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Abstract: Chronic kidney disease caused by a high-fat diet (HFD)-induced metabolic syndrome has
received widespread attention. Lycopene has a wide range of biological activities and can improve
a variety of chronic diseases through anti-inflammatory effects. In this study, HFD-fed mice were
used as a metabolic syndrome model to evaluate the protective effect of lycopene in a sustained-
release vehicle (bilosomes) in the small intestine against renal injury and to determine whether the
TLR4/MyD88 pathway and related metabolic pathways are involved in this process. The results
showed that lycopene bilosomes alleviated HFD-induced kidney damage, as evidenced by lower
serum urea nitrogen, creatinine, and uric acid levels. Histopathology studies showed that lycopene
bilosomes attenuated HFD-induced tubular cell and glomerular injury. In addition, Elisa, RT-PCR, and
Western blotting results showed that lycopene bilosomes also reduced the expression of inflammatory
factors such as TLR4, MyD88, NF-kB, TNF-a, and IL-6 in mouse kidneys. The mechanism was
to attenuate renal inflammatory response by inhibiting the TLR4/MyD88 inflammatory pathway.
These findings suggested that lycopene can alleviate nephritis and metabolic disorders caused by
HFD, inhibiting the TLR4/MyD88 inflammatory pathway and its downstream pro-inflammatory
cytokines and further regulating the vitamin K metabolism, beta-alanine metabolism, and glutathione
metabolism pathways to relieve chronic nephritis.

Keywords: lycopene; chronic nephritis; TLR4/MyD88; metabolomics

1. Introduction

A high-fat diet (HFD) leads to lipid accumulation in the liver, contributing to the pro-
gression of chronic metabolic diseases, such as chronic nephritis and atherosclerosis [1,2].
Mice can be used as models for atherosclerosis and may also help elucidate the mechanism
by which HFD affects nephritis [3]. A study found that HFD significantly increased the
production of reactive oxygen species, which released superoxide anion and caused oxida-
tive stress and inflammation in the kidney by stimulating podocyte damage [4]. Notably,
nephritis is a common condition that leads to renal failure and related diseases. HFD affects
peripheral tissues and causes systemic inflammation through direct or indirect activation
of the Toll-like receptor 4 (TLR4)/myeloid differentiation primary gene 88 (MyD88) path-
way [5]. Most TLRs have been reported to use an adaptor molecule, the protein product
of MyD88, the absence of which alters TLR4 downstream signaling [6]. When the TLR
pathway is activated, nuclear factor kappa-B (NF-kB) is subsequently activated and translo-
cated to the nucleus to induce various inflammatory cytokines, such as interleukin-1β
(IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a) [7]. Although these pro-
inflammatory cytokines continue to mediate inflammation and exacerbate kidney disease,
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hypoglycemic and lipid-lowering drugs may help inhibit the progression of nephritis [8].
However, a growing body of research suggests that clinical drugs may have unwanted
side effects [9]. Therefore, it is significant to alleviate the inflammatory response caused
by HFDs.

Lycopene, a bioactive component mainly found in foods such as tomatoes, is charac-
terized by various biological activities such as scavenging reactive oxygen radicals and
anti-inflammatory and neuroprotective functions [10]. It is the most potent oxygen-free
radical quencher of all the natural carotenoids and has been linked to protection against
cardiovascular diseases, inflammation, and many cancer types [11]. A study finds that
lycopene can also relieve kidney dysfunction caused by toxic substances [12]. However,
few studies have been able to determine whether and how lycopene reduces renal cell
damage caused by HFDs. Hydrophobicity of carotenoids determines their metabolic fate
in the gastrointestinal tract—poor stability and low bioavailability [13]. At the same time,
carotenoids are sensitive to environmental conditions such as temperature, oxygen, and
light, posing problems in their widespread applications. Thus, developing effective delivery
systems is crucial in improving their bioavailability and functions [14].

Nanoparticle delivery systems, including nanoemulsions and nanoliposomes, are ex-
cellent vehicles to increase carotenoid stability and bioavailability in the small intestine [15].
Vesicle carriers such as bilosomes, formed by incorporating bile salts into the lipid bilayer,
serve as stable replacements for conventional vesicles in the digestive environment of the
small intestine [16]. They provide higher bioavailability of active agents as they better
protect them from gastrointestinal bile salts and enzymes [17]. Moreover, the bilosomes
added with sodium deoxycholate showed longer residence time in the gastrointestinal tract
with higher intestinal permeability, improving the therapeutic effect on non-alcoholic fatty
liver disease in mice [18]. Therefore, there is a huge opportunity in using bilosomes as
lycopene transport vehicles, especially for sustained release and absorption in the small
intestine.

However, the sustained-release effect and bioavailability of lycopene-loaded bilosomes
in the small intestine remains unknown. Therefore, the purpose of this study was to use
the bilosomes to deliver lycopene in the small intestine in a sustained-release manner,
interfering with HFD-induced chronic nephritis in mice. Further, we also studied the effect
of lycopene on serum and renal inflammatory indicators in mice and, finally, explored the
effect of lycopene on the interventional effect of TLR4/MyD88 and metabolic pathways in
mouse kidneys on chronic nephritis.

2. Materials and Methods
2.1. Materials

Lycopene, lecithin, sodium cholesterol deoxycholate, and Tween80 were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Other reagents were of
analytical grade. Blood glucose test strips were purchased from Roche Biotechnology Co.,
Ltd. (Shanghai, China).

2.2. Preparation of Small Intestinal Sustained-Release System

References for the preparation process of bilosomes are found in [17,19]. The sample
preparation process of bilosomes is by dissolution of raw materials, rotary evaporation,
and sonication. lycopene (30 mg), lecithin (300 mg), Tween 80 (100 mg), and sodium
deoxycholate (75 mg) were thoroughly dissolved in a 50 mL round-bottom flask containing
a small amount of chloroform. The mixture was dried by rotary evaporation (removal
of organic solvents) at 45 ◦C. The residue was further dried in vacuo (at 45 ◦C) to ensure
complete removal of organic solvent, then 10 mL of phosphate-buffered saline (PBS) solu-
tion (pH 7.4) was added and hydrated at 45 ◦C with vortexing for 60 min. The bilosome
suspension was sonicated (240 W, kHz, 10 min) in an ice bath. Finally, bilosomes were
stored in the refrigerator (4 ◦C, protected from light) until use.
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2.3. Animal Experiments

As shown in Figure 1A, 24 ApoE-/-C57BL/6J mice (male, 6 weeks old) (Shanghai,
Nanjing) were provided by GemPharmatch Co., Ltd. (Nanjing, China). Animal ethics was
approved by the Institutional Animal Care and Use Committee of Jiangnan University JN.
No. 20211030c1400210 (413). Mice were housed in an environment with stable temperature
(25 ± 2 ◦C) and humidity (60 ± 10%). After 7 days of adaptive feeding of the basal diet,
the mice in the control group were fed a high-fat and high-cholesterol diet, excluding the
Con group. At week 10, mice were orally gavaged with samples (Bilo, Bilo+Ly) at a dose of
50 mg/kg. At the same time, the Con group and the Mod group mice were gavaged with
normal saline.
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2.4. Determination of Fasting Blood Glucose and Serum Biochemical Indexes in Mice

The mice were fasted for 12 h on the last day of the experiment, but they were allowed
to drink water. After the mice were anesthetized, blood was collected through the tail
vein, and the fasting blood glucose (FBG) of the mice was measured with a blood glucose
meter (Roche, Switzerland, Accu-Chek). Eyeballs were picked with ophthalmic forceps to
collect blood, and the plasma was left to stand at room temperature for half an hour. The
plasma was centrifuged at 4 ◦C and 4000× g for 15 min to obtain serum, and the serum
was stored at −20 ◦C for subsequent index detection. Serum indexes such as blood urea
nitrogen (BUN) and serum creatinine (SCr) were detected and analyzed by the automatic
blood analyzer of Mindray Biomedical Company (Shenzhen, China).

2.5. Histopathological Determination of Kidney in Mice

After the blood was collected from the mice, part of the kidney tissue was quickly cut
and fixed with 4% paraformaldehyde for 24 h and then taken out. Tissues were sequentially
dehydrated with graded alcohol concentrations and then embedded in paraffin. The tissue
wax blocks were cooled at −20 ◦C and cut into 4 µm slices with a microtome. The tissue
sections were unfolded in warm water at 40 ◦C and mounted on glass slides. The slides
were taken out after baking at 60 ◦C and stored at room temperature. Finally, the sections
were dewaxed, immersed in hematoxylin and eosin staining solution (H & E) for staining,
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dehydrated, and mounted with gum. Pathological sections were observed under a light
microscope, and images were analyzed.

2.6. Determination of Inflammatory Factors in Mice Kidney

After the mice’s blood was collected, 0.2 g of each kidney tissue was quickly cut out,
rinsed with pre-cooled normal saline, and then dried with filter paper. Finally, kidney
tissue was homogenized at a concentration of 10%. The prepared kidney tissue homogenate
was then centrifuged at 3000× g at 4 ◦C for 10 min, and the protein concentration, TNF-α,
IL-6, and IL-1B contents in the supernatant were determined according to the instructions.
ELISA kits were purchased from Nanjing Senbeijia Biotechnology Co., LTD. (Nanjing,
Jiangsu, China).

2.7. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)

Total RNA in kidney tissue was isolated by a kit from Sangon Biotech Co., Ltd. (Shang-
hai, China) according to the manufacturer’s instructions. Samples with an absorbance ratio
at 260/280 nm between 1.8 and 2.0 were judged to be of acceptable quality and integrity.
Genomic DNA was removed from RNA using a cDNA reverse transcription kit (Vazyme
Biotech Co., Ltd., Nanjing, China), and RNA was reverse transcribed into cDNA. The
processes were performed with reference to the SYBR qPCR Master Mix (Vazyme Biotech
Co., Ltd., Nanjing, China) kit and the XLX-096D real-time fluorescence quantitative PCR
instrument operating instructions (Xin Lanxin Biotechnology Co., Ltd., Jiangsu, China).
β-action was used as a reference gene for normalization. Data are presented as relative
mRNA levels according to the 2-∆∆Ct method. Refer to Supplementary Table S1.

2.8. Western Blotting Analysis

Radioimmunoprecipitation assay buffer containing phosphatase inhibitor and pro-
tease inhibitor from Sangon Biotech Co., Ltd. (Shanghai, China) was added to kidney
tissue to prepare tissue homogenate. Kidney tissue protein was extracted with a bicin-
choninic acid protein extraction kit, and protein concentration was determined according
to the manufacturer’s instructions (Beyotime Institute of Biotechnology, Jiangsu, China).
Samples were separated by 10% SDS-PAGE and transferred to polyvinylidene fluoride
membranes. Membranes were blocked with 5% nonfat dry milk in TBST buffer at 37 ◦C
for 2 h, then polyvinylidene fluoride membranes were incubated with primary antibody
overnight at 4 ◦C. Antibodies were purchased from Proteintech (Wuhan, Hubei, China) and
GenScript Corporation (Jiangsu, China). Subsequently, the membrane was incubated with
the secondary antibody for 2 h at 37 ◦C and then washed 5 times with TBST. Subsequently,
fluorescence intensity was measured by incubation with an enhanced chemiluminescence
reagent (Beyotime Institute of Biotechnology, Nantong, China). Bands were quantified
using ImageJ software v1.5 (USA).

2.9. Metabolite Extraction and GC–MS Analysis

For sample preparation and gas mass spectrometry analysis, refer to reference [20].
A total amount of 200 mg of mouse kidney tissue was mixed with 1 mL of extraction
solution (acetonitrile/isopropanol [1:1, v/v]). The mixture was vortexed for 10 s and
centrifuged at 13,000× g for 20 min at 4 ◦C. Subsequently, 450 µL of the supernatant was
transferred to a new 2 mL Eppendorf tube. A total of 10 µL of supernatant was withdrawn
from each sample and analyzed as a QC sample. The remaining supernatant was dried
in a concentrator, and 80 µL of 20 mg/mL methoxyamine hydrochloride (dissolved in
pyridine) was subsequently added to the dried metabolite, mixed, and sealed in an oven
at 80 ◦C for 1 h. After cooling to room temperature, 100 µL MSTFA (containing 1%
trimethylchlorosilane, v/v) was added to each sample. Samples were then scheduled for
GC–MS analysis after a further 1.5 h incubation at 70 ◦C. A 1 mg/mL fatty acid/methyl
ester mixture (FAME; C8–C16: 1 mg/mL; C18–C24: 0.5 mg/mL in chloroform) was used as
an internal standard.
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2.10. Data Analysis

All experiments were repeated at least 3 times, and data were presented as mean ±
standard deviation (SD). Data were statistically different by one-way ANOVA in GraphPad
Prism 7.0 (GraphPad Prism Software Inc., San Diego, CA, USA) (p < 0.05 was considered
statistically significant).

3. Results
3.1. Lycopene-Loaded Bilosomes Improve Serum Renal Indices in Mice

To evaluate the effect of lycopene-loaded bilosomes on blood glucose, the fasting
blood glucose (FBG) of mice was measured. Compared with the Control group (Con), the
blood glucose level of the mice in the Mod group was significantly increased (p < 0.001).
Compared with the Mod group, the blood glucose values of mice decreased significantly
with lycopene-loaded bilosomes, whereas the bilosomes had no effect (Figure 1B). To
evaluate the renal status of each group, the contents of MALB, SCr, BUN, and urine protein
were detected. As shown in Figure 1C–F, MALB, SCr, and BUN contents in the Bilo group
did not change significantly (p < 0.05) in Mod, while BUN, MALB, and SCr contents
in Con increased significantly (p < 0.001). This indicated that the nephropathy model
was successfully constructed. Compared with the Mod group, BUN and SCr contents
in Bilo+Ly were significantly decreased (p < 0.05). Notably, MALB and urine protein of
Bilo+Ly significantly reduced to 33.1 mg/L and 293.01 mg/L, respectively, compared to
Mod (83.1 mg/L) (546.8 mg/L) (p < 0.01).

3.2. Lycopene-Loaded Bilosomes Ameliorate Kidney Pathology in Mice

As shown in Figure 2, hematoxylin and eosin (H & E) staining results showed that no
obvious pathological damage was observed in the kidney tissues in the Con group. The
structures of renal tubules and glomeruli were clear, the distribution of mesangial cells and
the extracellular matrix was normal, and there was no proliferation and fibrosis observed.
Moreover, the number of glomerular cells in the Mod and Bilo groups increased, there was
no clear space between cells, the cell atrophy was severe, the volume was significantly
increased, and the basement membrane was expanded or infiltrated by inflammation. In
contrast, the group injected with lycopene contributed to the improvement of morphology.
Tissue damage of the mice in the Bilo+Ly group was less than that in the Mod group, the
structure of the glomerulus was clear, and the lumen of the renal tubules was regular.

3.3. Lycopene-Loaded Bilosomes Improve Nephritis in Mice

In addition, the levels of key inflammatory factors in the kidneys were also analyzed.
The results of ELISA are shown in Figure 3A–C. The content of TNF-a in the kidney tissue
of Mod mice was significantly increased (p < 0.05) compared with the Con group. Moreover,
IL-1B and IL-6 were significantly increased (p < 0.01), indicating that HFD increased the
content of inflammatory factors in mouse kidneys. Compared with Mod group, after ten
weeks of lycopene-loaded bilosomeadministration, the contents of TNF-a and IL-1B in
the kidneys decreased in Bilo+Ly group (p < 0.05). Compared to Mod’s IL-6 (14.5 ng/ug
protein), lycopene-loaded bilosomes significantly reduced to 9.7 ng/ug protein (p < 0.01).
Meanwhile, the transcription of inflammatory target genes was analyzed by a qRT-PCR
assay (Figure 3D,E). The results showed that under the intervention of HFD, the mRNA
levels of TNF-a, IL-6, and IL-1B in Mod mice were significantly up-regulated (p < 0.001),
and IL-1B expression showed a decreasing trend (p < 0.05), whereas there was no significant
difference in the Bilo group.
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3.4. Lycopene-Loaded Bilosomes Inhibit the TLR4/MyD88 Inflammatory Pathway in Mice

Accumulated evidence in recent years has shown that the TLR4/MyD88 pathway
aggravates the body’s inflammatory response by regulating the expression of a series of
inflammatory response genes. To assess the molecular mechanism by which lycopene
protects cellular redox state balance, the activation and downstream signaling of the
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TLR4/MyD88 inflammatory pathways were analyzed. The mRNA levels of TLR4, MyD88,
tIR domain-coding adaptor protein (TIRAP), total internal reflection fluorescence (TIRF),
and NF-kB in each group were determined by qRT-PCR, and the results are shown in
Figure 4A–E. Compared with the Con group, the mRNA levels of inflammatory genes in the
Mod group were increased to varying degrees, whereas the transcription of TLR4, MyD88,
TIRAP, and TIRF was significantly increased (p < 0.01). Further, NF-kB mRNA levels were
also significantly increased (p < 0.05). In contrast, although the level of inflammatory
factors decreased in the Bilo group, it was not significant. However, the intervention of
lycopene-loaded bilosomes attenuated this change. The mRNA transcription of TLR4,
MyD88, TIRAP, TIRF, and NF-kB were increased to different degrees compared with Mod
(p < 0.05, p < 0.01). These results demonstrate that lycopene reduces the expression of
factors in the TLR4/MyD88 inflammatory pathway in the kidneys of HFD mice.
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In order to further verify the effect of lycopene on the TLR4 pathway in nephritis mice
from the protein level, we investigated the protein levels of TLR4, TRIF, MyD88, and NF-κB.
As shown in Figure 5A–E, compared with the Mod group, the protein levels of TLR4, TRIF,
MyD88, and NF-κB in the Con group were significantly decreased (p < 0.05), and the protein
expression in the Bilo+Ly group was also significantly decreased (p < 0.05). Among them,
the protein levels of TLR4 and MyD88 in the Bilo+Ly group were extremely significant
(p < 0.01). Compared with Mod, TLR4, TRIF, MyD88, and NF-κB protein concentrations
were slightly decreased in the Bilo group, but there was no significant difference between
groups. These results are also consistent with those for mRNA.
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3.5. Lycopene Improves Renal Metabolism in Mice

Metabolomics was used to explore the metabolite changes upon lycopene’s effects in
mice by qualitative and quantitative small-molecule metabolites in renal tissue. It can be
seen from the principal component analysis (PCA) graph and clustering tree (Figure 6A,B)
that after the intervention of lycopene, the Mod group and the Con group were significantly
different, while the Bilo+Ly group and the Con group were similar. As shown in Figure 6C,
the screened differential metabolites were visualized as a heat map (VIP > 1, p < 0.05).
Compared with the Mod group, lycopene decreased the dimethicone, hexacosanoic acid,
and hydroxylamine metabolites, but increased methylglutaric metabolites such as acid,
methylmalonic acid, montanic acid, and maltotriose. Clearly, these metabolites are the
main markers of lycopene metabolism in mouse kidneys. Therefore, we carried out a func-
tional analysis of the significantly different metabolites to explore the pathways affected,
as shown in Figure 6D. In the comparison to Con and Mod, glycosylphosphatidylinositol,
pantothenate, and CoA biosynthesis were the more significantly affected pathways. In
comparison to Bilo+Ly and Mod, the more obvious pathways were vitamin K, beta-alanine,
glutathione, propanoate, pantothenate, and CoA biosynthesis. Finally, the effect of lycopene
on the metabolite network was analyzed by a network diagram (Figure 6E); the metabo-
lites with significant positive correlation were uridine diphosphate-N-acetylglucosamine,
hexacosanoic acid, and hydroxylamine, while the metabolites with significant negative
correlation were tyramine, allocystathionine, and methylglutaric acid.
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4. Discussion

Lycopene is a diverse biologically active antioxidant and anti-inflammatory agent that
has been extensively studied in various disease models, such as arteriosclerosis, diabetes,
and cancer [11]. A study shows that the lycopene diet can improve the kidney’s antioxidant
capacity by activating Nrf2 expression [21]. Nrf2 is a major transcription factor that
regulates cellular oxidative stress responses, controls the primary defense mechanism
against reactive oxygen species-induced tissue damage, and induces the expression of
cellular inflammatory cytokines, including IL-β, IL-6, and TNF-a [22,23]. At present,
kidney disease caused by dietary habits has received extensive attention. In this study,
the HFD-stimulated chronic nephritis mice model was used to investigate the protective
effect of lycopene-loaded bilosomes on renal inflammation. We found that the levels of
FBG, MALB, SCr, BUN, and urine protein in fat-rich diet-fed mice increased. MALB [24],
SCr [25], BUN [26], and urine protein [27] are considered hallmarks of nephritis. These
findings suggested that HFD has the ability to alter the body’s metabolic homeostasis and
serum renal function metabolism, ultimately leading to inflammatory accumulation in
renal tissue. Under the intervention of lycopene, the renal function indexes in the serum of
the mice were improved, indicating the protective effect of lycopene.

Excessive intake of a fat-rich diet may lead to dyslipidemia and systemic inflammation,
ultimately leading to the development of renal inflammation [28]. HFD-induced metabolic
abnormalities easily alter the expression of kidney-related genes, especially inflammatory
genes, therefore inhibiting renal inflammation. Thus, it is considered a feasible strategy
for the treatment of chronic kidney disease [29]. The TLR4/MyD88 pathway has been
recognized as a central link in the pathogenic process of systemic inflammation and high-fat
exposure-induced kidney injury [30]. In the present study, on the one hand, TLR4/MyD88
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activation was found to be significantly up-regulated in HFD-fed mice, resulting in an
increase in the expression of pro-inflammatory cytokines and related chemokines, including
IL-β, IL-6, and TNF-a. On the other hand, HFD could up-regulate the levels of inflam-
matory factors in serum, indicating HFD-induced renal inflammation, suggesting that
TLR4/MyD88-activated signaling is involved in HFD-induced renal injury. Furthermore,
we found that lycopene-loaded bilosomes could protect against HFD-induced kidney injury
by inhibiting pro-inflammatory cytokines and chemokines. Notably, lycopene intervention
in mice further suppressed the increase in fasting blood glucose and serum renal function
indicators, suggesting that lycopene inhibits HFD-stimulated renal metabolic syndrome.
Importantly, as discussed above, HFD-induced inflammation may lead to upregulation
of TLR4/MyD88 signaling activation, which tends to exacerbate inflammatory responses
and oxidative stress. Therefore, the protective effect of lycopene on the inhibition of
TLR4/MyD88 activation was determined. At the same time, the qPCR analysis showed
that the mRNA levels of TLR4, MyD88, TIRAP, TIRF, and NF-Kb were increased in the mice
in the Mod group, indicating that HFD-induced renal injury exhibits an inflammatory role.
However, ten weeks of lycopene intervention significantly reduced the mRNA levels of
TLR4, MyD88, TIRAP, TIRF, and NF-Kb in the Bilo+Ly group, and there was no significant
difference in the Bilo group, which indicated that lycopene inhibited inflammatory cells,
improving chronic nephritis.

The study also found that NF-kB, in addition to its role mediated by TLR4, is a tran-
scription factor that plays an important role in inflammation, immunity, cell proliferation,
differentiation, and survival [31]. Furthermore, intracellular NF-kB activation has been
described as a molecular mechanism by which inflammatory stress leads to renal injury [32].
Meanwhile, physiologically, inflammatory factors such as TNF-a play a major role in the
regulation of immune responses, and the association between inflammation is shown to
be closely related to abnormal TNF-a expression [33]. Therefore, reducing the expression
of NF-kB and TNF-a may be a therapeutic approach to controlling chronic nephritis. The
present study found that HFD-induced mice displayed significantly increased NF-kB and
TNF-a expression in kidney tissues, suggesting that inflammation-laden kidney cells can
induce cellular damage, as shown in pathological sections. Interestingly, lycopene reduced
the levels of these inflammatory factors.

Compared with the Mod group, it was found that the mRNA and protein levels of
TLR4, MyD88, and TRIF in the kidneys of mice were decreased in Bilo+Ly group by an-
alyzing the downstream of the TLR signaling pathway (Figure 5F). Triggering the TLR
pathway leads to branch activation involving the adaptor protein MyD88 [34,35], induces
the activation of proteins such as TRIF, and ultimately leads to the translocation of NF-κB
to the nucleus [36]. This process may be critical for the inflammatory response of kidney
cells [37]. Prevention of inflammation-induced nephropathy in TLR4-/- transgenic mice
further supports the idea that these receptors play a central role in the signaling mech-
anisms of inflammation [38]. The fact that the TLR4/MyD88 pathway is identified as a
key factor in the inflammatory renal response supports the stimulation of gene expression
by downstream transcription factors, including those encoding TNF-α, IL-6, and other
inflammatory cytokines [39]. The results of this study also found that lycopene can alle-
viate high-fat diet-induced nephritis in mice, mainly by regulating the expression of the
TLR4/MyD88 pathway and its downstream inflammatory factors.

Therefore, we speculated that lycopene-mediated renal protection is associated with
attenuated inflammation-induced cytotoxicity and contributes to the improvement of blood
lipids and blood glucose, as well as the reduction of intrarenal damage. These findings
bring new insights into our understanding of the molecular mechanisms linking metabolic
disturbances to kidney damage caused by consuming various fat-rich foods.

The metabolome results also indicated that lycopene mainly enhanced vitamin K, beta-
alanine, glutathione, and propanoate metabolism in mouse kidneys. Among them, chronic
kidney disease is associated with extensive cardiovascular calcification, partly related to vi-
tamin K metabolism [40]. Common metabolic pathways in the kidneys include beta-alanine
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metabolism. The medicinal fungus, Phellinus linteus, has the effect of protecting kidneys
and resisting hyperuricemia, which is mainly related to beta-alanine metabolism [41]. In
addition, astragaloside can mediate anti-cisplatin-induced acute kidney injury in rats, and
the related renal metabolic pathway also involves glutathione metabolism [42]. It can
be seen that the above metabolic pathways are likely to be the key pathways by which
lycopene interferes with nephritis.

5. Conclusions

In conclusion, this study demonstrates that HFD upregulates oxidative stress and
induces systemic inflammation, leading to renal inflammation in mice. After lycopene-
loaded bilosome intervention, the expression of inflammatory factors in the serum and
kidneys of mice was reduced. Notably, TLR4/MyD88 and NF-kB activation are key
targets involved in renal injury. Lycopene alleviated HDF-induced renal inflammation
by inhibiting the TLR4/MyD88 inflammatory pathway by blocking inflammation in mice
kidneys, including NF-kB, TNF-a, and IL-6. Additionally, vitamin K, beta-alanine, and
glutathione metabolism are the main regulated metabolic pathways. Thus, lycopene-
loaded bilosomes ameliorate high-fat diet-induced chronic nephritis in mice through the
TLR4/MyD88 inflammatory pathway.
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Mice fed HFD diet Mod group
Mice fed HFD diet and bilosomes Bilo group
Mice fed HFD diet and lycopene-loaded bilosomes Blio+Ly group
High-fat diet HFD
Toll-like receptor 4 TLR4
myeloid differentiation primary gene 88 MyD88
nuclear factor kappa-B NF-kB
interleukin-1β IL-1β
interleukin-6 IL-6
tumor necrosis factor-a TNF-a
tIR domain-coding adaptor protein TIRAP
total internal reflection fluorescence TIRF
principal component analysis PCA
nuclear factor erythroid 2-related factor 2 Nrf2
fasting blood glucose FBG
blood urea nitrogen BUN
serum creatinine SCr
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microalbumin MALB
a mixture of tris-buffered saline and Tween 20 TBST
sodium dodecyl sulfate polyacrylamide gel electrophoresis SDS-PAGE
quantitative real-time PCR qRT-PCR
gas chromatography–mass spectrometry GC–MS
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