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Abstract: We investigated the modification of wheat starch with Ligustrum robustum (Rxob.) Blume
extract (LRE) and determined the action mechanism. Based on differential scanning calorimetry, LRE
decreased the gelatinization enthalpy of wheat starch from 19.14 to 7.15 J/g and changed gelatiniza-
tion temperatures (including the variation in gelatinization onset temperature, peak temperature and
conclusion temperature in different degrees). Moreover, LRE affected the pasting viscosity curve of
wheat starch, and changed its rheological parameters (including the decrease in storage modulus
and loss modulus, as well as the increase in loss tangent). Based on the analysis of scanning electron
microscopy and wide-angle X-ray diffraction, LRE increased the hole size and the roughness of the
gel microstructure, and decreased the crystallinity of wheat starch. Meanwhile, the evaluation results
of the texture analyzer and the colorimeter showed that LRE could change the quality properties
(including decrease hardness, fracturability and L* values, as well as increase a* and b* values) of
wheat starch biscuits after hot air baking (170 ◦C). Furthermore, with molecular dynamics simulation
analysis, phenolic compounds of LRE combined with starch molecules via H-bonds and affected the
formation of molecular bonds (including intra- and intermolecular hydrogen bonds), so as to change
the spatial conformation and properties of wheat starch during gelatinization and retrogradation.
The present results suggest that LRE can modify the physicochemical properties of wheat starch and
further improve its processing properties, indicating its potential in the design and development of
starch foods (such as steamed buns, bread, biscuits, etc.).

Keywords: polyphenol; starch; physicochemical properties; interaction; action mechanism

1. Introduction

Starch widely exists in dietary and medicinal plants, and is commonly utilized as a raw
material for food products, edible preservative films, drug sustained-release carriers, and so
on [1,2]. In order to expand the application of starch, some methods of physical, chemical,
and enzymatic treatment are used to modify the properties of starch, so as to improve
the natural characteristics of starch and enhance its application value [3]. The chemical
modification method by using synthetic reagents is currently most commonly used for
preparing modified starch, with the advantages of high efficiency and simple operation [4].
However, the use of synthetic reagents in foods is of concern due to their potential toxicity
to human health [3,4]. Therefore, the screening and use of natural compounds for starch
modification are important for the development of modified starch and its utilization
in the food industry. Phenolic compounds are the secondary metabolites produced by
plants, which not only have the advantages of natural and wide sources, but also show the
potential to reduce the risk of various diseases (such as certain cancers, type II diabetes
and osteoporosis) owing to their multitudinous biological activities (such as anti-oxidation,
anti-inflammation and anti-microbial activities) [5]. Moreover, some studies have pointed
out that phenolic compounds can affect some properties of starch and the quality of starch
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food [6–8]. Meanwhile, it has been reported that starch can be used as a material for food
packaging and drug embedding to carry and protect phenolic compounds [9]. Thus, many
efforts are focused on the novel applications of phenolic compounds for starch processing
in the food and medicine industries.

Ligustrum robustum (Rxob.) Blume is widely planted in southwest China and is a tradi-
tional food in China. It has been reported that L. robustum is rich in phenolic compounds
and exhibits multiple bioactivities, such as anti-hypertension anti-inflammatory, as well
as anti-aging activities [10]. Thus, L. robustum has wide application prospects in food and
other relevant industries.

As part of a series of studies on the valuable utilization of L. robustum, in the present
work, we sought to modify the physicochemical properties of wheat starch by using
L. robustum extract (LRE). Furthermore, the potential application of LRE in wheat starch
biscuits was evaluated, and molecular dynamics simulation was used to explore the action
mechanism of interactions between wheat starch and LRE.

2. Materials and Methods
2.1. Materials and Reagents

Wheat flour (low gluten, Zhongliang, Beijing, China; protein, fat and carbohydrate
contents are 8.0%, 1.6% and 76.5%, respectively) and L. robustum (dry leaves) were pur-
chased from a local supermarket in Chengdu, China, and stored at 4 ◦C. Sodium carbonate,
Folin–Ciocalteu reagent, gallic acid, sodium nitrite and rutin were provided by Aladdin
(Shanghai, China). All other reagents used were of analytical grade, and the water was pu-
rified by a UPR-II-10T pure water instrument (ULUPURE, Chengdu, China). The reagents
used for chromatographic analysis were of chromatographic grade.

2.2. Preparation of Wheat Starch and L. robustum Extract

The wheat starch was prepared according to the previous study [11,12]. The yield
of wheat starch was 70.85% (70.85 g starch/100 g wheat flour). The ratios of amylose
and amylopectin in wheat starch were 27.68 ± 1.36% and 70.05 ± 2.58%, respectively [13].
Amylose was composed of glucose units linked by α-1,4 glycoside bonds with a linear
structure, and amylopectin was composed of glucose units linked by α-1,4 and α-1,6
glycoside bonds with a branched structure.

The L. robustum extract (LRE) was prepared according to the previous studies [14,15].
The yield of LRE was 12.13% (12.13 g extract/100 g sample powder from dry leaves), and
with the determination method in our previous study, the total phenol content of LRE was
calculated as 178 ± 1.64 mg gallic acid equivalent/g LRE [16]. Meanwhile, according to the
previous studies, the main phenolic compounds of LRE were identified as Ligurobustoside
B (LGB), Ligurobustoside N (LGN) and Ligupurpuroside J (LPJ) [17,18]. The detailed
information on their identification is presented in Supplementary File S1, and the detailed
methods for the preparation of wheat starch and LRE are presented in Supplementary
File S2.

2.3. Effect of LRE on the Physicochemical Properties of Wheat Starch

According to some previous studies, the effect of LRE on the physicochemical prop-
erties of wheat starch was determined, including the thermodynamic properties [19], the
pasting characteristics [20], rheological properties and gel microstructure [20] and wide-
angle X-ray diffraction [21].

The thermodynamic properties of the samples were determined with a Mettler-Toledo
DSC (differential scanning calorimeter, Pyris/Diamond, Mettler Toledo International Trad-
ing Co., Ltd., Shanghai, China), where 4 µL of LRE solution (0%, 2.5%, 5% and 10%, w/v)
was mixed with 2 mg of wheat starch in the aluminum crucible. The pasting characteristics
of the samples were evaluated with an RVA (Rapid Visco Analyzer, Perten Instruments of
Australia Pty Ltd., Warriewood, Australia), where LRE was mixed with 3 g of wheat starch
to reach the final concentrations of 0%, 5%, 10% and 20% (w/w, based on the weight of WS).
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The rheological properties of the samples were determined with an AR G2 stress-controlled
rheometer (TA Instruments, New Castle, DE, USA) equipped with a parallel-plate geom-
etry (40 mm in diameter, 1 mm in gap); the samples were taken from the RVA test. The
gel microstructure of the samples was observed with a SU8010 SEM (scanning electron
microscope, Hitachi, Ltd., Tokyo, Japan) at an accelerating voltage of 15 kV with a mag-
nification of 250 times or 500 times; LRE was added to wheat starch slurry (12%, w/v) to
reach the final concentrations of 5%, 10% and 20% (w/w, based on the weight of starch
in solution). The wide-angle X-ray diffraction of the samples was performed with a D8
Advance wide-angle X-ray diffractometer (Bruker, Ltd., Rheinstetten, German); the sample
preparation method was consistent with that in the SEM test. The detailed methods for the
determination of the effect of LRE on the physicochemical properties of wheat starch are
presented in Supplementary File S2.

2.4. Determination of the Quality Properties of Wheat Starch Biscuits with LRE

Briefly, LRE solution (25 mL, 0–5%, w/w, based on the weight of wheat starch in the
mixture) was slowly poured into the wheat starch (50 g) to make a starch block. Subse-
quently, every 6 g of the starch block was shaped with a mold (4.7 cm × 4.7 cm ×1.7 cm).
After that, the shaped starch block was baked for 12 min with hot air (170 ◦C) and then
cooled to 25 ◦C to produce wheat starch biscuits. The quality properties (including color
and texture) of the wheat starch biscuits were determined [22]. The color parameters (L*, a*
and b* values) of the biscuits were measured with a colorimeter (Konica Minolta, Chroma
Meter, CR400, Tokyo, Japan) standardized by standard white plates. The texture properties
(hardness and fracturability values) of the biscuits were determined by a TA-XT2 express
texture analyzer (Stable Micro Systems Ltd., Haslemere, U.K.) with a P/2N probe according
to the previous study [22]. The detailed methods for the determination of the quality
properties of wheat starch biscuits with LRE are presented in Supplementary File S2.

2.5. Molecular Dynamics Simulation

Molecular dynamics (MD) simulation is a computational method, which we used to
analyze the interaction between LRE and wheat starch [20,23]. Briefly, the starch model
(two parallel SGS (short-chain glucose) chains; each SGS chain has three left-handed
helixes, which contain a total of 18 D-glucopyranose connected by α-1,4-glycosidic bonds)
was built using GLYCAM (https://www.glycam.org, Complex Carbohydrate Research
Center, University of Georgia, Athens, GA, USA). Phenolic components identified from
LRE (including LGB, LGN and LPJ) and reaction solvent (water box: TIP3PBOX, size:
65 × 46 × 49 Å3) were built and optimized for MD simulation. Thereafter, the starch
model with the GLYCAM-06j-1 force field and LGB (LGN or LPJ) with the generalized
amber force field (GAFF) were loaded into the water solvent box in AMBER software. Then,
the energy minimization procedure was used to reduce system energy. The NVT (canonical
ensemble) procedure was carried out to increase (from 0 to 370 K) or decrease (from 370 to
277 K) the system temperature for simulating the gelatinization and retrogradation of starch,
respectively. Then, the NPT (constant molecule, pressure and temperature) procedure was
used to balance the simulated system. Finally, the production run procedure was used to
simulate the interactions between SGS and LGB (LGN or LPJ) at a simulated gelatinization
temperature (370 K) or simulated retrogradation temperature (277 K). The trajectory of
MD simulation, intramolecular H-bond, intermolecular H-bond, the center of mass (COM)
distance and root mean square deviation (RMSD) were separately observed, recorded and
calculated. The detailed simulation method is presented in Supplementary File S2.

2.6. Statistical Analysis

The data from triplicate analyses are expressed as mean ± standard deviation (SD).
SPSS 22.0 software (SPSS Inc., Chicago, IL, USA) was employed for analysis of variance
(ANOVA), and the significant differences (p < 0.05) were determined by using Tukey’s test.

https://www.glycam.org
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3. Results and Discussion
3.1. Thermodynamic Properties of Wheat Starch with LRE

As presented in Table 1, To (gelatinization onset temperature), Tp (peak tempera-
ture), Tc (conclusion temperature) and ∆Hg (gelatinization enthalpy) of wheat starch were
changed by LRE. Notably, the ∆Hg value decreased with the increase in LRE concentration,
especially the addition of 20% LRE (w/w, based on the weight of starch). ∆Hg represents
the energy absorbed by molecules or chain segments to leave the lattice, which is related to
the strength of intermolecular force. The greater the intermolecular force, the greater the
∆Hg value [24,25]. It has been reported that the gelatinization of starch granules may be
attributed to the rupture of the amylopectin double helices and the melting of the crystalline
lamellae, which need high temperature and energy to break the strong bonds between
starch molecules [24,25]. In the present study, LRE could promote the gelatinization of
wheat starch, which might be attributed to the hydroxyl groups in phenolic compounds
of LRE. It has been reported that the hydroxyl groups of phenolic compounds may bind
to starch chains through hydrogen bonds, which may reduce the tightness of starch crys-
talline micelles. The crystalline micelle structure is maintained by the molecular bonds
(such as hydrogen bonds) among starch molecules. The decrease in the molecular forces
among starch molecules indicates that starch granules are more easily destroyed with a
low ∆Hg value. When 20% LRE was co-gelatinized with starch, LRE not only promoted
the movement of water molecules into starch granules, but also interacted with starch by a
large number of multi-point hydrogen bonds, which could weaken the molecular bonds
among starch molecules and decrease the ∆Hg value [26].

Table 1. The effect of LRE on the thermodynamic properties and pasting characteristics of wheat starch.

Concentration
of LRE

Gelatinization Parameter Pasting Parameter

To (◦C) Tp (◦C) Tc (◦C) ∆Hg (J/g) PV (cp) HV (cp) FV (cp) BD (cp) PT (min)

0% 57.46 ± 0.56 ab 62.20 ± 0.36 ab 67.09 ± 0.24 a 19.14 ± 0.32 a 2927 ± 2 a 2221 ± 3 a 3459 ± 3 a 706 ± 4 d 6.93 ± 0.3 a

5% 56.43 ± 0.13 b 61.70 ± 0.21 bc 66.34 ± 0.22 c 17.13 ± 0.41 b 2821 ± 3 b 1971 ± 2 b 3442 ± 2 b 850 ± 1 c 6.47 ± 0.1 b

10% 56.12 ± 0.22 bc 61.91 ± 0.11 b 66.57 ± 0.14 bc 15.24 ± 0.37 c 2626 ± 2 cd 1642 ± 3 c 3232 ± 2 bc 984 ± 3 b 6.20 ± 0.2 bc

20% 57.55 ± 0.37 a 62.74 ± 0.32 a 66.78 ± 0.26 b 7.15 ± 0.42 d 2634 ± 3 c 1461 ± 4 d 3061 ± 1 c 1173 ± 3 a 5.73 ± 0.1 c

Each value is expressed as mean ± SD (n = 3). Different superscript letters in each vertical column denote
statistically significant differences (p < 0.05). ∆Hg was calculated based on normalization to the starch mass. PV:
peak viscosity, HV: hold viscosity, FV: final viscosity, BD: breakdown, PT: pasting time, LRE: Ligustrum robustum
(Rxob.) Blume extract.

3.2. Pasting Characteristics of Wheat Starch with LRE

As presented in Figure 1A, LRE changed the pasting viscosity curve of wheat starch
and affected its pasting process. The values of key parameters of the viscosity curve are
recorded in Table 1. As shown in Table 1, LRE caused a decline in peak viscosity (PV),
hold viscosity (HV), final viscosity (FV) and pasting time (PT) of wheat starch, whereas
breakdown (BD) increased, and all were concentration-dependent. Relevant research
reported that phenolic compounds can promote the swelling of starch granules in the
pasting process, thus decreasing the PV value of starch paste [6,27]. Meanwhile, phenolic
compounds can affect the winding and alignment of starch molecule chains, which can lead
to the variation in HV and FV of samples [21]. Moreover, an increase in BD value indicates
a decline in granule integrity, while a lower PT value indicates a decrease in pasting time
and an advancement in pasting progress.
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(Rxob.) Blume extract.

3.3. Rheological Properties of Wheat Starch with LRE

The G′ (storage modulus, Figure 1B), G′′ (the loss modulus, Figure 1C) and Tanδ
(loss tangent, Figure 1D) of samples are recorded in Figure 1. Notably, the value of G′′

was far lower than that of G′ for all testing samples, and this phenomenon indicated
that the elasticity of all samples was dominant compared to the viscosity of samples.
Moreover, G′ and G′′ curves for all testing samples showed an upward trend as angular
frequency increased, and this phenomenon showed that both the elasticity and viscosity of
samples were frequency-dependent. In addition, with the increase in LRE concentration,
G′ and G′′ both decreased, which indicated that LRE could affect the formation of the
starch gel network. Meanwhile, the result of Tanδ (Tanδ < 1, Figure 1D) suggested that
the deformation of samples was basically recoverable, and it behaved more like a solid.
Moreover, the Tanδ value increased due to the addition of LRE in the set angular frequency
range; this phenomenon showed the weakening of solid-like behavior [28].

3.4. Gel Microstructure of Wheat Starch with LRE

As shown in Figure 2, the control starch gel (without LRE) formed a dense network
structure, and the interlayers were cross-linked to form many relatively uniform pores
(Figure 2A,a). With the addition of LRE, the hole size of the network structure in the
starch gel increased and the cross-linking degree among starch gel layers decreased, which
were concentration-dependent (Figure 2B,b–D,d). In addition, compared with the control
(Figure 2a), the roughness of the gel surface increased (Figure 2b–d), which might be
attributed to the embedding of LRE in the starch molecules.
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magnification of 250 times; lowercase letters represent the magnification of 500 times.) LRE: Ligustrum
robustum (Rxob.) Blume extract.

3.5. Crystalline Form and Recrystallization Degree of Wheat Starch with LRE

As presented in Figure 3, an A-type crystal structure with strong peaks at 2θ~15◦, 17◦,
18◦ and 23◦ was exhibited in native wheat starch, and this peak type was generally regarded
as the typical WAXD (wide-angle X-ray diffraction) pattern of cereal starch [21]. After full
gelatinization and short-term regeneration, the original WAXD pattern was changed from
an A-type diffraction pattern to a mixed diffraction pattern of B-type and V-type, and this
phenomenon might be due to the destruction of the semi-crystalline structure in native
starch after gelatinization and re-formation of the ordered crystal structure after short-
term retrogradation [29]. Meanwhile, B-type pattern and V-type pattern of wheat starch
presented well-defined peaks around 2θ~17◦ and 20◦, respectively. The addition of LRE did
not change the position of the diffraction peak, but the interaction between LRE and starch
decreased the intensity of diffraction peaks of starch, which was concentration-dependent.
Recent research points out that phenolic compounds can hinder recrystallisation among
starch molecules, which can weaken the B-type and V-type crystal structure [18]. Moreover,
the native wheat starch showed a semi-crystalline structure with higher relative crystallinity
(24.9%), while the wheat starch with LRE showed a lower relative crystallinity (17.6%, 16.8%
and 14.3% for the 5%, 10% and 20% LRE groups, respectively) than that of wheat starch
without LRE (18.1%). The previous study also reported that phenolic compounds can
destroy the hydrophobic interactions among starch chains via H-bonds, thus reducing the
chance of starch molecules forming a double-helical structure [30].
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3.6. Quality Properties of Wheat Starch Biscuit with LRE

As presented in Table 2, the addition of 1% LRE increased the L* value and decreased
the a* value of samples, whereas the addition of a higher concentration (2% to 5%) of LRE
decreased the L* value and sightly increased the a* value of samples. Moreover, the addition
of LRE significantly increased the b* value of samples. As reported in the previous study,
L. robustum is rich in phenolic compounds, and the oxidative polymerization of phenolic
compounds can produce pigments, which may contribute to the color changes [31,32]. Fur-
thermore, as presented in Table 2, LRE could decrease the value of hardness (from 1829.63
to 873.89) and fracturability (from 11,053.71 to 7703.13) of all wheat starch biscuit samples,
being concentration-dependent. Commonly, gelatinization and retrogradation have critical
roles in the quality of starch. The starch gel will be formed during the gelatinization and
retrogradation processes. The rheological properties of starch gel are important for the
taste and quality of starch food. The network microstructure of starch gel is related to
the above gel properties. The present results indicate that LRE could change the thermal
properties, pasting characteristics, rheological properties, microstructure and crystallinity
of wheat starch after gelatinization and short-term retrogradation, so as to potentially affect
the texture (including the hardness and fracturability) of wheat starch biscuits.

Table 2. Color and texture of biscuits baked from wheat starch gel and LRE in different concentrations.

Concentration
of LRE L* a* b* Hardness (g) Fracturability

(g·s)

0% 88.88 ± 2.23 ab −0.35 ± 0.03 cd 10.40 ± 1.81 f 1830 ± 56 a 11,054 ± 575 a

1% 89.91 ± 1.59 a −0.58 ± 0.05 e 12.27 ± 1.65 e 1709 ± 129 b 8712 ± 361 b

2% 87.42 ± 2.72 b −0.48 ± 0.09 d 19.53 ± 1.62 d 1550 ± 106 c 8559 ± 772 bc

3% 85.01 ± 1.46 c −0.28 ± 0.01 c 24.43 ± 1.80 c 1413 ± 184 d 8402 ± 247 cd

4% 84.60 ± 0.98 cd −0.06 ± 0.10 b 26.71 ± 1.00 b 1262 ± 87 e 8451 ± 501 c

5% 83.73 ± 0.60 d 0.04 ± 0.13 a 29.83 ± 1.37 a 874 ± 90 f 7703 ± 258 d

Each value is expressed as mean ± SD (n = 3). Different superscript letters in each vertical column denote
statistically significant differences (p < 0.05). LRE: Ligustrum robustum (Rxob.) Blume extract.

3.7. Molecular Interaction between Starch and LRE

As shown in Figure 4, the starch model (two parallel SGS (short-chain glucose) chains,
Figure 4A), the TIP3PBOX model (Figure 4B), as well as phenolic compounds of LRE (LGB,
Ligurobustoside B; LGN, Ligurobustoside N; and LPJ, Ligupurpuroside J; Figure 4C) were
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successfully established. As shown in Figure 5A, two parallel SGS chains were initially
separated from each other. During the heating process (0–10 ns), the winding and binding
of two SGS chains were caused by the formation and dissociation of H-bonds (Table 3) in
two SGS chains. Meanwhile, owing to the variation in hydrogen bonding sites (Table 3), the
winding conformation of two SGS chains was in a dynamic change. Then, as system tem-
perature and energy decreased, the fluctuation of binding conformation in two SGS chains
was relatively small in the cooling process (10–20 ns) and maintained a helical structure via
the stable H-bond network (Table 3). The trajectory between the starch model and phenolic
compounds of LRE (LGB, LGN and LPJ) is shown in Figure 5B–D. During heating time
and cooling time, the winding conformation between two SGS chains was significantly
changed due to the presence of phenolic compounds of LRE. As shown in Figure 5B, two
SGS chains twined around each other to form a tight binding structure, whereas LGB
only combined with the outer side of the associated structure formed by two SGS chains.
Moreover, it can be seen from Figure 5C that LGN hindered the combination of two SGS
chains by connecting with the reducing end of a single SGS chain, and LGN occupied the
H-bond binding site (Table 4) of two SGS chains, thereby inhibiting the combination of
two SGS chains. However, as shown in Figure 5D, the combination of LPJ and SGS double
chains was tighter than that in the SGS/LGB group and the SGS/LGN group. The LPJ was
completely embedded in the cavity formed through two SGS chains, and this combination
was kept via continuous intermolecular H-bonds (Table 4). Notably, the complex effects of
molecule size, steric hindrance and phenolic hydroxyl amounts of LGB, LGN and LPJ lead
to their variations in binding conformation and binding capability. As shown in Figure 4C,
the relative molecular masses of LGB (molecular formula: C31H44O13), LGN (molecular
formula: C35H46O18) and LPJ (molecular formula: C35H46O19) were 624, 754 and 770,
respectively. The molecule size and steric hindrance of LGB were smaller than those of
LGN (or LPJ), and the hydroxyl group amount of LGB was also the lowest. In addition,
the molecular conformation of LGN and LPJ was similar, but the amount of pyrocatechol
groups of LPJ was more than that of LGN, which might cause the difference in their binding
affinity with starch molecules.

Table 3. The intramolecular hydrogen bonds within two SGS chains in different interaction systems.

Interaction
System

Simulation
Phase

Hydrogen Bond Acceptor Hydrogen Bond Donor
Frames

Ratio
(%)Acceptor

Molecule Acceptor Atom Donor
Molecule Donor Atom

SGS alone

Heating

SGS 4GA_25@O2 SGS 4GA_4@H6O 606 12.1
SGS 4GA_25@O5 SGS 4GA_7@H3O 545 10.9
SGS 4GA_25@O6 SGS 4GA_7@H3O 364 7.3
SGS 4GA_30@O5 SGS 4GA_12@H3O 310 6.2
SGS 4GA_25@O6 SGS 4GA_7@H2O 282 5.7

Cooling

SGS 4GA_28@O2 SGS 4GA_7@H6O 2560 51.2
SGS 4GA_27@O2 SGS 4GA_7@H3O 2356 47.1
SGS 4GA_37@O2 SGS 4GA_15@H2O 2322 46.4
SGS 4GA_35@O6 SGS 4GA_16@H2O 2048 40.9
SGS 4GA_30@O5 SGS 4GA_12@H3O 1659 33.2

LGB/SGS
group

Heating

SGS 4GA_28@O2 SGS 4GA_27@H3O 1157 23.1
SGS 4GA_9@O2 SGS 4GA_8@H3O 1063 21.2
SGS 4GA_8@O2 SGS 4GA_7@H3O 1048 20.9
SGS 4GA_7@O6 SGS 4GA_29@H2O 960 19.2
SGS 4GA_5@O2 SGS 4GA_4@H3O 959 19.2

Cooling

SGS 4GA_7@O6 SGS 4GA_29@H2O 4367 87.3
SGS 0GA_39@O2 SGS 4GA_19@H2O 3960 79.2
SGS 4GA_26@O5 SGS 4GA_25@H6O 3902 78.0
SGS 4GA_24@O5 SGS 4GA_29@H3O 3493 69.9
SGS 4GA_28@O2 SGS 4GA_27@H3O 3340 66.8



Foods 2022, 11, 3187 9 of 14

Table 3. Cont.

Interaction
System

Simulation
Phase

Hydrogen Bond Acceptor Hydrogen Bond Donor
Frames

Ratio
(%)Acceptor

Molecule Acceptor Atom Donor
Molecule Donor Atom

LGN/SGS
group

Heating

SGS 4GA_9@O2 SGS 4GA_8@H3O 1298 26.0
SGS 4GA_19@O2 SGS 4GA_18@H3O 1182 23.6
SGS 4GA_14@O2 SGS 4GA_13@H3O 943 18.9
SGS 4GA_4@O5 SGS 4GA_3@H6O 885 17.7
SGS 4GA_18@O2 SGS 4GA_17@H3O 873 17.5

Cooling

SGS 4GA_8@O2 SGS 4GA_38@H2O 4076 81.5
SGS 0GA_39@O2 SGS 4GA_14@H3O 3808 76.2
SGS 4GA_36@O3 SGS 4GA_15@H3O 3022 60.4
SGS 4GA_13@O2 SGS 4GA_12@H3O 2981 59.6
SGS 4GA_8@O2 SGS 4GA_38@H3O 2761 55.2

LPJ/SGS
group

Heating

SGS 4GA_29@O2 SGS 4GA_28@H3O 1650 33.0
SGS 4GA_30@O2 SGS 4GA_29@H3O 1480 29.6
SGS 4GA_36@O2 SGS 4GA_35@H3O 1340 26.8
SGS 4GA_4@O2 SGS 4GA_25@H6O 1256 25.1
SGS 4GA_18@O2 SGS 4GA_17@H3O 1181 23.6

Cooling

SGS 4GA_38@O2 SGS 4GA_19@H2O 4593 91.9
SGS 4GA_37@O3 SGS 4GA_12@H3O 4330 86.6
SGS 4GA_18@O2 SGS 4GA_17@H3O 4259 85.2
SGS 4GA_17@O2 SGS 4GA_16@H3O 3858 77.2
SGS 0GA_20@O2 SGS 4GA_19@H3O 3436 68.7

SGS: short-chain glucose; LGB: Ligurobustoside B; LGN: Ligurobustoside N; LPJ: Ligupurpuroside J. The 0GA
and 4GA represent the glucose residue at the beginning and in the middle of SGS, respectively. The numbers
after 4GA (or 0GA) represent the residue sequence number in molecule. H2O (or H3O, H6O) and O2 (or O3, O5,
O6) after the @ symbol are the representations of the hydrogen atom and oxygen atom of SGS in the force field,
respectively. The amount and position of hydrogen bonds of the top 5 occupancies in each interaction system are
counted in the table; others are not included in the table. LRE: Ligustrum robustum (Rxob.) Blume extract.

Table 4. The intermolecular hydrogen bonds between two SGS chains and the phenolic compounds
of LRE.

Interaction
System

Simulation
Phase

Hydrogen Bond Acceptor Hydrogen Bond Donor
Frames

Ratio
(%)Acceptor

Molecule Acceptor Atom Donor
Molecule Donor Atom

LGB/SGS
group

Heating

LGB LGB_1@O1 SGS 4GA_26@H2O 464 9.3
LGB LGB_1@O7 SGS 4GA_5@H3O 380 7.6
SGS 4GA_29@O2 LGB LGB_1@H5 355 7.1
SGS 4GA_25@O6 LGB LGB_1@H4 276 5.5
SGS 4GA_7@O2 LGB LGB_1@H5 245 4.9

Cooling

SGS 4GA_29@O2 LGB LGB_1@H5 4759 95.1
SGS 4GA_25@O6 LGB LGB_1@H4 1702 34.0
LGB LGB_1@O13 SGS 4GA_8@H2O 1605 32.1
LGB LGB_1@O1 SGS 4GA_26@H2O 866 17.3
SGS 4GA_7@O3 LGB LGB_1@H26 658 13.2

LGN/SGS
group

Heating

LGN LGN_1@O14 SGS 4GA_24@H3O 472 9.4
SGS 4GA_25@O2 LGN LGN_1@H19 354 7.1
LGN LGN_1@O11 SGS 4GA_25@H2O 321 6.4
LGN LGN_1@O10 SGS 4GA_24@H3O 262 5.2
LGN LGN_1@O14 SGS 4GA_25@H2O 258 5.1

Cooling

SGS 4GA_23@O3 LGN LGN_1@H31 220 4.4
SGS 4GA_24@O3 LGN LGN_1@H19 146 2.9
SGS 4GA_25@O2 LGN LGN_1@H35 119 2.4
SGS 4GA_23@O2 LGN LGN_1@O18 59 1.2
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Table 4. Cont.

Interaction
System

Simulation
Phase

Hydrogen Bond Acceptor Hydrogen Bond Donor
Frames

Ratio
(%)Acceptor

Molecule Acceptor Atom Donor
Molecule Donor Atom

LPJ/SGS
group

Heating

LPJ LPJ_1@O3 SGS 4GA_11@H3O 457 9.1
LPJ LPJ_1@O6 SGS 4GA_11@H2O 451 9.0
SGS 4GA_11@O3 LPJ LPJ_1@H15 451 9.0
LPJ LPJ_1@O7 SGS 4GA_4@H2O 438 8.8
LPJ LPJ_1@O17 SGS 4GA_5@H6O 406 8.1

Cooling

SGS 4GA_12@O2 LPJ LPJ_1@H5 4402 88.0
LPJ LPJ_1@O3 SGS 4GA_18@H2O 3253 65.1
LPJ LPJ_1@O18 SGS 4GA_18@H3O 2465 49.3
SGS 4GA_32@O2 LPJ LPJ_1@H16 2174 43.5
LPJ LPJ_1@O17 SGS 4GA_5@H6O 1860 37.2

SGS: short-chain glucose; LGB: Ligurobustoside B; LGN: Ligurobustoside N; LPJ: Ligupurpuroside J. The 4GA
represents the glucose residue in the middle of SGS. The numbers after 4GA (or LGB, LGN, LPJ) represent the
residue sequence number in the molecule. H2O (or H3O, H6O, H5, H15, H16, H19, et al.) and O1 (or O2, O3,
O5, O6, et al.) after the @ symbol are the representations of the hydrogen atom and oxygen atom of SGS (or LGB,
LGN, LPJ) in the force field, respectively. The amount and position of hydrogen bonds of the top 5 occupancies in
each interaction system are counted in the table; others are not included in the table. LRE: Ligustrum robustum
(Rxob.) Blume extract.
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Figure 4. Molecular structure models for molecular dynamics simulation. (A) Two parallel SGS
(short-chain glucose) chains, (B) TIP3PBOX water solvent box, (C) phenolic compounds identified
from LRE: Ligurobustoside B (LGB), Ligurobustoside N (LGN) and Ligupurpuroside J (LPJ). LRE:
Ligustrum robustum (Rxob.) Blume extract.
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Figure 5. Trajectory of molecular dynamics simulation. (A) Trajectory between two SGS chains,
(B) trajectory between LGB and two SGS chains, (C) trajectory between LGN and two SGS chains,
(D) trajectory between LPJ and two SGS chains. (The glucose residue at the beginning of starch stand
is 0GA, the glucose residue in the middle of starch strand is 4GA and the hydroxyl group at the end
of starch strand is ROH.) LRE: Ligustrum robustum (Rxob.) Blume extract.

For evaluating the status of the above simulation trajectory, the center of mass (COM)
distance and root mean square deviation (RMSD) value were calculated and recorded.
COM distance reflects the dynamic distance between molecules and the binding state,
and RMSD value reflects the rationality and stability of the present molecular dynamics
simulation. As shown in Figure 6A, the COM distance value between two SGS chains
gradually decreased and finally tended to be stable in the control group, and the presence
of phenolic compounds of LRE (LGB, LGN and LPJ) increased the COM distance value
between two SGS chains, but the effect of LGN was more obvious, which might be due
to the larger steric hindrance and lower hydroxyl group amount of LGN. Then, the COM
distance between two SGS chains and phenolic compounds of LRE was observed and
is shown in Figure 6B. The COM distance value between LPJ and two SGS chains was
much lower than that of other groups, which indicated that the combination of LPJ and
two SGS chains was tighter. Meanwhile, the RMSD value was recorded. Figure 6C shows
that the RMSD value of four simulation systems firstly increased, and then tended to be
stable at last. Commonly, the equilibrium of the RMSD value indicates that the dynamic
combination among molecules reaches a relative stability and that the design of simulation
systems is feasible [33].

Furthermore, the position and amount of H-bonds (including intra- and intermolec-
ular H-bonds) in the present MD simulation were calculated. As presented in Table 3,
phenolic compounds of LRE (LGB, LGN and LPJ) altered the position and amount of
intramolecular H-bonds of two SGS chains both in heating and cooling processes. Usually,
the intramolecular hydrogen bonds with high occupancy are especially key to keep the
SGS-wound form. The highest ratios (33.0%, 1650 frames in 5000 frames of heating time;
91.9%, 4593 frames in 5000 frames of cooling time) of intramolecular H-bonds were both
observed in the LPJ/SGS group, which indicated that LPJ significantly affected the forma-
tion of intramolecular H-bonds within different periods. In addition, the distributions of
intermolecular H-bonds between two SGS chains and phenolic compounds of LRE (LGB,
LGN and LPJ) were further recorded. As shown in Table 4, between the hydroxyl groups
in phenolic compounds of LRE and the glycan hydroxyl groups of SGS, intermolecular H-
bonds could form. During the heating time, the intermolecular hydrogen bonds’ occupancy
in LGB/SGS, LGN/SGS and LPJ/SGS groups was no more than 10% due to the high energy
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and high temperature. However, the average occupancy of intermolecular hydrogen bonds
in the LPJ/SGS group was higher than that of others, and the intermolecular hydrogen
bonds were more continuous. During cooling time, the combination between two SGS
chains and LPJ was more stable by the continuous intermolecular hydrogen bonds and the
high hydrogen bond occupancy ratio (from 37.2% to 88.0%).
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and phenolic compounds of LRE, (C) RMSD value of different interaction system. (Total simulation
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4. Conclusions

In the present study, we investigated the modification of wheat starch with LRE and
explored the action mechanism. According to the determination results, some physicochem-
ical properties of wheat starch, such as thermodynamics properties, pasting characteristics,
rheological properties, gel microstructure and crystallinity, were modified by LRE. Mean-
while, LRE also showed the potential to change the quality properties (including color
and texture) of wheat starch biscuits. Then, molecular dynamics (MD) simulation was em-
ployed to analyze the action mechanism and provide some useful references for the effect
of LRE modification on the physicochemical properties of wheat starch. MD simulation
indicated that phenolic compounds of LRE interacted with starch molecules, destroyed the
intramolecular H-bonds between starch molecules and formed intermolecular H-bonds
with starch molecules, thereby changing the spatial configuration of starch molecule chains
and affecting the properties of starch during gelatinization and retrogradation. Moreover,
the complex impact of molecule size, steric hindrance and phenolic hydroxyl amount of
LGB, LGN and LPJ led to their variations in binding conformation and binding capabil-
ity with the starch model, and of the three phenolic compounds, LPJ exhibited the most
significant capability to interact with the starch model. The results suggest that LRE has
the potential to improve the properties of wheat starch in the food and chemical industries.
Further studies (including the nutritional characteristics and bioactivities of starch prod-
ucts) are underway to elucidate the valuable applications of wheat starch modified by LRE
in food and chemical industries.
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