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Abstract: Penicillium expansum is a necrotrophic pathogen, which actively kills host cells and obtains
nutrients from dead cells to achieve infection. However, few reports have elucidated the differential
levels of carbon and nitrogen sources over increasing distances of the leading edge in fungal colonized
fruit tissues during colonization. Our results showed that the highest consumption of sucrose and
fructose, as well as the accumulation of glucose, were found in the decayed region of P. expansum-
colonized ‘Delicious’ apple fruit compared with the healthy region at the leading edge and the
healthy region 6 mm away from the leading edge. As nitrogen sources, the contents of methionine,
glutamate, leucine, valine, isoleucine and serine were the lowest in the decayed region compared
with the healthy regions during colonization. In addition, the titratable acidity, oxalic acid, citric acid,
succinic acid and malic acid showed the highest accumulation in the decayed region compared with
the healthy regions. P. expansum colonization induced the accumulation of saturated fatty acids in
the decayed region, while the level of unsaturated fatty acids was the lowest. These changes were
not observed in the healthy regions. These results indicated that P. expansum kills cells in advance of
its colonization in order to obtain the nutrients of the apple tissue from the distal leading tissue of
the colonized apple. It is understood that more carbon and nitrogen sources are required for fungal
colonization, and a stronger defense response against colonization occurred in the fruit, causing the
transit of nutrients from the distal tissue to the infected sites.

Keywords: Penicillium expansum; apple; fungal infection; carbon source; nitrogen source

1. Introduction

Penicillium expansum is one of the major postharvest pathogens, which causes the
blue mold in pomes, stones and berries [1]. As a necrotrophic fungal, P. expansum kills the
host cells in the colonized sites by secreting extracellular enzymes and acquires nutrients
from these dead cells [2]. Subsequently, due to more demands for nutrients to facilitate
colonization, the healthy tissues around the colonized sites are gradually destroyed, causing
the expansion of the decay [3–5]. Therefore, the development of decay in fruit is a dynamic
process that gradually develops outward from the initial colonized sites to the healthy
tissue around it during fungal colonization [6,7].

During the process of colonization, fungi usually face nutrient limitations. The sugars
and amino acids in fruit are considered as major carbon and nitrogen sources for fungi,
which are utilized by sugar or amino acid transporters located in the fungal hyphae to
achieve the fungal colonization of fruits [8]. The contents of sucrose, fructose, methionine
and glutamate were decreased in the decayed tissue of P. expansum-infected apple fruit [9].
A reduced sucrose content and increased glucose and fructose content, as well as the total
soluble solid content, were observed in the healthy tissue of Monilinia fructicola-infected
peach fruit [10]. Moreover, a decreased glucose and sucrose content was found in the
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healthy tissues of citrus fruit after P. digitatum infection [11]. In addition, higher contents of
amino acids were found in the healthy tissue of P. expansum-infected apple fruit [12].

Organic acids contribute to the pH of fruit [13]. Compared with the healthy tissue of
fruit infected by P. digitatum and P. expansum, higher concentrations of malic and citric acid
were found in the tissue at the leading edge of apple and orange fruit [14]. Moreover, higher
concentrations of citric acid accumulated in the decayed region of P. expansum-infected
apple fruit and P. digitatum-infected grapefruit [13]. Our previous results indicated that
P. expansum inoculation decreased the titratable acid content in the healthy tissue of apple
fruit [15]. Fatty acids form the main composition of the cell membrane in fruit tissue and,
together with the high level of unsaturated fatty acids (USFAs)/saturated fatty acids (SFAs),
contribute to maintaining the fluidity and integrity of the cell membrane [16,17]. However,
fungal infection reduced the ratio of USFAs/SFAs in the healthy tissue of fruit, resulting in
an impaired integrity of the cell membrane of the host [18,19], which enabled the release of
primary metabolites from the cells and their use for fungal colonization. Phomopsis longanae
infection decreased the integrity of the cell membrane by increasing the levels of palmitic
acid and stearic acid and reducing the levels of oleic acid, linoleic acid and linolenic acid
in the healthy tissue of longan fruit [20,21]. In addition, lower contents of oleic acid and
linoleic acid were observed in the decayed tissue of P. expansum-infected apple fruit [9].

The latest results illustrated differences in the contents of sugars, organic acids, amino
acids and fatty acids in the decayed tissue at the leading edge of the center region of
decay in P. expansum-infected ‘Fuji’ apple fruit [9]. However, the changes in these essential
compounds between the colonized and healthy regions of fruit during fungal colonization
are poorly understood. Therefore, the objective of the present study was to analyze changes
in the contents of major sugars, organic acids, amino acids and fatty acids in three different
regions of the ‘Delicious’ apple fruit during P. expansum inoculation, including the decayed
tissue at the leading edge of decay, the healthy tissue at the leading edge and the healthy
tissue 6 cm away from the leading edge, in order to understand the contributions of these
essential metabolites in fruit to fungal colonization. Understanding the dynamic change
in carbon and nitrogen sources in P. expansum-colonized apples can help us to further
investigate the infection mechanism of P. expansum, contributing to the control of blue mold
in apple fruit.

2. Materials and Methods
2.1. Fruit

Apple fruit (Malus domestica Borkh. cv. Delicious) was harvested from a commercial
orchard in Jingtai, Gansu Province, China. Fruits of a uniform size and similar maturity
that were free from wounds and fungal infection were collected from different apple trees.
Subsequently, the fruits were individually covered with foam net bags, put into corrugated
boxes and transferred to the lab on the day of harvest and stored in a cool room (5 ± 2 ◦C,
with a RH 80–90%) until further use.

2.2. Preparation of the Spore Suspension

P. expansum (T01) was supplied by Prof. Shiping Tian of the Institute of Botany, Chinese
Academy of Sciences. The strain was grown on potato dextrose agar plates (PDA) at 25 ◦C
for 7 days. For the spore collection, the plates were flooded with 5 mL sterile water, and the
spores removed by gentle rubbing with a sterile glass rod, followed by filtration through
four layers of sterile cheesecloth. The concentration of the spore suspension was determined
using a hemocytometer and then diluted to a final concentration of 1 × 106 spore mL−1.

2.3. Fruit Inoculation

The fruits were taken out of cool storage. After warming to an ambient temperature
(22 ± 2 ◦C) for 24 h, they were washed with tap water and surface-sterilized in 1% NaClO3
for 2 min, and then washed again with sterile water and dried at an ambient temperature
for 1 h. Two wounds were created with a sterile nail (2 mm depth and 2 mm diameter)
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on opposite sides of the apple along the equator on each fruit before inoculation. Then,
the apple fruit was inoculated with 10 µL of spore suspension in each wound. Sterile
water inoculation was used as a control. After air-drying, all the fruits were placed into
polyethylene bags and stored at an ambient temperature (22 ± 2 ◦C, RH 55–65%).

2.4. Sampling

According to the method of Gong et al. [15], at 2, 4 and 6 days after inoculation,
3 mm-thick tissues of the peel and pulp in the decayed region at the leading edge (DE),
the healthy region at the leading edge (HE) and the healthy region 6 mm away from the
leading edge (OE) were sampled from each fruit, respectively, as shown in Figure 1. In the
experiment, tissues from the same region were blended, and 3 g of them were weighted
and packaged with tinfoil and then immediately frozen in liquid nitrogen. The samples
were stored at −80 ◦C until the time of analysis. A total of 36 apple fruits were contained in
each group, and 12 apple fruits in each group were used for each sampling time. For each
measurement, 3 packages of the samples of the same tissues were used, and 3 replicates
were performed for the measurements.

Figure 1. Pictures of lesion development in P. expansum-colonized apple fruit at 2, 4 and 6 days
of colonization (A). Three regions of the tissues were collected (B). DE, the decayed region at the
leading edge; HE, the healthy region at the leading edge; OE, the healthy region 6 mm away from the
leading edge.

2.5. Measurement of the Total Soluble Solids (TSS) and Titratable Acidity (TA) Contents

The TSS content of the fresh tissues was determined using a digital refractometer
(TD-45, Hangzhou, China) and expressed as %. Ten grams of frozen tissues were ground
and diluted to 100 mL with distilled water for the TA determination. Ten mL of solution
was taken and titrated with 0.2 M NaOH until a pH of 8.2 was reached, and the result was
expressed as % [22].

2.6. Analysis of the Sugar and Organic Acid Contents

The sugars and organic acids were extracted using the method of Zhang et al. [23]
with modifications. Three grams of frozen tissue were finely ground and homogenized
in the presence of 10 mL of cold HPLC-grade ethanol (Sigma-Aldrich Products, St. Loui,
MO, USA) and then incubated at 35 ◦C for 20 min and centrifuged at 10,000× g for 10 min.
The supernatant was transferred to a tube, and the residues were extracted again using
the extraction protocol. Supernatants were added up to volume of 25 mL with ethanol.
Subsequently, 1 mL of the solution was dried using nitrogen at 55 ◦C, and then the residue
was resuspended in 0.5 mL of distilled water and filtered through a 0.22 µm syringe filter
(Agela Technologies, Torrance, CA, USA). The filtered solution was used for the sugar
and organic acid analysis by ACQUITY HPLC (Waters Beckman Coulter Inc., Milford,
MA, USA).

The sugars (fructose, glucose and sucrose) were analyzed as described by Gancedo
and Luh [24], with modifications. A chromatographic separation of the sugars was carried
out using a ZORBAX carbohydrate column (4.5 µm, 4.6 mm × 250 mm, Agilent GL Sciences
Inc., Santa Clara, CA, USA). The mobile phase consisted of acetonitrile:water (80:20, v/v),
and the flow rate was 1.4 mL min−1. Eluted peaks were detected with a refractive index
detector, and the data were analyzed with a Waters Empower system. Organic acids
(oxalic acid, citric acid, succinic acid and malic acid) were analyzed as described by López-
Hernández et al. [25], with modifications. The chromatographic separation of the organic
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acids was carried out using an ODS C18 column (4.6 mm × 250 mm, Waters Beckman
Coulter Inc., Milford, MA, USA). The mobile phase consisted of (NH4)2HPO4 and the flow
rate was 0.5 mL min−1. Eluted peaks were detected with a refractive index detector, and
the data were analyzed with a Waters Empower system. The sugars and organic acids
were detected at 210 nm. The peak area of each sugar and organic acid was quantified by
comparison with the calibration curve of the corresponding standards. The concentrations
of sugars and organic acids were expressed as mg g−1.

2.7. Analysis of the Amino Acid Contents

The amino acid contents were analyzed using the method of Li et al. [26], with some
modifications. One gram of frozen tissue was ground and homogenized with 10 mL
of 5% (v/v) sulfosalicylic acid. Subsequently, the mixture was centrifuged at 12,000× g
for 20 min at 4 ◦C, and the supernatant was transferred to a new tube. The amino acid
content was quantified by reference to 17 amino acid mixed standards using a Hitachi
L-8800 Amino Acid Automatic Analyzer (Hitachi-Hitec, Omuta-shi, Japan) equipped with
a Hitachi custom ion exchange resin (4.6 mm ID × 60 mm). The quantity of each amino
acid was expressed as mg kg−1.

2.8. Analysis of the Fatty Acid (FA) Contents

The FAs were analyzed using the method of Valero-Garrido et al. [27], with some
modifications. Three grams of frozen tissue were ground, and 9 mL hexane:isopropanol (3:2,
v/v) and 100 µL heptadecanoic acid were added into it as an internal standard. The mixture
was heated at 85 ◦C for 1 h and then cooled and supplemented with 1 mL hexane. After 1 h,
100 µL of supernatant was adjusted to 1 mL of hexane. The lipids were quantified as the FA
methyl esters using a Trace 1310 gas chromatograph (ThermoFisher Scientific Inc., Waltham,
MA, USA) equipped with a TG-5MS column (30 m × 0.25 mm × 0.25 µm, ThermoFisher
Scientific Inc., Waltham, MA, USA). The initial oven temperature was 85 ◦C, which was
held for 2 min and then increased by 25 ◦C min−1 to 220 ◦C, by 5 ◦C min−1 to 250 ◦C and by
2 ◦C min−1 to 270 ◦C, and then held for 5 min. The injector and detector were maintained
at 290 ◦C. The splitter ratio was 50:1, the injection volume 1 µL, and the hydrogen flow
was 1.2 mL min−1. The FA content was quantified against the internal standard, and the
quantity of each FA was expressed as mg kg−1. The double bond index (DBI) was calculated
using the following equation: DBI = ([18:1] + 2 × [18:2] + 3 × [18:3])/([16:0] + [18:0]).

2.9. Statistical Analysis

All the data are expressed as the mean ± standard error of the 3 replicates. A statistical
analysis was performed using SPSSv19.0 (SPSS Inc., Chicago, IL, USA). Significant differ-
ences between the samples were calculated using one-way ANOVA followed by Duncan’s
test at p < 0.05.

3. Results and Discussion
3.1. Effects of P. expansum Colonization on the Contents of TSS and Individual Sugars in Different
Regions of the Apple Fruit

Sugars are considered as an important form of carbohydrates in fruit, which are stored
in the vacuoles of cells in harvested fruit [28]. During colonization, sugars are taken up
from the fruit by pathogens as carbon sources to participate fungal development [29]. In the
present study, the contents of TSS increased in the three regions of fruit, but the TSS content
declined from the distal healthy region to the decayed region of the fruit during incubation.
The sucrose content in the DE region was 88.1% and 94.6% lower than that in the HE and
OE regions by the 2nd day of inoculation, respectively (Figure 2). The accumulation of
fructose declined in the DE region, being 30.8%, which was 17% lower than that in the HE
and OE regions by the 6th day of inoculation, respectively (Figure 2). A different pattern
was observed in the consumption of glucose. The content of this sugar was lower in both
the DE and HE regions compared to the OE region on the 2nd of inoculation. However,
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after that, the glucose content increased in both the DE and HE regions and declined in the
OE region (Figure 2). These results may indicate that P. expansum mostly consumed sucrose
and fructose as carbon sources for colonization.

Figure 2. The contents of TSS, sucrose, fructose and glucose in different regions of P. expansum-
inoculated apples during incubation. DE: the decayed tissue at the leading edge; HE: the healthy
tissue at the leading edge; OE: the healthy tissue 6 mm away from the leading edge. The error bar
indicates the standard error (±SE). Capitals indicate a significant difference between different groups
at the same time point, and small letters indicate a significant difference in the same group at the
different time points (p < 0.05).

The accumulation of TSS, sucrose, fructose and glucose in the decayed region is closely
related to the disruption of the fruit’s cell structure caused by fungal colonization. Various
extracellular enzymes are secreted into the decayed tissue by the fungus to disassemble
the cell wall of the fruit during colonization [30], causing the degradation of the cell wall
polysaccharide and the increase in the soluble sugar contents [31]. Moreover, fungal col-
onization facilitates the breakdown of the vacuole of fruit [32], which causes the leakage
of the stored fructose and glucose into to the apoplasmic space in the fruit cells [33]. Our
results showed that fungus prefers to degrade or directly use sucrose as a carbon source
during colonization, which caused a rapid decrease in the sucrose content in the decayed
tissue. The cell wall degradation enzymes secreted by the tips of the fungal mycelium
degrade the cellular components of fruit during colonization, leading to the accumulation
of TSS, sucrose, fructose and glucose in the healthy regions of the leading edge. Moreover,
fungal infection improves the ethylene production of fruit, which accelerates the polysac-
charide degradation of the fruit [34], elevating the sugar contents. Additionally, the higher
accumulation of glucose and fructose in the healthy tissues of the leading edge may be the
results of the transportation of these sugars from the distal tissues in order to defend against
pathogen infection [35,36]. Sucrose can be degraded to create glucose and fructose [37],
which also enhanced the contents of fructose and glucose in the healthy tissues of the
leading edge. The increase in the TSS in the healthy tissues away from the leading edge
may be due mainly to the polysaccharide degradation caused by fungal-induced ethylene
production. Moreover, the decrease in the sucrose, fructose and glucose contents may relate
to the increase in the respiration of the inoculated fruit, which leads to more demands for
energy and a reduced activity for the defense response of the fruit.
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3.2. Effects of P. expansum Colonization on the Contents of Amino Acids in Different Regions of
Apple Fruit

In fruit, amino acids are mainly stored in the vacuole, and they take part in various bio-
logical and metabolic processes in the fruit. Moreover, pathogenic fungi utilize amino acids
as nitrogen sources during colonization [38,39]. Two differential accumulations of amino
acids were observed in the colonized tissue. While there was a decreased accumulation of
methionine, isoleucine, serine, valine, leucine and glutamate, another group of amino acids,
including aspartate, threonine, lysine, arginine, alanine, glycine, cystine, phenylalanine,
histidine and tyrosine, showed an increased accumulation in comparison to the healthy
tissue (Figures 3 and 4). Except for leucine, methionine, glutamate, valine, isoleucine and
serine contents increased in the healthy tissues (HE and OE) during incubation (Figure 3).
The range of the decrease comparing the healthy with the decayed tissues in the contents
of these amino acids was from 0- to 11.3-fold. The observations of the lowest contents of
methionine, glutamate, leucine, valine, isoleucine and serine in the colonized tissue, in
comparison to the healthy tissues, indicate the consumption of these amino acids by the
pathogen (Figure 3).

Figure 3. The decreased contents of amino acids in the decayed region compared with the healthy
regions of P. expansum-inoculated apples during incubation. DE: the decayed tissue at the leading
edge; HE: the healthy tissue at the leading edge; OE: the healthy tissue 6 mm away from the leading
edge. The error bar indicates the standard error (±SE). Capitals indicate a significant difference
between different groups at the same time point, and small letters indicate a significant difference in
the same group at the different time points (p < 0.05).
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Figure 4. The increased contents of amino acids in the decayed region compared with the healthy
regions of P. expansum-inoculated apples during incubation. DE: the decayed tissue at the leading
edge; HE: the healthy tissue at the leading edge; OE: the healthy tissue 6 mm away from the leading
edge. The error bar indicates the standard error (±SE). Capitals indicate a significant difference
between different groups at the same time point, and small letters indicate a significant difference in
the same group at the different time points (p < 0.05).
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On the contrary, after the 2nd day of inoculation, the highest content of aspartate was
observed in the decayed region, which increased by 55.4% and 75.9% compared with the HE
and OE regions by the 6th day of inoculation, respectively (Figure 4). The threonine, lysine,
arginine, alanine, glycine, cystine and tyrosine contents showed no significant difference
between the HE and OE regions during colonization. By the 6th day of inoculation, the
range of the contents of threonine, lysine, arginine, alanine, glycine, cystine and tyrosine
comparing the healthy with the decayed tissues was from 0- to 8.3-fold (Figure 4). The
increased accumulation of amino acids suggested a metabolic response of the fruit to the
pathogen, inducing a specific accumulation in the apple tissues.

Pathogenic fungi secrete proteases into the host during colonization, which causes
proteolysis at the infected sites of the fruit, leading to the accumulation of amino acids in
the decayed tissues of fruit [40]. Moreover, due to the fact that most of the amino acids
are stored in the vacuole of the fruit [39], we hypothesized that fungal colonization may
destroy the vacuole of the fruit, causing the release of amino acids into apoplasmic space
and their accumulation in the decayed region. In the present study, the lowest contents of
methionine, isoleucine, serine, valine, leucine and glutamate and the accumulated contents
of aspartate, threonine, lysine, arginine, alanine, glycine, cysteine, phenylalanine and
histidine were observed in the decayed tissue (Figures 3 and 4). It has been indicated
that fungi can selectively take up amino acids from fruit as nitrogen sources in order to
meet the demands for colonization [41]. Therefore, the decrease in those amino acids in
the decayed region may be more beneficial for P. expansum colonization. Additionally,
the accumulation of methionine, isoleucine, serine, valine, glutamate and aspartate in the
healthy tissue of the leading edge may be involved in their participation in the defense
response of the fruit [42]. Methionine is the precursor of ethylene biosynthesis in fruit, and
ethylene, as a signal, participates in the defense resistance of fruit [43]. Moreover, serine,
isoleucine, aspartate and valine, as signals, can also contribute to the resistance response
of fruit [44–46]. In addition to being related to the defense response, the accumulations of
methionine, isoleucine, serine, valine, glutamate and aspartate during colonization may be
also related to infection-induced ethylene production, which causes protein degradation.

3.3. Effects of P. expansum Colonization on the Contents of TA and Individual Organic Acids in
Different Regions of the Apple Fruit

Organic acids such as citric acid, malic acid and succinic acid participate in the TCA
cycle and are mostly stored in the vacuole of fruit [47]. The TA content accumulated
mostly in the decayed tissue, reaching the most significant difference by the 6th day of
inoculation, which was 23.80% and 76.77% higher than that in the HE and OE regions,
respectively (Figure 5). The HE region had the highest content of malic acid in the first
4 days of inoculation compared with the other two regions, but it was the highest in the DE
region by the 6th day of inoculation, increasing by 1.4- and 2.7-fold compared to that in the
HE and OE regions, respectively (Figure 5). By the 6th day of inoculation, the citric acid
content in the DE region was 1.5- and 1.9-fold higher than that in the HE and OE regions,
respectively (Figure 5). The succinic acid content increased by 4.3- and 3.4-fold in the DE
region compared to that in the HE and OE regions, respectively (Figure 5). The content of
oxalic acid showed a higher amount in the decayed tissues, which increased by 73.1% and
42.7% compared to that in the HE and OE regions on the 4th of inoculation, respectively
(Figure 5). These results indicated that P. expansum increased the accumulation of organic
acid in the decayed tissues compared with the healthy tissues of the infected fruit.

The accumulations of TA, malic acid, citric acid, succinic acid and oxalic acid in the
decayed region of the fruit are related to the breakdown of the fruit vacuole by the fungal
infection. Due to the fact that most of the organic acids are stored in the vacuole, fungal
colonization destroys the membrane of the vacuole, leading to the leakage of these organic
acids into the apoplasmic space and causing the accumulation of these organic acids in the
decayed tissues [47]. Malic acid predominates among the organic acids of apple fruit, which
can enter into the gluconeogenesis pathway to produce glucose [48]. This may explain the
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accumulation of glucose and the reduction in malic acid in the decayed region. P. expansum is
described as an “acidifying fungi” that reduces the host pH by secreting gluconic and citric
acid during colonization, which may contribute to citric acid accumulation in the decayed
tissues [49]. Moreover, the citric and succinic acids in fruit are mainly produced by the TCA
cycle [48]. Fungal colonization may improve the TCA cycle in the decayed region of the
fruit, increasing the contents of citric and succinic acids. The oxalic acid in fruit is derived
from the TCA cycle and ascorbic acid degradation [50]. The accumulation of oxalic acid in
the decayed tissues may relate to the increased TCA cycle and induction of the antioxidant
system of ascorbic acid by the pathogen infection. In addition, the accumulation of TA
and organic acids in the healthy tissues of the leading edge is the result of the enhanced
TCA cycle and tissue acidification caused by fungal colonization. Furthermore, during
colonization, the slight decrease in the TA and organic acid contents is mainly related to
infection-induced ethylene production, accelerating the TAC cycle of the fruit [15].

Figure 5. The contents of TA, malic acid, citric acid, succinic acid and oxalic acid in different regions
of P. expansum-inoculated apples during incubation. DE: the decayed tissue at the leading edge; HE:
the healthy tissue at the leading edge; OE: the healthy tissue 6 mm away from the leading edge.
The error bar indicates the standard error (±SE). Capitals indicate a significant difference between
different groups at the same time point, and small letters indicate a significant difference in the same
group at the different time points (p < 0.05).

3.4. Effects of P. expansum Colonization on the Contents of Fatty Acids in the Different Regions of
Apple Fruit

Fatty acids are an important component of cell membranes [20]. Our results showed
that SFAs, stearic acid and palmitic acid accumulated from the distal healthy region to
the decayed region (Figure 6). The stearic acid content in the DE region was 22.5% and
81.1% higher than that in the HE and OE regions by the 4th day of inoculation, respectively.
Similarly, the palmitic acid content in the DE region was 8.7% and 22.6% higher compared
with the HE and OE regions by the 6th day of inoculation, respectively. On the contrary,
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the content of USFAs, including oleic acid, linoleic acid and linolenic acid, and the DBI
values declined from the distal healthy region to the decayed region (Figure 6). The oleic
acid content in the DE region was 9.2- and 9.4-fold lower compared with the HE and OE
regions by the 4th day of inoculation, respectively. A similar pattern was observed on the
6th day of inoculation, whereupon the linoleic acid content in the DE region was 35.4% and
51.9% lower compared with the HE and OE regions, respectively. Similarly, the linolenic
acid content was 45.3% and 68.2% lower in the DE region than the HE and OE regions
by the 6th day of inoculation, respectively. Additionally, the DBI value showed a similar
pattern, with a 38.8% and 61.3% lower content in the DE region than the HE and OE regions.
These results suggest that P. expansum may consume the USFAs present in the decayed and
healthy regions at the leading edge of the fruit more effectively.

Figure 6. The contents of fatty acids in different regions of P. expansum-inoculated apples during
incubation. DE: the decayed tissue at the leading edge; HE: the healthy tissue at the leading edge;
OE: the healthy tissue 6 mm away from the leading edge. The error bar indicates the standard error
(±SE). Capitals indicate a significant difference between different groups at the same time point, and
small letters indicate a significant difference in the same group at the different time points (p < 0.05).

During colonization, the increase in the SFA (stearic acid and palmitic acid) contents
and the decrease in the USFA (oleic acid, linoleic acid and linolenic acid) contents can
be observed in the decayed tissues. Fungal colonization causes excess reactive oxygen
species (ROS) accumulation in the fruit cells, while ROS can trigger phospholipase A2 that
catalyzes the membrane lipid, releasing USFAs [51,52]. Moreover, ROS can oxidize USFAs
to SFAs, decreasing the degree of unsaturation in the decayed region [53]. The accumulation
of stearic acid and palmitic acid in the healthy tissue of the leading edge or that away
from the decayed region may be involved in the activation of phospholipase A1 caused
by infection [54]. Additionally, the reduction in the contents of linoleic acid, linolenic acid
and DBI may relate mainly to the oxidation of USFAs to SFAs by ROS. In the middle stage
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of colonization, the increase in the oleic acid content in the healthy tissue of the leading
edge or that away from the decayed region is mainly due to the activation of lipase activity
caused by the infection, which accelerates the hydrolysis of the phospholipid membrane,
releasing oleic acid [17]. In addition, compared with the decayed tissue, a higher content
of USFAs was observed in the healthy tissue of the leading edge or that away from the
decayed region during colonization. Linoleic acid and linolenic acid participated directly
or indirectly in the fruit defense via jasmonic-acid-mediated signaling [17,55].

4. Conclusions

Fungal colonization is a dynamic process, which develops in the colonized sites and
spreads to the surrounding healthy tissue of the fruit. Based on the results, we identified
changes in the essential metabolites in different regions of P. expansum-colonized apple during
incubation, as shown in Figure 7. P. expansum preferred to use sucrose and fructose as carbon
sources in the decayed region of the fruit during colonization. The accumulation of fructose
and glucose in the healthy tissues of the leading edge may be related to the degradation of
starch and sucrose. The breakdown of the vacuole and defense response of the fruit were
caused by P. expansum colonization, while the decrease in the sugars in the healthy tissues
away from the decayed region may be mainly involved in the improved ripening caused by
colonization. Moreover, P. expansum selectively took up amino acids in the fruit as nitrogen
sources during colonization. The accumulation of amino acids in the two healthy regions
is mainly the result of protein degradation by pathogen-secreted proteases. In addition, the
accumulation of organic acids in the decayed tissues is mainly related to the breakdown of
the fruit vacuole and accelerated TCA cycle during colonization. The changes in the fatty
acid contents in different tissues suggested that the membrane lipid metabolism and ROS
production are increased from the distal healthy region to the decayed region, while the
defense response of the fruit induced by USFAs may decrease in the same direction. Therefore,
P. expansum kills cells in advance of its infection of the fruit in order to obtain carbon and
nitrogen sources in the distal leading tissue of the infected apple. It is believed that more
nutrients are required for the infection and a stronger defense response of the fruit to the
fungal infection, causing the transit of nutrients from the distal tissue to the infected sites.

Figure 7. Proposed model of changes in the essential metabolites in different regions of P. expansum-
colonized apple during incubation. An upward arrow indicates an increase, a downward arrow
indicates a decrease, a polyline arrow indicates an increase followed by a decrease and a horizontal
arrow indicates no change.
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