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Abstract: Vinegar residue (VR) is a typical organic solid waste in Chinese cereal vinegar production.
It is characterized by high yield, high moisture and low pH and is rich in lignocellulose and other
organic matter. To avoid the environmental pollution caused by VR, it should be properly treated.
The industry’s existing treatment processes, landfills and incineration, cause secondary pollution
and waste of resources. Therefore, there is an urgent demand for environmentally friendly and
cost-effective resource recovery technologies for VR. To date, a considerable amount of research
has been performed in the area of resource recovery technologies for VR. This review summarizes
the reported resource recovery technologies, mainly anaerobic digestion, feed production, fertilizer
production, high-value product production and soil/water remediation. The principles, advantages
and challenges of these technologies are highlighted. Finally, as a future perspective, a cascade and
full utilization model for VR is proposed by considering the inherent drawbacks and economic-
environmental feasibility of these technologies.

Keywords: vinegar residue; resource recovery technologies; anaerobic digestion; feed; fertilizer;
high-value products; soil/water remediation

1. Introduction

Vinegar is one of the most popular acidic condiments worldwide. In China, cereals
(sorghum, wheat bran, rice, millet) are usually used as raw materials to produce vinegars
with characteristic flavors [1]. Traditional cereal vinegars are commonly produced by solid-
state fermentation (SSF). The production process is shown in Figure 1 [2]. Cereal starch is
converted to fermentable sugars by the action of enzymes contained in the fermentation
starter-Qu and is further fermented to alcohol. The alcohol mash is then mixed with wheat
bran, rice hull and vinegar starter-Pei to start acetic acid fermentation (AAF). The microor-
ganisms contained in Pei ferment alcohol into acetic acid and produce various flavors
during approximately 20 days of AAF. After AAF, vinegar is leached out, and the residual
solid component is vinegar residue (VR), which is a main organic solid waste of the vinegar
industry. There are many different kinds of vinegars in China, among which Zhenjiang
aromatic vinegar, Shanxi aged vinegar, Sichuan bran vinegar and Fujian Monascus vinegar
are the most famous [3]. Due to the different raw materials and production processes of
these vinegars, their VRs show some degree of variation (Table 1). In China, more than
3 million tons of VR are produced annually. Since VR has high moisture, low pH and is
rich in lignocellulose and other organic matter, it could result in serious environmental
pollution if not be properly treated before discharge. In addition, these characteristics of
VR make it difficult to be treated. At the scale of production, the main disposal methods of
VR are landfill and incineration. These methods not only cause secondary pollution to air
and soil but also represent a waste of bioresources [4]. Therefore, there is an urgent need to
develop alternative disposal methods for VR.
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Table 1. Nutrients and minerals composition of Chinese cereal VR.

Items Unit Value

Total solid % 27.53–35.63

VS/TS % 88.96–94.73

Crude protein %TS 9.56–17.60

Crude fiber %TS 26.70–34.92

Crude fat %TS 2.70–6.53

Residual starch k/kg TS 16.12–16.32

Hemicellulose %TS 16.22–38.90

Cellulose %TS 22.96–34.91

Lignin %TS 9.20–24.78

Neutral detergent fiber %TS 62.40–85.17

Acid detergent fiber %TS 46.89–55.13

Acid detergent lignin %TS 22.74–22.74

Ether extract %TS 5.95–9.98

Acetic acid k/kg TS 0.15–1.02

Lactic acid k/kg TS 0.12–1.10

Tartaric acid k/kg TS 0.16–0.19

Malic acid k/kg TS 0.04–0.08

Ash %TS 5.62–13.17

C %TS 42.14–49.12

N %TS 1.68–6.61
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Table 1. Cont.

Items Unit Value

C/N NA 15.50–28.68

H %TS 4.88–6.83

S %TS 0.08–0.38

O %TS 35.25–43.44

Calcium k/kg TS 2.10–2.50

Phosphorus k/kg TS 0.40–0.63

pH NA 3.49–4.52

Chinese cereal VR contains various microbial metabolites and unutilized components
from raw materials during vinegar fermentation, including starch, protein, fiber, lipids,
organic acids and inorganic salts (Table 1) [4–24], hence having a high resource recovery
value. To maximize the disposal capacity and resource recovery value, it is important to
develop and promote the use of environmentally friendly and cost-effective VR resource
recovery technologies.

At present, resource recovery technologies for VR can be classified into five main
categories: (1) anaerobic digestion, (2) feed production, (3) fertilizer production, (4) high-
value product production and (5) soil/water remediation (Figure 2). The purpose of
this review is to present a survey of these technologies, analyzing their advantages and
challenges. As a prospect for the future, a cascade and full utilization model of VR is
proposed to achieve optimal resource recovery.
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2. Resource Recovery Technologies of VR
2.1. Anaerobic Digestion
2.1.1. Advances in Anaerobic Digestion Research

Anaerobic digestion has already been extensively applied for the treatment of organic
wastes such as sewage, food waste, energy crops and other biomass to produce biogas
or organic acids [40–48]. VR is one type of organic waste with a carbon-to-nitrogen ratio
(C/N) of 15–30, making it appropriate to be treated by anaerobic digestion. Anaerobic
digestion processing can solve the problem of pollution caused by VR, and it can also yield
a high energy value, so it is one of the most frequently used resource recovery technologies
for VR (Figure 3). As a potential substrate of anaerobic digestion, it is necessary to assess
the biodegradability and biogas yield performance of VR. In general, biochemical methane
potential (BMP) assays are applied to assess the biodegradability and biogas potential
of anaerobic digestion [49,50]. Through the BMP assay, the highest cumulative methane
yield from VR was found to be 242.69 mL/g volatile solids (VS) at a feed to inoculum ratio
(F/I) of 1 [8], indicating that anaerobic digestion is a promising method for VR treatment.
Anaerobic digestion of VR is a complex and multistep process that involves many different
microorganisms. First, macromolecules are hydrolyzed and fermented by fermenting mi-
croorganisms to produce volatile fatty acids (VFAs) and alcohols (hydrolysis/acidification
process). Then, acetic acid-producing bacteria convert VFA and alcohol into acetic acid, car-
bon dioxide and hydrogen (synthetic acetic acid-producing process). Finally, methanogenic
archaea use acid-producing products to produce methane (methanogenic process). There-
fore, there are several important factors that affect the performance of anaerobic digestion,
such as the organic loading rate (OLR), temperature and pH. These factors are associated
with the suppression of VFA accumulation in methanogenic processes [51,52].
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OLR is one of the most important parameters in anaerobic digestion, as the balance be-
tween hydrolysis/acidogenesis and methanogenesis is significantly influenced by OLR [53].
At a high OLR, the hydrolysis/acidogenesis rate is higher than the methanogenesis rate,
leading to a high concentration of VFA accumulated during the hydrolysis/acidogenesis
process and eventually irreversible acidification and collapse of the anaerobic digestion sys-
tem [54]. Li et al. reported that the highest volumetric methane productivity of 581.88 mL/L
was achieved at an OLR of 2.5 g/L/d when a continuous stirred tank reactor (CSTR) was
used for anaerobic digestion of VR [4]. Nevertheless, with increasing OLR, there was an
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accumulation of VFA as well as a decrease in pH, resulting in the failure of the anaerobic
digestion system. In another study, the microbial community structure of anaerobic diges-
tion with increasing OLR was evaluated. The optimum OLR was 2.0 g VS/L/d with the
maximum methane yield. A higher OLR (2.5 g VS/L/d) caused a decreased diversity of
the microbial community and irreversible inhibition of the anaerobic digestion process [5].

To achieve a higher methane yield, the operating conditions in the anaerobic digestion
of VR were always optimized. Feng et al. applied response surface methodology (RSM)
with a central composite design to optimize the anaerobic digestion of VR [6]. A maximum
methane yield of 203.91 mL/g vs. and biodegradability of 46.99% were obtained at an F/I
of 0.5, organic loading of 31.49 g VS/L and initial pH of 7.29. This maximum methane yield
and biodegradability were enhanced by 69.48% and 52.02%, respectively, compared with
the conditions before optimization. Conductive materials have been reported to accelerate
and stabilize the conversion of organic substrates to methane via direct interspecies electron
transfer (DIET) during anaerobic digestion [55,56]. Therefore, two conductive materials,
acetylene black (AB) and hydrochar (HC), were tested to promote the anaerobic digestion
performance of VR [9]. The addition of 1.0 g/L HC and AB indeed increased methane
production by 50% and 232%, respectively. The higher electron conductivity and specific
surface area of AB induced more efficient anabolism in anaerobic digestion compared
to HC. Several studies have also highlighted the advantages of codigestion in anaerobic
digestion, including improved digestibility due to synergistic effects caused by cosubstrates
and process stability [57]. Wen et al. developed a new method for the efficient anaerobic
codigestion of corn straw (CS) using VR as one substrate and pretreating acidifier [16]. The
organic acid in VR was effective in increasing the hydrolysis rate of lignocellulose in CS.
The methane yield from the codigestion of VR and pretreated CS reached 140.48 L/kg VS,
which was 35.7% higher than that of the substrate mixture without pretreatment.

It should be noted that the rate-limiting step in anaerobic digestion of VR is the hy-
drolysis of lignocellulose [58,59]. VR consists mainly of bran, rice husk and other filling
materials rich in lignocellulose. The structure of lignocellulose contributes to the low
biodegradability of VR during anaerobic digestion. To improve biodegradability, pre-
treatment of VR is required to degrade the lignin fraction into smaller molecules, making
cellulose and hemicellulose more degradable for anaerobic microorganisms [60]. There-
fore, some studies on anaerobic digestion of VR have focused on pretreatment methods,
including steam explosion (SE), alkali, acid, hydrothermal and ultrasonic methods. SE
and hydrothermal pretreatment have been widely used in lignocellulosic biomass pretreat-
ment [61–64]. They are clean methods because no chemicals are used in the process except
water [65,66]. SE pretreatment was found by Feng et al. to disrupt the structure of lignocel-
lulose by removing hemicellulose and lignin and effectively increase methane yield [7]. The
highest methane yield of 153.58 mL/g vs. was obtained for the SE-treated VR at 0.8 MPa
for 5 min, which was 27.65% higher than that of the control. Ran et al. used a hydrothermal
method to pretreat washed VR, and the maximum methane yield was obtained when
the hydrothermal temperature was 160 ◦C [11]. Alkali and acid are effective, economical
and simple pretreatment methods [64]. Sodium hydroxide (NaOH) pretreatment has been
reported to be efficient in removing the majority of lignin and partial hemicellulose from
lignocellulose, thus effectively improving the methane yield of VR. The 3% NaOH-treated
VR showed the highest cumulative methane yield, 53.99% higher than that of untreated
VR [12]. Acid was effective for the release of protein, cellulose and hemicellulose but not
for lignin. Hydrochloric acid released more organic substrates for anaerobic digestion than
oxalic acid [15]. Ultrasonic pretreatment is a mechanical and environmentally friendly
method that does not require additional chemical agents. By ultrasonic pretreatment, the
structure of lignocellulose can be destroyed in a very short time by cavitation formation
and subsequent collapse while releasing a large amount of energy. For VR pretreated in the
condition of 0.5 W/mL ultrasonic power density and 60 min ultrasound, the methane yield
could be 68.7% higher than that of the untreated VR [10].
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2.1.2. Challenges in Anaerobic Digestion of VR

(1) The biodegradability is low in the absence of pretreatment, which can lead to a gradual
accumulation of lignocellulose in the anaerobic digestion reactor. The accumulation
of lignocellulose further causes flushing of activated sludge from the reactor and
depresses the performance of anaerobic digestion.

(2) VR pretreatment methods also have inherent problems [67]. SE, hydrothermal and ul-
trasonic pretreatments require high energy consumption. Acid and alkali pretreatment
can lead to secondary contamination and equipment corrosion. In addition, inhibitors
produced during pretreatment, such as furan derivatives, can inhibit microorganisms
in anaerobic digestion systems.

(3) The residues remaining after VR anaerobic digestion need further treatment. There-
fore, the optimized conditions and pre- and posttreatment of VR anaerobic digestion
should be further investigated.

2.2. Feed Production
2.2.1. Advances in Feed Production

The shortage of conventional feed such as corn, soybean and wheat has limited the
development of the livestock industry in many countries. To meet the increasing demand
for livestock products and alleviate the conflict between humans and animals for food, it
is important to utilize unconventional feed resources [68]. Unconventional feeds made
from agricultural and food industry byproducts are now becoming increasingly popular
in ruminant feeding systems because of their competitive price compared to conventional
feeds [69–72]. As a byproduct of cereal vinegar production in China, VR can also be used
as a potential feed resource considering its nutritional composition (Table 1). In recent
years, it has been applied as a nonconventional feed resource directly or in a fermented
form for livestock feeding. Song et al. determined the chemical composition and ruminal
degradability of VR to assess its feasibility as a feed for ruminants [20]. VR could not be
well digested due to the high lignin and ash content. However, ether extract (EE) and
protein contents make VR a suitable additive in ruminant diets. VR contains lactic acid,
acetic acid, tartaric acid, malic acid and other organic acids. Studies have shown that
these fatty acids have certain biological functions in feed. Lactic acid has been successfully
used to soak barley grain to adjust the ruminal energetic state, fermentation mode and
inherent immunity and to increase the fat content of milk from dairy cows [73,74]. Acetic
acid can be easily assimilated by ruminants and used as an energy source. Malic acid is an
essential component of energy metabolism associated with the Krebs cycle and contributes
a positive role in ruminal pH regulation, microbial fermentation and mean daily weight
increase [75,76]. It has also been reported that organic acids entering the diet as feed
additives can reduce nitrogen (N) excretion by animals [77]. Song et al. found that the
addition of 40 g VR/kg to the diet of laying hens significantly reduced nitrogen excretion
and uric acid nitrogen excretion, thereby reducing nitrogen pollution to water and air [21].
VR in laying hen diets could also alter intestinal pH and pepsin activity in the upper
gastrointestinal tract but hardly affect the intestinal microbial community of laying hens.

VR can also be fermented by microorganisms to produce microbial fermented feed
(MFF). Through fermentation, the content of protein and various nutrients (such as vitamins
and amino acids) is increased, and the antinutritional factors in VR are reduced, especially
lignocellulose, which can be decomposed by microorganisms. As a result, the nutritional
value, nutrient bioavailability and palatability of the feed can be significantly improved.
Saccharomyces, Lactobacillus, Bacillus, Aspergillus and Neurospora are commonly used in
MFF production [78,79]. In general, these microorganisms have the advantages of efficient
enzyme production, nontoxicity, high protein content in the cell, rapid reproduction, and
no significant antagonistic relationship with other beneficial microorganisms [79]. Neu-
rospora sitophila is a fungal species that has been certified by the U.S. Food and Drug Ad-
ministration as safe and edible [80]. It is usually used to ferment sugarcane bagasse, corn
stover, wood cellulose and other lignocellulosic biomass to make protein- and carotenoid-
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rich feeds [81–83]. When VR was fermented with N. sitophila, the nutritional value (higher
protein and carotenoid content) and degradability were significantly improved for mutton
sheep as roughage feed compared with unfermented VR. In addition, the degradability
of protein by ruminal microflora decreased with fermented VR, resulting in more protein
being digested and absorbed postrumen [19]. Aspergillus species are commonly used
for the production of phytase [84–87]. It is well known that phytase in feed can reduce
the release of phosphorus from livestock and thus avoid phosphorus contamination [88].
As one of the Aspergillus species, Aspergillus ficcum has been used to ferment VR for the
production of phytase-rich feed additives in SSF [24,25]. Through the Plackett–Burman
(PB) design, steepest ascent path design and RSM, the highest phytase activity reached
98.37 ± 0.85 U/g dry mold. Bacillus species, particularly B. licheniformis and B. subtilis, are
important probiotics for humans and animals [89]. They exhibit high stability to gastric
conditions and have antimicrobial, anticancer, antioxidant, and vitamin-producing prop-
erties [90]. Hydrolyzed VR has been used in the production of feed additive containing
Bacillus licheniformis. Bacillus licheniformis reached a viable count of 8.25 × 109 CFU/mL
with a sporulation rate of more than 80% after 18 h of fermentation [26].

2.2.2. Challenges in Feed Production

Despite the mentioned advantages of using VR to produce feed, there are still some risks
and problems that must be addressed considering the economic benefit or animal health.

(1) Wet VR is prone to deterioration, which can result in the production of toxic my-
cotoxins, especially when transported over long distances without proper storage
management. Livestock fed with spoiled VR can exhibit respiratory distress, diarrhea,
and other toxicities. Therefore, wet VR should be dried before being transported to
feed producers, but this process requires significant energy consumption.

(2) The low energy concentration and density of VR makes livestock susceptible to satiety
and further reduces feed intake. When livestock (particularly monogastric animals)
were fed a high percentage of VR, the low digestibility caused by the high fiber content
would speed up the passage of chyme through the intestine, thus reducing nutrient
absorption [21,91].

(3) Higher levels of alcohol left in VR can also pose a risk of poisoning in livestock. Higher
levels of alcohol have been reported to cause metabolic disorders, liver disease and
brain damage [92].

2.3. Fertilizer Production
2.3.1. Advances in Fertilizer Production

Currently, the widespread use of chemical fertilizers has caused significant envi-
ronmental impacts, such as deterioration of the soil dynamic balance and groundwater
contamination. This has promoted the research and development of organic fertilizers with
minimal environmental impact [93]. Biomass waste, such as animal manure, sewage sludge
waste and food industrial byproducts, are promising renewable raw materials for organic
fertilizer production [94–98]. The good physicochemical properties of VR make it a poten-
tial organic fertilizer [99]. However, before being used as fertilizer, VR is always pretreated
by composting technology to improve fertilizer efficiency. As an effective technology for
the utilization of organic solid waste, composting can improve mineralization and humi-
fication [100,101]. The composting process typically consists of three stages, including
the mesophilic stage, the thermophilic stage and the maturation stage [102]. Soluble and
readily decomposable organic compounds are first metabolized by microorganisms. Then,
cellulose, proteins and other macromolecules are broken down into humic acids by ther-
mophilic microorganisms [103]. The thermophilic phase usually lasts for 5 days, and the
temperature is maintained above 50 ◦C, which is effective in reducing pathogens [104,105].
When organic matter is reduced and microbial activity is inhibited by high temperatures,
the composting process enters the maturation stage in which mesophilic microorganisms
dominate and further decompose the remaining organic matter into humic acids [102]. The
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composting period of VR is commonly long due to the low pH and high lignocellulose
content (Table 1). The composting process of VR always needs to be optimized to improve
the efficiency and final quality of compost. Zhao used a stable maturation technique and
nutrient structure improvement technique to facilitate the composting process of VR. The
results showed that the two-stage fermentation technology could achieve full maturation
of VR with a germination index (GI) above 100% after fermentation. The addition of plant
ashes could significantly improve the composting process by shortening the period and
increasing the nutrient contents [27]. Different types and dosages of additives could lead to
differences in the chemical composition, nutrient content, quality and toxicity of compost.
Calcium carbonate was found to significantly promote VR decay and improve compost
quality [28].

VR compost products can promote the growth of crops. Du reported that VR compost-
amended media (VR compost mixed with peat and vermiculite in a 6:3:1 (v/v) ratio) was
beneficial for cucumber growth and could be used as a biological control for Fusarium
wilt [29]. VR compost-amended media suppressed Fusarium wilt of cucumber by upregu-
lating the activities of defense-related enzymes and pathogenesis-related proteins and by
adjusting the expression levels of stress-related genes [30]. VR compost is also a potential
organic substrate to control bacterial wilt of tomato seedlings through inhibiting disease
and altering the activity of the soil enzymes and microbial community [31].

2.3.2. Challenges in Fertilizer Production

(1) Gases (such as CO2, NH3 and N2O) are emitted during the composting process.
These gases not only cause odor problems but also cause greenhouse issues [106].
In addition, NH3 emissions result in an excess of 70% of total nitrogen losses [107].
Therefore, process optimization should be performed to control gas emissions.

(2) VR consists of bran, rice husk and other filling materials which contain highly crys-
talline lignocellulose that is recalcitrant to composting. High lignocellulose content in
plant wastes has been reported to elongate the composting time in the composting
pile. Therefore, to obtain good performance of composting for VR, a long composting
period and a large land demand are needed [108].

2.4. High-Value Product Production
2.4.1. Advances in High-Value Product Production

VR can also be converted into high-value products through microbial fermentation
or physical–chemical processes due to the characteristics of low cost, abundance and easy
availability (Figure 4). At present, VR has been a potential substrate for the production of
ethanol, butanol and xylose through fermentation processes. However, VR contains a high
level of lignocellulose and therefore requires pretreatment and enzymolysis to hydrolyze
lignocellulose into fermentable sugars prior to biotransformation. Liu et al. used NaOH-
pretreated VR and simultaneous saccharification and fermentation processes to produce
ethanol and xylose [22]. The optimal pretreatment conditions were 2.2% NaOH, solid-to-
liquid ratio of 1:11 (w/v), 63 ◦C, 80 min and 4.9 IU/g xylanase. As a result, the total sugar
yield was 66.1% after pretreatment, and the yields of ethanol and xylose were 319 mg/g
and 179 mg/g, respectively. It is important to note that the pretreatment process can
produce inhibitors to ferment microorganisms, mainly including furfural, 5-hydroxymethyl
furfural and other inhibitors. These inhibitors can prevent microbial growth, substrate
utilization and product synthesis, thereby greatly reducing productivity [109]. To resolve
this problem, microbial strains with high inhibitor tolerance should be bred. A high
inhibitor-tolerant strain, Clostridium acetobutylicum, has been generated by atmospheric and
room-temperature plasma (ARTP) and used to produce biofuel butanol from hydrolyzed
VR [32]. After an optimal two-step SE pretreatment and enzymatic hydrolysis, 19.60 g of
glucose, 15.21 g of xylose and 5.63 g of arabinose were obtained from 100 g of VR. At the
end of the fermentation, 7.98 g/L butanol was achieved.
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In addition to microbial fermentation, VR can also be converted into high-value prod-
ucts through physical–chemical processes. Because of the existence of ordered hydrogen
bonds, cellulose was reported to naturally form alterable supramolecular structures with
hydrophilic, biocompatible and chiral characteristics. Therefore, region-selective functional
derivatives can be prepared from cellulose [110,111]. These species of cellulose derivatives
can be applied as catalysts for the preparation of pharmaceutical intermediates and fine
chemicals. By using the characteristic of high cellulose content in VR, Qiao et al. constructed
a novel structural network of VR sulfates with inorganic/organic sulfo- and sulfoalkyl
chemicals for catalytic application [33]. The modulated surface realized a good catalytic
effect toward the synthesis of imidazolidine-2,4-dione derivatives from sulfates. VR was
also used to produce syngas and phenols through pyrolysis. In addition, Liu et, al. reported
that anaerobic digestion as a pretreatment method for VR could enhance the pyrolysis
effect. The highest gas yield and lignin-derived phenols could reach to 43.14% and 42.16%,
respectively [34].

2.4.2. Challenges in High-Value Product Production

The greatest challenge faced by this resource recovery technology is the high cost
of bioconversion into high-value products through microbial fermentation compared to
traditional raw materials of starch or fermentable sugars. The high cost is commonly caused
by the following reasons:

(1) VR pretreatment usually consumes large amounts of energy, chemicals and hydrolytic
enzymes, thus greatly increasing the processing cost of the raw materials.

(2) VR pretreatment can produce inhibitors to ferment microorganisms, so these inhibitors
should be removed from the hydrolysate prior to fermentation, or highly inhibitor-
tolerant microorganisms should be generated.

(3) Acid and alkali pretreatment results in a large amount of wastewater that should be
treated before being discharged.

(4) The final concentration of the product at the end of fermentation is relatively lower
than that of the conventional raw material, so the cost of product purification is high.

2.5. Soil/Water Remediation
2.5.1. Advances in Soil/Water Remediation

Heavy metal pollution of soil and water has attracted worldwide attention due to
its serious threat to organisms and its accumulation in biota. High levels of heavy metals
in soil and water result from improper treatment of waste, agricultural and industrial
activities, and other human activities [112]. Heavy metals can easily accumulate in the
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body along the soil–crop–food chain and are toxic to wildlife and humans [113]. Therefore,
there is an urgent need for effective and environmentally friendly technologies for the
remediation of soil and water contaminated with heavy metals. Currently, the application
of organic solid waste materials for the remediation of heavy metal-contaminated soil and
water has received increasing attention. This process has several benefits: (1) economical
solution of organic waste disposal; (2) return of components from organic waste to the
biogeochemical cycle; and (3) improvement of soil fertility [114]. In recent years, some
researchers have started using VR to produce soil and water amendments. Pei et al. applied
a soil amendment consisting of VR, stainless steel slag and weathered coal to immobilize
lead (Pb) in the soil [35]. The release of Pb from the soil was restrained, and the adsorption
of Pb by plants was mitigated accordingly. VR can also be used as a support matrix
for nanoscale zero-valent iron (nZVI), which is ideal for the remediation of heavy metal-
contaminated soil and water through oxidation, reduction, precipitation and/or adsorption
(Figure 5A) [115]. The use of VR as the support matrix can resolve the problems of
low transport capacity, passivation and aggregation faced by nZVI, thus improving the
immobilization capacity of chromium (Cr) in soil. The composite material derived from
nZVI supported on VR achieved immobilization efficiencies of 98.68% Cr (VI) and 92.09%
Crtotal. Almost all the exchangeable Cr was shifted to organic matter-bound and Fe-Mn
oxide-bound compounds [36]. VR can also be used as a carrier material for Bacillus subtilis
to enhance the biodegradation of phenanthrene in aqueous solution. Zhang et al. prepared
an immobilization carrier for B. subtilis ZL09-26 with different temperature-treated VRs and
found that VR dried at 50 ◦C (VR50) maximally promoted the growth and phenanthrene
degradation of B. subtilis ZL09-26 [37]. Moreover, VR50 started after one week of use.
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VR can also be converted to biochar, which can then be used for the remediation
of heavy metal-contaminated soil and water. Biochar is a solid, carbonaceous, porous
product produced by the pyrolytic conversion of organic biomass in an oxygen-limited
atmosphere [116]. It is characterized by high porosity, large surface area and abundant
functional groups. Several researchers have reported that biochar can remediate heavy
metal-contaminated water and soil through mechanisms of ion exchange, complexation,
redox, precipitation and electrostatic interactions (Figure 5B) [116]. Biochar prepared
with VR in an oxygen-limited atmosphere at 700 ◦C has been proven to be a promising
amendment for Cd remediation in water and soil [38]. In addition, ZnCl2 could modify
VR biochar (VRB) by forming a highly porous and aromatic structure. When the mass
ratio of ZnCl2/VRB was 1, the ZnCl2-modified VRB reached the highest cadmium ad-
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sorption capacity (236.81 mg/g), which was significantly higher than that of the control
(9.96 mg/g) [39].

2.5.2. Challenges in Soil/Water Amendment Production

(1) Although VR-supported nZVI has been effectively used for soil and water remediation,
exposure to nZVI has harmful effects on humans and the environment [115].

(2) Biochar made from VR has great advantages in soil remediation, but the long-term
effects of biochar on soil remain unclear. Therefore, to reduce the possible risks
associated with biochar, more attention should be given to the long-term effects and
risk assessment of biochar on soil. For example, heavy metals immobilized on biochar
may be rereleased due to chemical, physical and biological degradation caused by
weathering aging [116].

3. Conclusions and Future Prospective

The disposal of VR is a challenge for vinegar producers. There is growing concern
about the environmental and ecological impacts associated with VR treatment, and there-
fore, more sustainable practices are needed. To date, several VR resource recovery technolo-
gies have been proposed and studied. However, by assessing the economic feasibility and
potential environmental impacts, some of these technologies should be further investigated
before industrial application. For example, the price of feed made from VR is unlikely to
be high due to the low nutritional value of VR. In addition, fresh VR needs to be dried
and transported to feed producers, which further increases the cost of feed production.
Therefore, the technology of producing feed from VR is not economically feasible. For the
technology of producing high-value products with VR, the greatest challenge for industrial
applications is also the high production cost due to VR pretreatment and low productivity.

Considering the inherent defects of various technologies, a single technology gen-
erally cannot realize the full utilization of VR, so some existing technologies should be
combined. Based on the characteristics of the above VR resource recovery technologies and
the existing technology and facility conditions of vinegar producers, we propose a cascade
and full utilization model of VR, as shown in Figure 6. Fresh VR should be pretreated first
to increase the availability of anaerobic digestion and thus improve biogas production.
However, pretreatment methods should be further investigated to meet the conditions as
shown in Figure 6 [117]. Then, the pretreated VR is treated by anaerobic digestion reactors
in vinegar plants, where easily degradable organics are digested by microorganisms to
produce biogas. To further improve the performance of anaerobic digestion, several strate-
gies as shown in Figure 6 should be adopted. Bioaugmentation can improve microbial
diversity and populations favoring biogas production by inoculating certain microorgan-
isms into the anaerobic digestion system [118]. For pretreated VR, bioaugmentation with
cellulose-degrading microorganisms should be carried out. Recently, new strategies have
been put into practice to improve the efficiency of bioaugmentation by immobilizing mi-
croorganisms on nanoparticles [119,120]. To improve the performance of strains during
anaerobic digestion, different genetic and metabolic engineering approaches can also be
used to modify key microorganisms [121,122]. Finally, residue from the anaerobic digestion
reactor, including the organics difficult to degrade (such as lignocellulose) and excess acti-
vated sludge, is treated with the composting process. Similarly, further research as shown
in Figure 6 should be conducted on composting processes to improve performance and
compost quality [123]. It should be noted that machine learning (ML) has been gradually
applied to various areas of organic solid waste treatment processes, such as anaerobic
digestion, composting, thermal treatment and landfills [124]. The general principle of ML
is to generalize the relationships between input and output variables through inductive
reasoning and then to make informed decisions in new situations based on the relationships
learned from the empirical data. ML has the advantages of having high predictive accuracy
when applied to complex nonlinear problems, saving time and greatly reducing the labor
and resource consumption of unnecessary repetitive experiments. These advantages allow



Foods 2022, 11, 3256 12 of 18

us to use ML to improve the anaerobic digestion and composting process for VR treatment.
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The biogas produced during the anaerobic digestion of VR can be used as an energy
source for vinegar production, composting and further treatment of wastewater. The
compost can be used as fertilizer. The full utilization model recognizes the efficient VR
utilization of the whole industrial chain from the beginning to the end of VR disposal. In
addition, there are some residues such as distiller’s grains (DGS) from Chinese baijiu pro-
duction and brewer’s spent grain (BSG) from beer production that show similar properties
to those of VR. Therefore, the proposed full utilization model could provide a reference for
resource recovery of DGS, BSG and other similar residues.
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Abbreviations

AAF Acetic acid fermentation
AB Acetylene black
ARTP Atmospheric and room-temperature plasma
BMP Biochemical methane potential
BSG Brewer’s spent grain
CFU Colony forming units
C/N Carbon-to-nitrogen ratio
CO2 Carbon dioxide
Cr Chromium
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CSTR Continuously stirred tank reactor
CS Corn straw
DGS Distiller’s grains
DIET Direct interspecies electron transfer
EE Ether extract
GI Germination index
HC Hydrochar
IU International unit
MFF Microbial fermented feed
ML Machine learning
NA Not Available
NaOH Sodium hydroxide
NH3 Ammonia
N2O Nitrous oxide
nZVI Nanoscale zero-valent iron
OLR Organic loading rate
PB Plackett–Burman
RSM Response surface methodology
SE Steam explosion
SSF Solid-state fermentation
VFA Volatile fatty acid
VR Vinegar residue
VRB VR biochar
VS Volatile solid
ZnCl2 Zinc chloride
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