.3. Peptides and Other Substances

Functional peptides synthesised by macroalgae are stored in cells or extracellularly
secreted and they exhibit biological activities such as antiviral, antibacterial and antioxidant.
The peptide isolated and purified from Ulva borealis has anti-tobacco mosaic virus (TMV)
activity. It was showed that the thermal stability is high when the molecular weight of
the peptide is 23 kDa [86]. Ishige okamurae extracts could achieve anticancer effects by
inhibiting the MMPs in HT1080 fibrosarcoma cells and its methanolic isolate fraction may
be a potential inhibitor for MMPs [87].

In addition, the fatty acids, pigments and other active substances contained in macroal-
gae have higher commercial and beneficial value in the field of biomedicine. Macroalgae
can synthesise and accumulate various long-chain polyunsaturated fatty acids, and the
composition of C. algae has hypolipidemic activity. Their contents vary seasonally with a rel-
ative increase during summer and winter [88]. The free fatty acid composition of Gloiopeltis
furcata also showed moderate antibacterial activity against Mutans streptococci, with MIC
values ranging from 25 µg/mL to 50 µg/mL. Moreover, the monomeric compounds such as
palmitic acid, cholesterol and phytol that was isolated and purified from H. fusifarme have
antioxidant activities, with IC50 values ranging from 11.8 µg/mL to 135.2 µg/mL [89].

Macroalgae use their pigments to absorb light in the spectrum, such as fucoxanthin, as-
taxanthin, phycobiliprotein, etc. Fucoxanthin and Astaxanthin are two kinds of carotenoids
with strong free radical scavenging activities and anti-inflammatory properties, and have
significant effects to anti-cancer, anti-tumour and fat reduction [90]. Astaxanthin reduces
plasma triglyceride and total cholesterol levels thereby limiting the increase in body weight
and adipose tissue weight [91]. Aoi et al. found that adding astaxanthin (0.02% w·w−1

per 100 g) to an exercise mice model would increase their immunity by 14.5% [92]. Phy-
cobiliproteins are a class of pigment proteins composed of phycobilin pigments, most
phycobiliproteins for commercial production are from cyanobacteria (e.g., Arthrospira) and
red algae (e.g., Porphyridium) [93]. The phycobiliprotein extracted from algae increases the
activity of antioxidant enzymes in the human body to inhibit the production of ROS [94].
These data indicate that the active substances in macroalgae can be used as active in-
gredients in medicines or cosmetic/cosmeceutical formulations, such as in sunscreen or
anti-aging creams.

5. Treatment of Wastewater and Waste Gas with Macroalgae and Their Potential Applications

With the development in the aquaculture, environmental concerns brought about
by the discharge of aquaculture wastewater have become serious. Nitrogen, phosphorus,
heavy metals and antibiotics contained in aquaculture wastewater can seriously pollute
the aquatic environment. Macroalgae produce high nutritional value whilst fixing carbon
dioxide, nitrogen, phosphorus and other nutrients through photosynthesis, thus, achieving
‘recycling’ and ‘resource utilisation’ of related nutrients in air and wastewater.

5.1. Wastewater Treatment with Macroalgae

Nitrogen and phosphorus are important elements that affect algal growth. Macroalgae
use nitrogen in the form of inorganic nitrogen (NH4

+-N) and some organic nitrogen (urea,
amides and amino acids), and phosphorus in the form of PO4

3−. In detail, algae mainly
go through three pathways: oxidative phosphorylation, photosynthetic phosphorylation
and substrate-level phosphorylation, and convert them into ATP and phospholipids. Algae
use carbon dioxide, nitrogen and phosphorus as the main raw materials to carry out
photosynthetic reactions in chloroplasts with the reaction formula:
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106CO2 + 16NO3
− + HPO4

2− + 122H2O + 18H+ → C106H263O110N16P + 138O2

It was reported that using a moving bed bioreactor (MBBR-MA) to cultivate macroal-
gae (Chetomorpha maxima) for the removal of total nitrogen (TN) and total phosphorus (TP)
from wastewater, and the average removal rates can reach 42.85 ± 5.5% and 83.7 ± 7.7%,
respectively [95]. Studies have shown that some species of macroalgae can also remove
dye from the wastewater, and cellulose isolated from macroalgae Aegagropila linnaei with
MB adsorption capacity of 139 mg·g−1 [96].

The resource coupling of biomass and by-products after treating wastewater with
macroalgae also has potential applications. It has been reported that the protein qual-
ity of wastewater-cultured green algae (such as U. Lactuca) is higher than that of the
cow’s milk protein when mixed with an appropriate amount of skim milk powder, wheat
and oat grains [97]. A colony containing two macroalgae Rhizoclonium sp. and Ulotrix
sp. was isolated from the anaerobic digestion wastewater (ADPE). When the NH4

+-N
concentration of ADPE was 248 mg·L−1, the ammonium removal rate reached the maxi-
mum (30.6 ± 6.50 mg NH4

+-N L−1d−1), and the contents of carbohydrate and protein were
42.8–54.8% and 43.4–45.0% [98], respectively. Rhizoclonium sp. and Ulotrix sp. communities
cultivated with ADPE had higher protein content and were suitable as protein feeds when
compared to other common feeds. Meanwhile, the chlorophyll content can reach 40–45%
under high ammonium conditions of 248 mg·L−1. Moreover, pigments are suitable for food
additives and the chlorophyll content produced was positively correlated with the nitrogen
concentration in the medium [99]. Using Spirogyra sp. for treating primary wastewater
(PW), secondary wastewater (SW) and concentrated wastewater (CW), and the results
showed that the biomass content from CW culture is relatively higher than that of the PW
and SW media. The corresponding protein, carbohydrate and lipid obtained after treatment
accounted for 16.7%, 55.0% and 10.0%, respectively [99].

5.2. Carbon Sequestration with Macroalgae and Their Resource Utilization

Macroalgae can capture inorganic carbon and CO2 through photosynthesis and incor-
porate them into various macromolecular metabolites and other biochemical components
including RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) [100]. There are three
main ways for algae to absorb inorganic carbon: (1) use extracellular Carbonic Anhydrase
(CA) to convert bicarbonate to carbon dioxide; (2) directly absorb carbon dioxide through
the plasma membrane; (3) directly absorb bicarbonate through active transporters in the
membrane. Figure 4 shows a schematic mechanism of algae to fix CO2. The photochemical
reaction is composed of two photosystems, namely photosystem I and photosystem II.
Through a transport system, electrons released by the light-driven oxidation of water
molecules are transferred to NADP+ and it is reduced to NADPH. Protons in the matrix
are pumped into the thylakoid lumen as the consequence of electron transport, and then
creating a transmembrane proton gradient thereby driving phosphorylation of ADP to
generate ATP. In the dark reaction stage, ATP and NADPH fix carbon dioxide into glucose
through a light-independent reaction, which is then converted into various high-value
foods and drug metabolites.

As we know, carbon fixation capacity of algae is limited by their species, light, tempera-
ture, etc., because the above factors affect carbon fixation by influencing the photosynthetic
efficiency. Therefore, the suitable algal species should be selected, and proper environmen-
tal conditions should be created for their growth and accumulation of metabolites during
wastewater treatment. Light intensity is an important factor affecting photosynthetic car-
bon sequestration in macroalgae. Increasing light intensity below the light saturation point
promotes photosynthesis, whereas light inhibition is followed by a decrease in carbon
sequestration capacity. Different species of macroalgae have different temperature tol-
erances, and most of them have an optimum growth temperature of 15 ◦C–30 ◦C [101].
Inhibition of CA activity in algae reduces the conversion of HCO3

− to CO2, thus, leading
to a decrease in CO2 required for carboxylation reactions thereby ultimately weakening
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photosynthesis [101]. In addition, UVR (Ultra-Violet Radiation) affects protein synthesis in
PSII, inhibits rubisco enzyme activity, causes DNA damage and reduces pigment content,
thus affecting the carbon sequestration capacity of macroalgae [102].
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In a word, macroalgae are also currently considered the most promising third-generation
biomass energy source, which are further converted into metabolic products of polysaccha-
rides, polyphenols and proteins (amino acids, etc.) based on the purification of the marine
ecosystem and CO2 fixation with important values through bio-refinement.

6. Conclusions

Macroalgae are economically valuable biomass resources that are widely applied in
food, pharmaceuticals and environmental remediation. Different geographical distribu-
tions of macroalgae create their unique bioactive applications in different industries. The
functional food ingredients and other molecules that are naturally found in macroalgae
further provide better choices for food and animal feed. In addition, macroalgae are rich
in active components which are beneficial in treating tumours, inflammation and cardio-
vascular diseases, and they have important potential in wastewater and waste gas (CO2)
treatment. Therefore, it is desirable for us to value nutrient production from macroalgae
whilst fixing carbon dioxide, nitrogen, phosphorus and other nutrients in wastewater
through photosynthesis to achieve resource utilisation of related nutrients from CO2 and
wastewater in the future.
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