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Abstract: Combined with the unique processing technology of oolong tea, oolong tea with stem 
processing has a better flavor compared to oolong tea without stem processing. However, there is 
currently no available evidence to support the contribution of stems to the taste quality of oolong 
tea. In this study, the electronic tongue, sensory evaluation method combined with liquid chroma-
tography, and gas chromatography–mass spectrometry were used to explore the influence of the 
presence of stems on the flavor substances and aroma of oolong tea during processing. The results 
showed that the presence of stems significantly increased the umami taste of oolong tea (p < 0.05), 
and the content of seven free amino acids (p < 0.05), including theanine (53.165 μg/mL) and aspartic 
acid (3.190 μg/mL), two umami-related amino acids, significantly increased. Moreover, the content 
of nerolidol (2.598 μg/g) in aroma components was significantly increased. This study identifies the 
contribution of stems to oolong tea quality during processing. 
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1. Introduction 
Tea is an ideal beverage that is widely consumed around the world. According to the 

degree of fermentation, it can be divided into unfermented tea, semifermented tea, and 
fermented tea [1]. Oolong tea is a typical semifermented tea, and its unique flavor profile 
means it is widely consumed in China, Japan, and other regions [2]. Studies have shown 
that the quality components that affect the taste of oolong tea include catechin (bitter) [3], 
caffeine (bitter) [4], free amino acids (umami and sweet) [5], soluble sugar (sweet) [6], 
flavonoids (astringent) [7], and theaflavins (astringent) [8], etc. The mutual transfor-
mation and formation of these components during the processing of oolong tea lay the 
material basis for its taste [9]. 

Oolong tea processing includes several production processes such as withering, 
shaking, firing, rolling, and drying. Studies have shown that catechin content gradually 
decreases during oolong tea processing [10], and free amino acid and soluble sugar con-
tents generally increase. The aroma characteristics of tea products made from different 
oolong tea varieties show a unique “variety fragrance” [11]. More importantly, in the pro-
cessing of oolong tea, the limited moisture, and free amino acids, catechins, and other 
quality components in the fresh leaves and stems can be transferred between the stems 
and leaves many times and gradually utilized, commonly known as “zou shui huan yang” 
[12]. Different from other tea processing methods, oolong tea is processed with fresh 
leaves and stems, and finally, the stems are removed to obtain tea products. It is tradition-
ally believed that stems contain high water content, and various substances are dissolved 
in water. As the water in the leaves evaporates, the quality components are transported 
to the leaves, enriching and enhancing the taste of oolong tea, but this concept has not 
been confirmed. In recent years, Zeng et al. showed that the presence of stems could not 
significantly improve the aroma of oolong tea [13]. They found that the content of free 
amino acids (especially theanine) in oolong tea made from leaves combined with stems 
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was significantly higher than that of tea only made from leaves. However, whether the 
change in free amino acid content is due to stem transport or enhanced auto metabolism 
is unknown. 

Currently, the quality of tea can be evaluated by the electronic tongue, liquid chro-
matography–mass spectrometry, and gas chromatography–mass spectrometer (GC-MS). 
Among them, the electronic tongue can not only quickly imitate the sense of human taste 
but can also express taste more sensitively, automatically, and fairly compared to human 
tasters. It can also be used to distinguish different grades and different origins of tea. Yan 
et al. effectively judged the geographical origin of Anji white tea through the electronic 
tongue, seven independent sensors, chemometrics, and other methods [14]. Chen et al. 
used UPLC-Q-TOF/MS and GC-TOF/MS on oolong tea throughout the processing process 
and observed that catechins and oxidation products, flavonol glycosides, and amino acids 
were the key identifying metabolites [15]. Zeng et al. obtained (E, E)-2,4-Heptadienal, (E)-
2-octenal, benzeneacetaldehyde, and (E)-nerolidol as the key volatile compounds to dis-
tinguish different grades of Tieguanyin by HS-SPME-GC-MS technique [16]. 

The presence of the stem may have a positive effect on the taste and aroma quality of 
oolong tea. This study was based on the production process of clear aroma oolong tea, 
mainly through the whole shoot (combined leaf and combined stem), separated stem, and 
separated leaf—three tea raw material harvesting parts for the processing of oolong tea. 
The overall evaluation of the taste quality of tea leaves was carried out by electronic 
tongue and sensory evaluation methods. The taste and aroma components of oolong tea 
were analyzed by high-performance liquid chromatography (HPLC), ultra-performance 
liquid chromatography (UPLC), UV-2550 spectrometer, and GC-MS, and the presence of 
transfer of amino acid fractions through the stem during the processing of oolong tea was 
investigated to explore the actual role of the stem in the processing of oolong tea from the 
perspective of taste and aroma. 

2. Materials and Methods 
2.1. Chemicals and Reagents 

Catechin (C, ≥98%), gallocatechin (GC, ≥98%), gallocatechin-3-gallate (GCG, 
≥98%),epicatechin (EC, ≥98%), epicatechin-3-gallate (ECG, ≥98%), epigallocatechin (EGC, 
≥98%), epigallocatechin-3-gallate (EGCG, ≥98%), caffeine (CAF, ≥98%), theaflavins (TF, 
≥95%), theaflavins-3-gallate (TF3G, ≥98%), theaflavin-3′-gallate (TF3′G, ≥98%), theafla-
vine-3,3′-digallate (TFDG, ≥98%), quercetin-3-O-galactoside (≥98%), myricetin-3-O-galac-
toside (≥98%), kaempferol-3-O-rutinoside (≥98%), vitexin (≥98%), astragaloside (≥98%), 
quercetin (≥98%), and kaempferol (≥98%) were purchased from Shanghai yuanye Bio-
Technology Co., Ltd. (Shanghai, China). L-alanine, L-arginine, L-aspartic acid, L-cystine, 
L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-
phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine, L-asparagine, L-glu-
tamine, theanine, γ-aminobutyric acid, and L-tryptophan were purchased from Sigma 
(Sigma-Aldrich Co., St. Louis, MO, USA). Anthrone reagent and ninhydrin/formic acid 
reducing agent were purchased from BeiJing DingGuochangSheng Biotech. Co., Ltd. (Be-
jing, China). Ethyl caprate (≥99%) was purchased from Shanghai Macklin Biochemical 
Technology Co., Ltd. (Shanghai, China), and n-alkane mixed standard C7-C40 was pur-
chased from o2si (o2si smart solutions—an LGC Standards Company, Charleston, SC, 
USA). 

2.2. Oolong Tea Processing and Sample Preparation 
The raw materials of fresh leaves were Jin Guanyin variety, which was picked in the 

tea plantation at the Shengzhou site of the Tea Research Institute of the Chinese Academy 
of Agricultural Sciences (29°35′ N, 120°49′ E), Shengzhou, Zhejiang, China, in May 2020. 
The samples were divided into two categories. The first category was the combined stem 
(CS) and the combined leaf (CL), which were separated into the combined leaf group and 
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combined stem group after the fresh leaves were picked and processed in various steps. 
The second category was the stem (separated stem, SS) and leaf (separated leaf, SL), which 
were directly separated from fresh leaves after they were picked. The processing steps are 
shown in Figure 1. First, the collected fresh leaves were separated from stems and leaves, 
and then divided into tea leaves, SL and SS, withered in the sun for 30 min, placed in an 
air-conditioned room at 18 °C for 30 min, and then shaken three times (respectively 2 min, 
5 min, 10 min of shaking). At the end of each shake, the tea leaves were taken out and 
placed in an air-conditioned room at 18 °C for 90 min. Next, the tea samples were placed 
in a drum at 280 °C for 5 min to block the enzymatic activity. Finally, the tea was wrapped 
and kneaded for 20 min, and dried at 100 °C for 25 min. The dried SL and CL were the 
finished oolong tea. At the end of each processing stage, the tea leaves were separated 
from stems and leaves (CL and CS), and the SL and SS samples were separately sampled 
and stored in liquid nitrogen (−80 °C) for further analysis. The process was repeated three 
times for three sets of samples. 

 
Figure 1. Manufacturing processes of oolong tea. 

2.3. Electronic Tongue Analysis 
The AS-TREE electronic tongue system developed by Alpha M.O.S in France was 

adopted. In this system, five sensors (AHS, CTS, NMS, AND, and SCS) correspond to the 
five taste factors of sourness, saltiness, umami, sweetness, and bitterness, respectively. For 
electronic tongue determination at room temperature, 3 g CL and SL finished oolong tea 
samples were brewed in a 150 mL review cup for 4 min, and 80 mL tea infusion samples 
were placed in a special beaker (150 mL). This was repeated 3 times, with the acquisition 
time of 120 s, with data collected every second, and the stable data obtained between 100 
and 120 s were used as the output value. 

2.4. Sensory Evaluation 
Refer to Zeng et al. ’s method and modify it slightly [13]. Five senior tea reviewers (2 

women and 3 men) and 15 regular consumers (8 women and 7 men) were selected to form 
a group to participate in the preference score of oolong tea infusion. Since the oolong tea 
processing involved in the experiment was by Chinese tea production standards, it was 
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nontoxic and nonhazardous. Therefore, this experiment did not require ethical approval. 
All respondents had to sign an informed consent form before the test, which outlined the 
purpose, time, and program of the evaluation and the relevant risks to be undertaken by 
the respondents. A representative tea sample (3.0 g) was then placed in an evaluation cup, 
filled with boiling water (150 mL), covered with a lid, and brewed for 5 min. All respond-
ents rated the CL and SL oolong tea infusions on a scale from “very dislike” (1 point) to 
“very much like” (5 points). The temperature of the tea at evaluation or consumption was 
65–70 °C. 

2.5. Analysis of Taste Components 
All samples were vacuum-freeze-dried and ground into powder before detection. 

The lyophilization procedure for vacuum freeze drying was −40 °C for 7 h, −30 °C for 2 h, 
−20 °C for 2 h, −10 °C for 2 h, −5 °C for 2 h, 0 °C for 7 h, 5 °C for 10 h, 10 °C for 10 h, 15 °C 
for 10 h, 20 °C for 10 h, and 25 °C for 10 h. The powder samples (3 g/150 mL) were leached 
in a boiling water bath for 45 min, diluted with distilled water, and fixed to volume for 
subsequent chemical composition detection. 

2.5.1. Analysis of Catechins, Caffeine, and Theaflavins 
The contents of catechin, caffeine, and theaflavin were determined simultaneously 

by ultra-performance liquid chromatography (Ultra Performance Liquid Chromatog-
raphy, UPLC, Waters, DE, USA). The finished oolong tea samples of CL and SL were taken 
for detection. The sample solution was filtered through a 0.22 μm membrane, and a mobile 
phase consisting of 0.1% formic acid aqueous solution (A) and pure acetonitrile (B) was 
used for chromatographic separation. The column was Waters BEH C18 (1.7 um, 2.1 × 100 
mm, Waters, USA), the bath temperature was kept at 15 °C, and the column temperature 
was kept at 30 °C. The flow rate and injection volume were 350 uL/min and 2 μL, respec-
tively. The gradient settings were as follows: 0–3 min, 60% B; 3–6 min, 90%–83% B; 6–12 
min, 83%–73% B; 12–15 min, 73%–50% B; 15–15.5 min, 50% B; 15.5–16 min, 50%–90% B; 
16–20 min, 90% B. 

2.5.2. Analysis of Free Amino Acids 
The content of each free amino acid was determined using an amino acid analyzer 

(Sykam, Eresing, Germany) [17]. All sample solutions were filtered through a 0.45 μm 
membrane and injected into an amino acid analyzer with a Physiological Li C4 system 
coupled to an S4300 post-column derivatization system. The separation column was a 
high-efficiency sodium cation exchange column (4.0 × 150 mm; Pickering Laboratories, 
Inc., CA, USA). The Sykam S433D Physiological Li C4 system operates with a mobile 
phase consisting of lithium citrate at pH 2.9, pH 4.2, and pH 8.0, with UV-VIS detection at 
570 nm and 440 nm. The flow rate of the mobile phase was 0.45 mL/min, and the flow rate 
of the derivatizing reagent (ninhydrin) was 0.25 mL/min. The column temperature was 38 
°C, and the post-column reaction equipment was maintained at 130 °C. The temperature 
of the autosampler was maintained at 5 °C, and the injection volume of the standard and 
samples was 50 μL. 

2.5.3. Analysis of Flavonoids and Flavonoid Glycosides 
Flavonoids and flavonoid glycosides were detected by high-performance liquid chro-

matography (HPLC, Shimadzu, Japan) [18]. The finished oolong tea samples of CL and 
SL were taken for detection, and the sample solution was first filtered through a 0.45 μm 
membrane. The chromatographic conditions were as follows: DiamonsilTM C18 (4.6 mm 
× 250 mm) column, particle size 5 μm; mobile phase A was acetic acid/water (0.1:99.9, v/v); 
mobile phase B was acetonitrile; the flow rate was 1 mL/min; the column temperature was 
35 °C; the UV detection wavelength was 360 nm; the injection volume was 10 μL; gradient 
elution time was 0–5 min, 3%–16.5% B; 5–18 min, 16.5%–20% B; 18–23 min, 20%–21.2% B; 
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23–28 min, 21.2% B; 28–38 min, 21.2%–30% B; 38–50 min, 30% B; 50–55 min, 30%–3% B; 
55–60 min, 3% B. 

2.5.4. Soluble Sugar Analysis 
Total sugar was detected by anthrone–sulfuric acid reaction using a UV-2550 spec-

trophotometer (Shimadzu, Japan), and glucose was used as a standard [19]. The finished 
oolong tea samples of CL and SL were taken for detection, and 2 mL of sample solution 
was reacted with 8 mL of anthrone reagent (0.2 g of anthrone was dissolved in 100 mL of 
analytically pure sulfuric acid) at 100 °C for 10 min, and then cooled for 10 min. The ab-
sorbance was measured at 620 nm from minimum temperature to room temperature, and 
distilled water was used as a blank sample. The linear equation of standard glucose was 
C(mg/mL) = (168.48 × A620) − 8.7016 (R2 = 0.993). C stands for glucose concentration. 

2.6. Determination of Moisture Content 
The moisture content of the tea samples was determined by the gravimetric method. 

The empty crucible was dried in an oven at 105 °C for 1 h and cooled in a desiccator and 
weighed (W1). A 5 g sample was placed in a crucible (W2) and dried in a 105 °C oven, 
cooled in a desiccator, and the drying was repeated until a constant weight (W3) was 
reached. After that, the moisture content of the tea leaves was calculated according to the 
following formula: moisture content = (W3 − W1)/(W2 − W1) × 100% 

2.7. Aroma Component Analysis 
Extraction of aroma components: 0.1 g of finished oolong tea samples of the CL group 

and SL group were weighed and placed into a 12 mL headspace bottle, and 5 mL of boiling 
ultrapure water and 10 μL of ethyl caprate (internal standard, 10 mg/L) were quickly 
added. The cap was equilibrated for 5 min, and then the PDMS extraction head was in-
serted into the headspace vial. After extraction and adsorption for 60 min under the con-
dition of a constant temperature water bath at 60 °C, the solution was immediately re-
solved at the 250 °C injection port of GC-MS for 5 min. 

GC-MS (Agilent, USA) conditions: column: DB-5MS (Agilent, USA) quartz capillary 
column (30 m × 0.25 mm × 0.25 μm); oven temperature: 40 °C; inlet temperature: 250 °C; 
split ratio: 15:1; pressure 48.745 kPa; column flow: 1 mL/min; injection carrier gas: He 
(99.9999%). Heating program: hold at 40 °C for 2 min, increase to 85 °C at 2 °C/min, hold 
for 2 min, then increase to 180 °C at 2.5 °C/min, hold for 2 min, then increase to 230 °C at 
10 °C/min, hold for 2 min. Electron ionization source: electron energy: 70 eV; ion source 
temperature: 230 °C; full scan; mass scan range: m/z 40–400. 

Qualitative and quantitative analysis: the NIST 14 spectral library was used to search 
the volatile components detected by GC-MS, and the retention index of the component 
was calculated based on the retention time of each component and its adjacent n-alkane 
retention time. The retention index was qualitatively compared with the retention index 
in the literature. The internal standard method was used to quantitatively analyze each 
compound, that is, according to the ratio of the chromatographic peak area of each com-
ponent to the peak area of the internal standard ethyl caprate. 

2.8. Statistical Analysis 
A Student’s t-test and two-way ANOVA were performed using GraphPad Prism 5.01 

(GraphPad Prism Inc., San Diego, CA, USA). Data represent the mean (n = 3), and signifi-
cant differences are indicated as * (p < 0.05) and ** (p < 0.01). The radar chart was performed 
using Excel (Microsoft Corp., Redmond, WA, USA). Principal component analysis (PCA), 
correlation analysis, and heat map hierarchical cluster analysis were performed using R 
package factoextra, psych, and pheatmap, separately. The network was performed using 
the R package igraph and Cytoscape 3.72 (Accessed June 6, 2022 at http://www.cyto-
scape.org/). 
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3. Results and Discussion 
3.1. Comparison of Taste Components 

We detected and analyzed the taste-related components of the finished oolong tea 
infusions of CL and SL by UPLC and HPLC. The results of the analysis showed that CL 
had higher levels of many compounds than SL did (Figure 2). The catechins in tea, espe-
cially the ester catechins, have always been considered the main substances affecting the 
bitterness of tea infusion [3,20]. However, we found no significant difference in ester cat-
echins between the two treatments by Student’s t-test. In addition, other related chemical 
components that affect the bitterness of tea, such as caffeine, main flavonoids, and theafla-
vins, also showed no significant difference. On the other hand, there was no significant 
difference in the detection of total sugar. The content of free amino acids is positively cor-
related with the taste of oolong tea, which is the basis for determining the taste and price 
of oolong tea [21]. So far, 26 amino acids have been identified in tea, including 20 protein 
amino acids and 6 non-protein amino acids [12]. The contribution of amino acids to taste 
characteristics can be divided into umami, sweet, bitter, and tasteless [22]. Theanine, as-
partic acid, and glutamic acid are the main umami amino acids; bitter amino acids mainly 
refer to histidine, valine, and tryptophan; glycine, alanine, glutamine, threonine, and ser-
ine are sweet amino acids [23]. We detected a total of 12 free amino acids from the finished 
tea. The results showed that the content of six free amino acids in oolong tea in CL was 
significantly higher than that in SL, including aspartic acid, threonine, glutamine, 
theanine, γ-aminobutyric acid, and proline. Most of these free amino acids help to im-
prove the umami and sweetness of oolong tea. The main flavor components of the two 
groups of oolong tea had the largest difference in the content of free amino acids, that is, 
the presence of stems during processing promoted the retention of most of the free amino 
acids in leaves, which is consistent with previous research results [13]. During the pro-
cessing of oolong tea, the inclusions are transported from the stem to the leaves along with 
the moisture [12], and we also found that the moisture content of CL was significantly 
higher than that of SL before drying (Figure 3). 
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Figure 2. Contents of taste-related components in oolong tea infusion (CL, combined leaf; CS, com-
bined stem; **, p < 0.01; *, p < 0.05). 

 
Figure 3. Changes in moisture content during oolong tea processing. H stands for harvesting, W 
stands for withering, S stands for shaking, F stands for firing, R stands for rolling, and D stands for 
drying (CL, combined leaf; SL, separated leaf; **, p < 0.01). 

3.2. Flavor Quality Analysis 
The taste factor intensity of the tea infusion in finished oolong tea was evaluated by 

the electronic tongue to show the influence of the presence of stems on the taste of the 
finished tea (Figure 4A). It can be seen that the intensity of each taste factor in CL was 
higher than that in SL, and the umami intensity reached a significant level (p < 0.05). It is 
shown that oolong tea processed with stems was more umami compared to oolong tea 
processed from leaves only. The above-mentioned taste intensity factors were subjected 
to PCA by the R package factoextra, which classified all samples according to the response 
value of each taste factor. The results showed that the tea taste phenotypes of the two 
processing methods were well differentiated. The contribution rate of principal compo-
nent 1 (PC1) was 81.3%, and the contribution rate of principal component 2 (PC2) was 
18.3%. The cumulative contribution rate reached 99.6% (Figure 4B), indicating that com-
bined stem processing had a significant impact on the overall taste of oolong tea infusion. 
On the other hand, the average scores (n = 20) of the 20 panel members’ preference for the 
two oolong tea infusions are shown in Figure 4C. The score of SL was higher than that of 
CL, but the difference was not significant, indicating that the presence of stems did not 
significantly affect the participants’ preference for the overall characteristics of oolong tea 
products. 

To explore the reasons for the differences in taste factors between the two treatments 
from the perspective of compounds, we used the R package psych to calculate the corre-
lations of 29 compounds in CL and SL oolong tea with five flavor factors. Correlations are 
shown by heat map (Figure 4D), where compounds with an asterisk are significantly cor-
related (**, p < 0.01; *, p < 0.05). The results showed that under the two treatments, GC, L-
aspartic acid, L-threonine, L-glutamine, L-theanine, L-leucine, γ-aminobutyric acid, and 
L-proline content all showed a significant positive correlation with umami, sourness, and 
saltiness, while myricetin 3-O-galactoside, vitexin, and L-phenylalanine were signifi-
cantly negatively correlated with the above three taste factors, which was consistent with 
the different distribution of the above compounds in CL and SL. The contents of L-threo-
nine, GC, L-theanine, L-glutamine, astragalin, and TF were significantly positively corre-
lated with sweetness. The compounds in tea infusion are complex, and there are interac-
tion relationships. The above correlation results show that these compounds and taste 
factors have the same trend in the taste contribution of oolong tea infusion. 
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Figure 4. Analysis of the taste of oolong tea. (A) Radar map of electronic tongue dataset. (B) Princi-
pal component analysis (PCA) score chart of taste factor response value. (C) Sensory evaluation. (D) 
Heatmap of the correlation between the content of taste components and the response values of 
taste factors of the electronic tongue (CL, combined leaf; SL, separated leaf; **, p < 0.01; *, p < 0.05). 

3.3. Dynamic Changes of Free Amino Acid Content in Leaves 
The above results show that the existence of stems is conducive to the retention of 

various free amino acid components related to umami and sweetness in oolong tea. To 
further explore the effect of stems on the free amino acids of oolong tea during processing, 
we focused on analyzing the changes of free amino acid components in leaves during 
processing with stems and processing without stems. The content of free amino acid com-
ponents in the leaves of the two treatments showed varying trends (Figure 5), indicating 
that the presence of stems during the processing of oolong tea affected the changes in free 
amino acid content. We found that the contents of aspartic acid, threonine, alanine, and 
tyrosine in the two treatments showed significant differences in the early withering and 
shaking steps. Withering and rotating are the first two processes of oolong tea processing, 
which mainly affect the taste and aroma of tea through internal biological oxidation [24]. 
The dynamic changes of enzymatic and nonenzymatic transformations of fresh leaves 
during processing jointly determine the final sensory perception of oolong tea quality 
[25,26]. Our results indicated that the existence of stems may affect the biotransformation 
of free amino acids in tea leaves in the early stage of processing. On the other hand, it can 
be seen from Figure 4 that the water content of CL was significantly higher than that of 
SL during the withering and shaking process, indicating that the presence of stems re-
duced the rate of water loss in leaves, thus possibly slowing the conversion of these free 
amino acids; however, water redistribution during the slow withering and shaking pro-
cess may allow stems to transfer these free amino acids from stems to leaves through wa-
ter transport [12]. The firing process of oolong tea inactivates the enzyme activity, alt-
hough the subsequent processing does not involve biological reactions, which are mainly 
related to the formation of tea aroma components [27]. However, these 
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thermodynamically formed aromatic compounds are associated with sugars and amino 
acids or catechins as substrates [28,29]. The aroma compounds composed of nitrogen-con-
taining compounds may be generated by amino acids donating nitrogen atoms or amino 
reacting with sugars at high temperatures. Studies have shown that theanine as a substrate 
during the roasting process contributes to the production of 2,5-dimethylpyrazine, a key 
compound in the roasting aroma of oolong tea [30]. We found that the glutamine in CL 
was significantly higher than that in SL after being processed by the firing process, but 
the differences in alanine and tyrosine were not significant. However, theanine, γ-amino-
butyric acid, and proline gradually showed significant differences after the final drying 
process, indicating that the presence of stems can affect the changes of free amino acids in 
leaves to varying degrees even under thermal action. 

 
Figure 5. Dynamic changes of free amino acid content in leaves. H stands for harvesting, W stands 
for withering, S stands for shaking, F stands for firing, R stands for rolling, and D stands for drying 
(CL, combined leaf; SL, separated leaf; **, p < 0.01; *, p < 0.05). 

3.4. Dynamic Changes of Free Amino Acid Content in Stems 
Further, we explored whether free amino acids are transported from stems to leaves 

by moisture during prolonged withering and shaking, as well as the change rule of free 
amino acid content during processing with only stems. As shown in Figure 6, we deter-
mined the content changes of free amino acids in CS and SS during processing. A total of 
seven free amino acids were detected in SS and CS, of which five were the same as those 
detected in leaves. We found that in the process of withering and shaking, the free amino 
acid content in CS was higher than that in SS, except for γ-aminobutyric acid, which was 
lower in CS than in SS, which is consistent with the corresponding CL and SL, indicating 
that the marked increase in the content of certain free amino acids during withering and 
shaking is not related to the transport of water into leaves by stems. In the process after 
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shaking, the content of free amino acids in the stems of CS and SS showed a downward 
trend, and finally, the content of free amino acids in SS was higher than that in CS, except 
for aspartic acid. Among them, the difference in glutamic acid and glycine content 
changed in the process of firing and the differences in the content of threonine, theanine, 
and asparagine changed in the final drying process, which was all related to the thermal 
effect at high temperatures. 

 
Figure 6. Dynamic changes of free amino acid content in steams. H stands for harvesting, W stands 
for withering, S stands for shaking, F stands for firing, R stands for rolling, and D stands for drying 
(CS, combined stem; SS, separated stem; **, p < 0.01; *, p < 0.05). 

3.5. Comparison of Volatile Components 
A total of 30 volatile components were detected in finished oolong tea samples, in-

cluding aldehydes, olefins, alcohols, and their oxides, esters, and nitrogen-containing 
compounds (Table 1). Aroma molecules in tea are generated from precursors such as ca-
rotenoids, lipids, glycosides, and phenylalanine, also from Maillard reactions. Flavonol 
oxidation is the driving force for carotenoid degradation and participates in the formation 
of aroma components such as β-ionone and β-damascenone [31]. We conducted a corre-
lation analysis of aroma components and taste components for two groups of oolong tea 
samples. Through Figure 7, we found that the content of catechins (CG, EC, ECG, EGCG, 
etc.) was negatively correlated with various aroma components (α-farnesene, Nerolidol, 
Linalool, etc.). Previous studies have shown that linalool and its oxides, nerolidol, and α-
farnesene are the key aroma components in oolong tea and have important contributions 
to the formation of floral and fruity aromas [32]. On the key aroma components, the 
nerolidol content of CL was significantly higher than that of SL, while the content of lin-
alool was significantly lower in CL than in SL, and the content of α-farnesene was not 
significantly different. Phenylalanine is a key precursor of volatile phenylpropanoids/ben-
zenoids (VPBs), which mainly include phenylethyl alcohol, phenylacetaldehyde, benzyl 
alcohol, benzaldehyde, and coumarin. We see in Figure 7 that phenylalanine was nega-
tively correlated with benzaldehyde content, but benzaldehyde was not significantly dif-
ferent between the two groups. 
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Table 1. Content of volatile components in oolong tea. 

Retention 
Time/min Compound 

Content (μg/g) a 
CL SL 

5.28 Hexanal 4.124 ± 0.127 ** 5.494 ± 0.183 
7.269 trans-2-Hexenal 0.773 ± 0.051 0.839 ± 0.016 
8.897 Styrene 0.131 ± 0.022 0.131 ± 0.027 
9.553 Heptanal 0.173 ± 0.018 0.180 ± 0.041 

12.483 Benzaldehyde 0.184 ± 0.015 ** 0.011 ± 0.002 
14.157 trans-2-Octen-1-ol 0.111 ± 0.013 0.120 ± 0.037 
15.564 Octanal 0.086 ± 0.005 0.096 ± 0.004 
15.754 cis-3-Hexenyl acetate 0.485 ± 0.023 * 0.585 ± 0.038 
17.059 D-Limonene 0.189 ± 0.024 0.190 ± 0.036 
17.346 2-Ethyl-1-hexanol 0.216 ± 0.039 ** 0.135 ± 0.014 
17.743 α-Ocimene 0.098 ± 0.007 0.104 ± 0.026 
18.416 β-Ocimene 0.215 ± 0.015 * 0.251 ± 0.014 
19.925 Linalool oxide II 0.901 ± 0.027 0.797 ± 0.046 
20.494 2-Butyl-1-octanol 0.019 ± 0.002 ** 0.047 ± 0.001 

20.851 Cyclohexene,1,5,5-trimethyl-
3-methylene- 0.029 ± 0.005 0.038 ± 0.004 

21.019 Linalool oxide I 1.524 ± 0.185 1.325 ± 0.330 
22.087 Linalool 13.513 ± 1.290 ** 17.257 ± 1.110 
22.443 Nonanal 0.591 ± 0.019 * 0.729 ± 0.017 
28.507 7-Decen-5-olide 0.392 ± 0.089 0.414 ± 0.064 
30.146 Decanal 0.057 ± 0.002 0.050 ± 0.003 
30.454 β-cyclocitral 0.063 ± 0.005 * 0.079 ± 0.006 
31.736 cis-3-Hexenyl isovalerate 0.024 ± 0.003 0.033 ± 0.001 
35.301 Indole 5.177 ± 0.281 ** 4.121 ± 0.112 
40.992 cis-3-Hexenyl hexanoate 0.759 ± 0.031 ** 0.955 ± 0.030 
41.32 Hexyl hexanoate 0.079 ± 0.003 ** 0.104 ± 0.023 

42.621 β-caryophyllen 0.021 ± 0.002 0.023 ± 0.002 
44.812 trans-β-Farnesene 0.086 ± 0.003 0.077 ± 0.007 
47.459 α-Farnesene 0.216 ± 0.023 0.211 ± 0.002 
47.874 δ-Cadinene 0.033 ± 0.001 0.027 ± 0.001 
50.211 Nerolidol 2.598 ± 0.173 ** 1.523 ± 0.039 

Note: a: The aroma content is indicated by mean ± SD, and the significance of the difference is indi-
cated by an asterisk (CL, combined leaf; SL, separated leaf; **, p < 0.01; *, p < 0.05). 
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Figure 7. Correlation analysis of aroma components and taste components of two groups of oolong 
tea samples. 

4. Conclusions 
This study showed that the participation of stems in the processing of oolong tea 

changed the overall characteristics of the taste of oolong tea, and the oolong tea with stem 
processing was significantly higher than the oolong tea without stem processing in terms 
of umami. In terms of taste components, the content of umami-related free amino acids 
(such as theanine and aspartic acid) in oolong tea processed with stems was significantly 
higher than that of oolong teas without stems. However, there were no significant differ-
ences in the main catechins, caffeine, and main flavonoids that affect the bitterness of tea, 
in the theaflavins that affect the astringency of tea, and in the total amount of soluble sugar 
that affects the sweetness of the tea. In addition, in the biological action of tea leaves under 
the withering and shaking process and the high-temperature thermal action under the 
firing and drying process, the stems have different degrees of influence on the content of 
free amino acids in oolong tea leaves. However, this is not related to the transport of these 
free amino acids to leaves through the water during the withering and greening process 
of stems, and the effective mechanism needs to be further studied. In terms of aroma, the 
nerolidol content of processed oolong tea with stems was significantly higher than that of 
sessile oolong tea. Although considerably time and expense are required to manually re-
move the stems at the end of oolong tea processing, the presence of stems during pro-
cessing is beneficial for the umami of oolong tea. This study provides evidence that helps 
to elucidate the contribution of stems to the taste quality of oolong tea. 
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