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Abstract: Obesity is a critical factor for chronic metabolic syndromes. The culinary plant fingerroot
(Boesenbergia rotunda) has been reported for its anti-obesity activity. The anti-adipogenic effects
of pandurantin A, a main component of fingerroot cultivated in Indonesia, have been studied.
Nevertheless, the suppressive effect and related mechanisms of pinostrobin, a major constituent
of Thai fingerroot, on adipogenesis have never been thoroughly investigated. This study aimed to
evaluate the potential of pinostrobin to inhibit adipocyte differentiation. Culturing pre-adipocytes
from both mouse (3T3-L1) and human (PCS-210-010) with pinostrobin at non-toxic concentrations
(5−20 µM) for 48 h obviously hindered their differentiation into mature adipocyte as evidenced by
reduced cellular lipid droplets. The lower levels of lipid metabolism-mediating proteins, namely
C/EBPα, PPARγ, and SREBP-1c, as well as cellular triglyceride content were demonstrated in
pinostrobin-treated 3T3-L1 cells when compared to the untreated control group. Additionally,
pinostrobin modulated the signals of MAPK (p38 and JNK) and Akt (Akt/GSK3β, Akt/AMPKα-
ACC). These findings suggest the benefit of fingerroot as a source of phytopharmaceuticals for obesity
prevention and management, with pinostrobin as the active principle.

Keywords: adipogenesis; obesity; fingerroot; Boesenbergia rotunda; Akt; MAPK; triglyceride; glycerol

1. Introduction

Obesity is a serious global health problem responsible for 2.8 million premature deaths
each year due to its close association with numerous diseases, such as type 2 diabetes,
hypertension, atherosclerosis, cardiovascular disease, cancers, and mental concerns [1,2].
Individuals are considered overweight with a body mass index (BMI) ≥ 25 kg/m2 and
obese with BMI ≥ 30 kg/m2 [2]. During the recent coronavirus disease 2019 (COVID-19)
pandemic, high BMI has been found to be a factor of increased risk of hospitalization [3,4].
Although lifestyle modifications are the first-line management for obesity, pharmacotherapy
and bariatric surgery are options to increase the quality of life. Some frequently prescribed
anti-obesity drugs, such as orlistat, liraglutide, and lorcaserin, are not only expensive but
also cause adverse effects. Orlistat and liraglutide can cause fatigue, dry mouth, cramps,
and fecal incontinence [5,6]. The appetite suppressant lorcaserin was withdrawn from the
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United States market in 2020 due to the high risk of developing cancer [7]. Over the past
decades, medicinal and culinary herbs have attracted much attention as a promising source
of natural and safe anti-obesogenic agents [8,9]. Some are household herbs and spices, such
as turmeric, chili, and lesser galangal, whilst others are medicinal botanicals, such as green
tea, ginseng, and ginkgo. Secondary metabolites possessing distinct chemical scaffolds,
including propionic acid derivatives, flavonoids, lignans, curcuminoids, phytosterols,
and alkaloids, have been shown to be the active ingredients, working through different
mechanisms of action [10–13].

As an important metabolic organ, fat tissue or adipose tissue plays a key role in energy
homeostasis, and it is made up by two main types. The expansion of white adipose tissue
(WAT) located at subcutaneous and visceral tissues can occur through hyperplasia (the
result of a process called adipogenesis) and hypertrophy of the adipocytes, both of which
cause weight gain and obesity. In contrast, brown adipose tissue (BAT) is responsible for
thermogenesis, i.e., burning calories to generate body heat [14]. It has been shown that
curcumin from turmeric could reduce WAT formation by suppressing the development
of mature adipocyte via activating Wnt/β-catenin signaling and AMPK phosphoryla-
tion [15,16], while capsaicin from chili could stimulate the conversion of subcutaneous
WAT into BAT by stimulating browning-specific genes and inhibiting adipocyte differenti-
ation [17,18]. Although an imbalance of energy intake and energy expenditure is known
to be the primary cause of excessive fat accumulation leading to weight gain and obesity,
malfunction of adipocytes, especially dysregulation of adipogenesis, may also instigate
this abnormality [19]. Adipogenesis is a multistep process of proliferation and differen-
tiation of pre-adipocytes into mature adipocytes that eventually leads to the formation
and expansion of adipose tissue. Adipocyte differentiation comprises four steps, includ-
ing cell cycle arrest, mitotic clonal expansion (MCE), early differentiation, and terminal
differentiation. Such complex processes are regulated by several signaling molecules and
transcription factors such as peroxisome proliferator-activated receptor-gamma (PPARγ),
CCAAT/enhancer-binding protein alpha (C/EBPα), and sterol response element-binding
protein-1c (SREBP-1c) [20]. Inhibition of these biomolecules at various stages of the adi-
pogenic pathways has become a key strategy to attenuate adipocyte maturation. Fingerroot
(also known as Chinese keys and Chinese ginger) is a culinary herb widely used in prepar-
ing Asian cuisines in China, India, Indonesia, Thailand, Malaysia, and Myanmar [21,22].
In Indonesia, the roots are used to add flavor to porridge, whereas in Thailand, they
are indispensable in peppery shrimp soup, believed to help boost breast milk supply in
lactating women. Boesenbergia rotunda (L.) Mansf. is the accepted scientific name for fin-
gerroot [23]; however, in the literature, the plant is frequently referred to as Boesenbergia
pandurata (Roxb.) Schltr [22,24]. Studies have shown that Boesenbergia rotunda (B. pandurata)
produces flavonoids of various types, with a wide range of biological activities, such as
antifungal, antibacterial, antiviral, anti-inflammatory, anti-cancer, anti-osteoporosis, antiox-
idant, and anti-obesity activities [22,24–28]. Interestingly, several dietary supplements for
weight loss in the market indicate fingerroot as the main active ingredient [29]. Studies on
high-fat-diet mice indicated that fingerroot extracts prepared from the materials collected
from Indonesia could reduce body weight gain by decreasing the accumulation of visceral
fat [26,30,31]. Pandurantin A was found to be the major component (0.8% w/w based
on dried weight) and was shown to suppress adipogenesis in mouse pre-adipocytes via
regulating AMP-activated protein kinase (AMPK) and PPARα/δ signals [26]. However,
in our investigation of plant samples obtained in Thailand, pinostrobin was found to be
the main constituent, accounting for about 1.2% w/w [32], in agreement with an earlier re-
port [33]. This chemical discrepancy may stem from several possible causes, such as genetic
variations, geographical dissimilarities, and other factors, which remain to be investigated.
More importantly, our preliminary study in 3T3-L1 pre-adipocytes found that panduratin A
was about four times more toxic than pinostrobin (see Section 3.1). Structurally, pinostrobin
is a flavanone, whereas pandurantin A is a chalcone bearing a prenyl substituent. In this
report, the inhibitory activity and related mechanism of pinostrobin on adipogenesis in
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mouse 3T3-L1 pre-adipocytes are addressed. The suppressive effect of pinostrobin on the
differentiation of human PCS-210-010 pre-adipocytes is also reported.

2. Materials and Methods
2.1. Chemical Reagents

The isolation and structural characterization of pinostrobin (>99% purity determined
by NMR; melting point 96–97 ◦C) (Figure 1) from B. rotunda roots were carried out as
previously described [32]. Oxyresveratrol (>98% purity) was purified from the heartwood
of Artocarpus lakoocha Roxb. [34]. Crystal violet solution (1% w/v), formaldehyde solution
(37% w/v), dimethyl sulfoxide (DMSO), skim milk powder, Hoechst33342, propidium io-
dide (PI), and oil red O solution (0.5% in isopropanol) were purchased from Sigma Aldrich
(St. Louis, MO, USA). Fibroblast basal medium (FBM) was obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA). Fetal bovine serum (FBS), Dulbecco’s
modified Eagle medium (DMEM), penicillin/streptomycin solution (10,000 units /mL),
L-glutamine (2 mmol/L), and trypsin (0.25%) were procured from Gibco (Gaithersburg,
MA, USA). Insulin was purchased from Himedia (Mumbai, India). Isobutylmethylxanthine
(IBMX), dexamethasone, bicinchoninic acid (BCA) protein assay kit, Western chemilumi-
nescent ECL substrate, and radio-immunoprecipitation assay (RIPA) buffer were from
Thermo-Fisher (Rockford, IL, USA). A protease inhibitor cocktail was obtained from Roche
Applied Science (Indianapolis, IN, USA). Primary antibodies against GAPDH, Akt, p-Akt
(Ser473), GSK3β, p-GSK3β (Ser9), AMPKα, p-AMPKα (Thr172), ACC, p-ACC (Ser79),
PPARγ, C/EBPα, ERK1/2, p-ERK1/2 (Thr202/Tyr204), JNK, p-JNK (Thr183/Tyr185), p38,
and p-p38 (Thr180/Tyr182) as well as horseradish peroxidase (HRP)-linked secondary
antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). Primary
antibody for SREBP-1c was from Thermo-Fisher (Rockford, IL, USA).
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Figure 1. Chemical structure of pinostrobin.

2.2. Cell Culture and Adipocyte Differentiation

Murine 3T3-L1 and human PCS-210-010 pre-adipocytes obtained from ATCC (Man-
assas, VA, USA) were, respectively, cultured in DMEM and FBM containing 10% FBS,
2 mmol/L L-glutamine, and 100 units/mL penicillin/streptomycin in humidified incubator
at 37 ◦C with 5% CO2 and grown to 70−80% confluence before use. Cells between 5 and
17 passages were used in this study.

For adipocyte differentiation, pre-adipocytes were seeded into a 24-well plate at a
density of 2 × 104 cells/well. After incubation for 48 h, the differentiation process was
counted as day 0, and the cells were treated with differentiation medium containing 0.5 mM
IBMX, 1 µM dexamethasone, and 10 µg/mL insulin with or without pinostrobin at non-
toxic concentrations. On day 2 of differentiation, the medium was replaced with culture
medium containing 10 µg/mL of insulin. On day 4, the cells were further incubated in
culture medium with renewal every two days until lipid droplets were obvious upon
microscopic examination, approximately on day 8 [35].

2.3. Cytotoxicity Assay

Cytotoxic effect of pinostrobin in 3T3-L1 and PCS-210-010 pre-adipocytes was assessed
by crystal violet colorimetric assay [36]. Briefly, after the cells (1 × 105 cells/well in 96-well
plate) were treated with 0−100 µM pinostrobin for 48 h, the detached dead cells were
removed by washing 2 times with PBS (pH 7.4). The remaining living cells were fixed



Foods 2022, 11, 3024 4 of 16

with 10% w/v formaldehyde for 15 min and stained with crystal violet (0.05% w/v) for
30 min at room temperature. Excessive crystal violet solution was removed via washing
with deionized water for two times, and the 96-well plate was allowed to dry overnight.
The stained cells were solubilized in methanol (100 µL) prior to absorbance measurement
at 570 nm (A570) by a microplate reader (Anthros, Durham, NC, USA). The percent (%) cell
viability was calculated on the basis of A570 ratio between pinostrobin-treated cells and the
vehicle (0.5% DMSO)-treated control cells.

To evaluate cell death, Hoechst33342 and PI co-staining was performed with the cells
incubated in the presence of pinostrobin for 48 h. The cells at a density of 1 × 105 cells/well
in 96-well plates were washed with PBS (pH 7.4), followed by 30 min incubation with
10 µg/mL of Hoechst33342 and 0.02 µg/mL of PI. The mode of cell death was determined
by visual examination under an inverted fluorescence microscope (Olympus IX51, Olym-
pus, Tokyo, Japan). Apoptotic cells were characterized by the bright-blue Hoechst33342
fluorescence of fragmented DNA and condensed nuclei. Necrotic cells were distinguished
by the red propidium iodide fluorescence of DNA.

2.4. Assessment of Cellular Lipid Content

Oil red O staining was used to determine the accumulation of cellular lipid droplets.
After the differentiation process, the cells (2 × 104 cells/well in 24-well plate) were washed
with PBS (pH 7.4) and fixed with 10% w/v formalin for 15 min at room temperature. Then,
oil red O solution was added to stain cellular lipid droplets for 1 h. After removal of
excessive staining solution, the cells were rinsed three times with deionized water and 60%
isopropanol. The stained adipocytes were observed under a Nikon Ts2 inverted microscope
(Tokyo, Japan). The dye retained in the cells was extracted with 100% isopropanol, and the
optical density (OD) was measured at 570 nm with a microplate reader (Anthros, Durham,
NC, USA). The OD at 570 nm was calculated as a relative value compared to the total
protein content (as determined by BCA assay kit) and presented as % oil red O staining.

In addition, the level of released glycerol in differentiated 3T3-L1 adipocytes was
measured with a glycerol assay kit, and the amount of cellular triglyceride was determined
with a triglyceride quantification kit, following manufacturer’s instructions (Sigma Aldrich,
St. Louis, MO, USA). The triglyceride content was normalized with the total cellular
protein content.

2.5. Cell Proliferation Assay

Cell proliferation assay was performed to investigate the effect of pinostrobin on
mitotic clonal expansion (MCE) during differentiation into adipocytes. After 3T3-L1 cells at
a density of 1× 105 cells/well in 96-well plates were incubated for 2 days, the confluent cells
were further cultured in differentiation medium with or without pinostrobin (0−20 µM)
for 24, 48, and 72 h. Crystal violet staining was performed as described above to determine
cell proliferation at each incubation time.

2.6. Western Blotting

The cell lysate was prepared from pre-adipocyte 3T3-L1 cells cultured in differentiation
medium containing 0−20 µM pinostrobin for 48 h. Briefly, the cell membrane was broken by
incubation with RIPA buffer supplemented with protease inhibitor cocktail on ice for 45 min.
Equal amounts of protein samples as quantified by the BCA assay were separated through
10% SDS-PAGE and transferred electrophoretically onto nitrocellulose membranes (Bio-Rad
Laboratories, Hercules, CA, USA). The nitrocellulose membranes were further blocked
with 5% (w/v) skim milk in Tris-buffered saline containing 0.1% Tween 20 (TBST) for 1 h,
followed by incubation with primary antibody overnight at 4 ◦C. The membranes were then
washed with TBST (3 times × 5 min) and immersed in specific secondary antibody at room
temperature for 2 h. Protein bands of interest were detected and quantified under UV light
after reaction with western chemiluminescent ECL substrates using a chemiluminescence
instrument (Chemiluminescent ImageQuant LAS 4000, GE Healthcare Bio-Sciences AB,
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Björkgatan, Uppsala, Sweden). The protein expression level relative to GAPDH (internal
loading control) was calculated.

2.7. Quantification of Gene Expression Using Real-Time Polymerase Chain Reaction (qRT-PCR)

Total mRNA was extracted from differentiated 3T3-L1 cells with Genzol reagent
(Geneaid, Taiwan) according to the manufacturer’s recommended protocol. The cDNA
synthesis kit (Thermo Scientific, Rockford, IL, USA) was used to synthesize single-stranded
cDNA from 500 ng mRNA, which was quantified by a NanoDrop™ One/OneC Microvol-
ume UV–Vis Spectrophotometer (Thermofisher Scientific, Rockford, IL, USA). The qRT-PCR
reaction with the final reaction volume of 20 µL consisting of 10 µL of Bio-Rad Luna Univer-
sal qPCR master mix (Bio-Rad Laboratories, Hercules, CA, USA), 2 µL of 100 ng of cDNA
template, 0.5 µL of each 10 µM forward and 10 µM reverse primers, and 7 µL of nuclease-
free water (Thermo Scientific, Rockford, IL, USA) for volume adjustment was performed
under the following thermal program: initial denaturation step at 95 ◦C for 3 min, followed
by 40 cycles of denaturation at 95◦C for 5 sec and primers annealing at 55 ◦C for 30 sec
using the CFX 96 Real-Time PCR system (Bio-Rad Laboratories, Hercules, CA, USA). Gene
expression levels were calculated by comparing the Cq values using the 2−∆∆Cq equation.
The specific primers of PPARγ (forward: GATTCTCCTRTTGACCCAG, reverse: GARTGS-
GAGTGGTCTTCCAT), C/EBPα (forward: AGTCGGTGGACAAGAACAGC, reverse: GT-
GTCCAGTTCRCGGCTCA), SREBP-1c (forward: YTGCMGACCCTGGTGAGTG, reverse:
ASCGGTAGCGCTTCTCAAT), and GAPDH (forward: 5′-GACCACAGTCCATGCCATCA,
reverse: CCGTTCAGCTCAGGGATGAC) were obtained from Integrated DNA Technolo-
gies (Coralville, IA, USA). GAPDH was used as a housekeeping gene to normalize the
differences in reverse transcription efficiencies.

2.8. Statistical Analysis

All experiments were performed as independent experiments in triplicate, and the
results are presented as mean ± standard deviation (SD). Analysis of variance (ANOVA)
was performed using the GraphPad Prism Version 7.00 for Windows (GraphPad Software,
Inc., San Diego, CA, USA). A p-value < 0.05 was assumed as statistical significance.

3. Results
3.1. Suppressive Effect of Pinostrobin on Adipogenesis in 3T3-L1 Pre-Adipocytes

Firstly, the range of non-toxic concentrations of the test compound was determined
by crystal violet staining assay. Treatment with 1−20 µM pinostrobin for 48 h did not
alter viability in pre-adipocyte 3T3-L1 cells as compared with the untreated control group
(Figure 2a). On the contrary, panduratin A at concentrations higher than 5 µM significantly
lowered cell viability (data not shown). Moreover, Hoechst33342 and PI co-staining pro-
vided evidence for the absence of toxicity of pinostrobin at 10−20 µM. As clearly seen in
Figure 2b, bright blue Hoechst33342 fluorescence of condensed DNA/fragmented nuclei
could be observed in cells cultured with pinostrobin at 50 µM. Noticeably, no necrosis
was observed since no red PI fluorescence appeared in the treated cells. Therefore, the
concentrations of pinostrobin from 1 to 20 µM were considered non-toxic and safe for use
in subsequent experiments.

Intracellular lipid droplet accumulation was evaluated by oil red O staining after com-
plete cell differentiation. Oxyresveratrol, a polyphenol earlier reported for anti-adipogenic
activity in 3T3-L1 cells, was used as a positive control [37]. As demonstrated in Figure 3a,
the culture incubated with differentiation medium containing 5−20 µM pinostrobin for
48 h significantly reduced intracellular lipid accumulation compared to the control cells.
The ability of pinostrobin to decrease cellular lipid deposition was superior to that of
oxyresveratrol when assessed at the same concentration of 5 µM (Figure 3b). Pinostrobin
was further evaluated for its effects on cellular triglyceride and glycerol. Figure 3c,d indi-
cates that pinostrobin at 5−20 µM significantly lowered the cellular triglyceride content and
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simultaneously increased the release of glycerol into the culture medium. These findings
suggest the potential of pinostrobin as an adipogenic suppressor.
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3.2. Effect of Pinostrobin on Cell Proliferation during Adipogenesis

Reentry into the cell cycle following rapid proliferation or mitotic clonal expansion
(MCE) is an initial and crucial step for adipogenesis that happens in the first round at
24–36 h and the second round at 48–60 h during differentiation [38]. As depicted in Figure 4,
a gradual increase in cell number was demonstrated in post-confluent 3T3-L1 cells cultured
in differentiation medium for 24–72 h. Interestingly, there was no significant alteration in
cell proliferation in cells co-treated with differentiation cocktail and pinostrobin (5–20 µM)
when compared with the control cells. The results suggested that pinostrobin did not affect
MCE during adipogenesis.
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Figure 3. Suppressive effect of pinostrobin on adipogenesis was evidenced by the lower levels of
(a) cellular lipid content presented as % oil red O and (b) cellular lipid droplets stained with oil
red O in differentiated 3T3-L1 cells treated with 5–20 µM pinostrobin for 48 h. Oxyresveratrol
(Oxy) at 5 µM was used as positive control. (c) A decrease of cellular triglyceride content and
(d) an increase of extracellular glycerol level was detected in pinostrobin treated-3T3-L1 cells. Data rep-
resent mean ± SD (n = 3). * p < 0.05 compared with vehicle control cells (C) treated with 0.5% DMSO.

Foods 2022, 11, 3024 8 of 16 
 

 

in the presence of 5–20 µM pinostrobin compared to the control group (Figure 5b−e). Im-
ages of the uncropped original Western blot are provided in Supplementary Figure S1. 

 
Figure 4. Effect of pinostrobin on mitotic clonal expansion in pre-adipocyte 3T3-L1 cells. Crystal 
violet assay was performed after 24–72 h cultured with differentiation medium with or without 5–
20 µM pinostrobin. Cell proliferation was presented relative to the vehicle control cells (C) treated 
with 0.5% DMSO for 24 h. 

 
Figure 5. Diminution of adipogenic transcription factors in pinostrobin-treated 3T3-L1 cells. The 
expression of C/EBPα, PPARγ, and SREBP-1c was evaluated in the presence or absence of pi-
nostrobin (5–20 µM) for 48 h via (a) qRT-PCR and (b–e) Western blot analysis. Data represent mean 
± SD from three individual experiments. * p < 0.05 compared with vehicle control cells (C) treated 
with 0.5% DMSO. 

Figure 4. Effect of pinostrobin on mitotic clonal expansion in pre-adipocyte 3T3-L1 cells. Crystal
violet assay was performed after 24–72 h cultured with differentiation medium with or without
5–20 µM pinostrobin. Cell proliferation was presented relative to the vehicle control cells (C) treated
with 0.5% DMSO for 24 h.



Foods 2022, 11, 3024 8 of 16

3.3. Inhibiton of the Expression of Adipogenic Transcription Factors by Pinostrobin

Post-confluent 3T3-L1 cells were treated with 0–20 µM pinostrobin during the early
differentiation step for 48 h, and the expression of adipogenic transcriptional factors was
evaluated by qRT-PCR. Figure 5a indicates that pinostrobin decreased the mRNA levels
of C/EBPα, PPARγ, and SREBP-1c in a concentration-dependent manner. In line with the
diminished mRNA levels, protein levels of these transcription factors drastically reduced in
the presence of 5–20 µM pinostrobin compared to the control group (Figure 5b−e). Images
of the uncropped original Western blot are provided in Supplementary Figure S1.
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3.4. Pinostrobin Downregulates Upstream Akt and MAPK Signaling Pathways

The effects of pinostrobin on the upstream signaling pathways of adipogenesis in
3T3-L1 cells were further investigated. Serine/threonine protein kinase B (PKB or Akt)
plays an important role in adipogenesis, and its activation enhances adipocyte differentia-
tion. Activation of Akt (p-Akt) would upregulate SREBP-1c and promote lipogenesis [39].
Additionally, phosphorylated glycogen synthase kinase-3 beta (p-GSK3β) via Akt signaling
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would lead to the upregulation of C/EBPα transcription factor and promotion of adipocyte
maturation [40]. In our hands, although no alteration of Akt and GSK3β levels was de-
tected, a decrease in p-Akt expression with diminution of p-GSK3β was observed in cell
cultures containing 10–20 µM pinostrobin (Figure 6a–c). Images of the uncropped original
Western blot are provided in Supplementary Figure S2.
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Figure 6. Effect of pinostrobin on the Akt-related signaling pathways. (a) Western blotting re-
vealed the alteration of Akt and GSK3β signals in 3T3-L1 cells in the presence of pinostrobin for
48 h of the early differentiating process. There was significant reduction of (b) p-Akt/Akt and
(c) p-GSK3β/GSK3β levels in cells treated with 10 and 20 µM pinostrobin. (d) The modulation on
AMPK-ACC pathway, a downstream of Akt signal, was also detected in pinostrobin-treated 3T3-L1
cells. Activation of AMPK-ACC signal was evidenced by upregulated (e) p-AMPKα/AMPKα and
(f) p-ACC/ACC levels. Data represent the mean ± SD. * p < 0.05 compared with vehicle control cells
(C) treated with 0.5% DMSO.
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AMP-activated protein kinase (AMPK) serves as a key regulator in adipogenesis. Even
though Akt and AMPK play different roles in the cellular metabolic process, they have
common effects on the downstream transcription factor, SREBP-1c [41,42]. It is known
that Akt negatively regulates AMPKα activity [43]. In agreement with the diminished
p-Akt, 48 h incubation with pinostrobin (10–20 µM) stimulated the phosphorylation of
AMPKα (Figure 6d,f). (Images of the uncropped original Western blot are provided in
Supplementary Figure S3.) Surprisingly, as seen in Figure 6e, the p-ACC/ACC level was
upregulated even at the lowest concentration (5 µM) of pinostrobin, which correlated well
with the reduction of adipogenic transcription factors.

Several mitogen-activated protein kinases (MAPKs), including extracellular signal-
regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), also play important roles
during the maturation of adipocytes [44]. Suppression of these signaling molecules would
effectively inhibit adipogenesis [45,46]. It was reported that inhibition of p38 hinders
adipocyte differentiation via modulating PPARγ transcription. Our Western blotting
analysis showed that pinostrobin significantly reduced the protein expressions of p-JNK
and p-p38 (Figure 7a). (Images of the uncropped original Western blot are provided in
Supplementary Figure S4.) Figure 7b depicts a dramatic decrease in the p-JNK/JNK level
at a low concentration (5 µM) of pinostrobin as compared with the control group, while the
p-p38/p38 level was repressed at higher concentrations (Figure 7c). It should be noted that
there was no alteration of p-ERK/ERK levels in pinostrobin-treated 3T3-L1 cells (Figure 7d).
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Figure 7. MAPK signals modulated by pinostrobin. (a) After induction into mature adipocyte for
48 h, the expression of MAPK signaling molecules, including JNK, ERK, and p38, was detected
via Western blot analysis. (b) Treatment with low concentration of pinostrobin (5 µM) significantly
downregulated the level of p-JNK/JNK, while (c) a dramatic decrease of p-p38/p38 was observed
only in the presence of 20 µM pinostrobin. (d) Pinostrobin did not alter p-ERK/ERK levels in
differentiated 3T3-L1 cells. Data represent the mean ± SD. * p < 0.05 compared with vehicle control
cells (C) treated with 0.5% DMSO.
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3.5. Pinostrobin Inhibits Adipocyte Maturation in Human Pre-Adipocytes

The anti-adipogenic potential of pinostrobin was further investigated in primary
human PCS-210-010 pre-adipocytes. Cell differentiation was induced in the presence or
absence of pinostrobin at non-toxic concentrations of 5–20 µM (data not shown), and the
accumulation of cellular lipid droplets was assessed by oil red O staining assay. The
cellular lipid content was found to decrease to 92.3%, 85.4%, and 51.2% upon treatment
with pinostrobin at 5, 10, and 20 µM, respectively (Figure 8a). Figure 8b reveals a sharp
reduction of cellular lipid droplets in pinostrobin-treated cells. These results suggest the
ability of pinostrobin to suppress adipogenesis in human pre-adipocytes.
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lipid was stained with oil red O solution for detecting (a) the lipid content representing as % oil red
O and (b) accumulated lipid droplets observed under a microscope. Data represent the mean ± SD.
* p < 0.05 compared with vehicle control cells (C) treated with 0.5% DMSO.

4. Discussion

In recent years, dietary interventions to manage overweight and obesity have gained
tremendous attention, and the interest in using food as a therapeutic means is becoming
popular [47,48]. Interest has also increased in the development of phytoconstituents for
preventing and ameliorating obesity. Fingerroot, botanically known as Boesenbergia rotunda
or B. pandurata, has been promoted for its beneficial potentials for weight loss. The extracts
prepared from fingerroot samples from Indonesia attenuated diet-induced obesity in mice.
The active principle was identified to be pandurantin A, a major compound that inhibited
adipogenesis by modulating AMPKs and PPARα/δ signaling pathways [30]. However,
from the fingerroot collected in Thailand, the main chemical component is pinostrobin,
which, prior to this study, had no records of anti-adipogenic activity. In our preliminary
examination, this compound possesses much less toxicity than panduratin A and thus
warrants further investigation.

In the oil red O staining experiment in 3T3-L1 cells, pinostrobin reduced intracellular
lipid storage with a magnitude greater than that of oxyresveratrol. As illustrated in
Figure 3a,b, pinostrobin (5 µM) decreased lipid accumulation to 29.32 %, whereas only
13.93 % reduction was obtained for 5 µM oxyresveratrol treatment. Additionally, the
reduced amount of cellular triglyceride and the elevated level of released glycerol confirmed
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that pinostrobin was able to inhibit the development of mature adipocytes (Figure 3c,d). It is
worth noting that useful anti-obesogenic agents should not only suppress cell differentiation
but also depress lipid accumulation in adipocytes [49,50]. The above findings suggest that
pinostrobin could be a potential candidate.

The differentiation of pre-adipocytes into mature adipocytes requires the upregulation
of several adipogenic regulating proteins, including PPARγ and C/EBPα. As the positive
feedback loop, PPARγ activates the expression of C/EBPα, which is also necessary for
stimulating PPARγ. The lipogenic transcription factors, sterol regulatory element binding
proteins (SREBPs), also regulate the transcription of PPARγ [51,52]. Moreover, Payne
et al. reported that C/EBPα regulates the expression of SREBP-1c, and decreased C/EBPα
expression significantly reduces the transcription factor PPARγ [53]. In this study, treat-
ment with pinostrobin decreased both mRNA and protein levels of these key adipogenic
regulators at the early stage (48 h) of adipocyte differentiation (Figure 5). It has been
reported that SREBP-1c would trigger the fatty acid synthase complex, resulting in the
synthesis of triglyceride [54]. Furthermore, gene expressions responsible for lipid storage
and insulin sensitivity are also modulated by C/EBPα [53]. These molecular pathways
may account for the effects of pinostrobin observed in this study on the adipogenesis
and cellular lipid metabolism. In passing, it should be mentioned that pinostrobin chal-
cone, a flavonoid structurally related to pinostrobin, possesses anti-adipogenic activity in
mouse C3H10T1/2 adipocytes by suppressing the downstream signaling related to PPARγ,
C/EBPα, and fatty acid-binding protein 4 (FABP4) [55].

As the Akt and MAPK pathways critically mediate adipogenesis [20], the alterations
of proteins related to these processes were studied in differentiated pre-adipocytes in
the presence of pinostrobin. The restraint of p-Akt/Akt signal (Figure 6b), in association
with the reduction of downstream p-GSK3β (Figure 6c) as well as PPARγ and C/EBPα
transcription factors in pinostrobin-treated 3T3-L1 cells (Figure 5) conforms with the fact
that Akt/GSK3β cascade is essential for the expression of CCAAT-enhancer binding fam-
ily proteins (C/EBPβ, C/EBPα) and PPARγ during adipocyte differentiation [56]. It is
well-established that AMPK, which acts as a sensor for energy homeostasis by regulat-
ing several metabolic pathways, is negatively controlled by Akt signaling [39–41]. The
phosphorylated form or active AMPK directly or indirectly suppresses the transcription
factors for both adipogenesis and lipogenesis, resulting in cellular energy expenditure and
suppression of synthesis of triglycerides and fatty acids [57]. The α1 subunit of AMPK is
considered as a key subunit in adipose tissue [58,59]. The hinderance of phosphorylation
at Thr172 of AMPKα sufficiently increases adipogenesis in 3T3-L1 pre-adipocyte [60,61].
Moreover, siRNA-down-regulated AMPK enhances lipid accumulation via mediating ACC
consequence with the upregulation of C/EBPα/β, PPARγ and SREBP-1c in both mouse
and human mesenchymal cells [62]. Consistent with several studies indicating that several
flavonoids could suppress adipogenesis through modulation of the AMPK pathway [30], an
increase in the levels of p-AMPKα/AMPKα and p-ACC/ACC (Figure 6e–f), together with
lowered p-Akt/Akt ratios (Figure 6b), was observed in pinostrobin-treated pre-adipocytes.

It has been established that activation of AMPK hinders the synthesis of triglycerides
and fatty acids by inhibiting fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1),
and SREBP-1c [42]. Moreover, SREBP-1c involves with the expression of lipogenic enzymes,
including FAS and ACC1, which converts acetyl-CoA to malonyl-CoA [63]. It has also
been reported that Akt can directly activate SREBP-1c by reducing the expression of the
SREBP-1c inhibitor Insig2a [41]. Therefore, the effects of pinostrobin on the Akt-related
cascade might be responsible for the inhibition of adipogenesis and triglyceride accumu-
lation. Nevertheless, in this investigation, only pinostrobin at 10–20 µM could efficiently
abolish p-Akt, an active form of Akt. Further investigation at a low concentration for other
mechanisms is warranted before any conclusion can be drawn.

Fundamentally, the MAPKs, including ERK1/2, JNK, and p38, are involved in adipocyte
proliferation and differentiation. The phosphorylation of ERK1/2, JNK, and p38 can en-
hance the activation of C/EBPα and PPARγ [64]. It was reported that phosphorylation of
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p38 and JNK is essential for adipocyte differentiation and that JNK and p38 inhibitors can
reduce lipid accumulation in adipocytes [45]. Interestingly, pinostrobin at 5 µM promptly
hindered the activation of JNK (Figure 7b), which was well-correlated with the suppressive
effect on adipogenesis and cellular lipid storage though the repression of p-p38/p38 was
observed only at 20 µM pinostrobin (Figure 7c). On the other hand, there was no alteration
of p-ERK/ERK levels in differentiated 3T3-L1 cells cultured with pinostrobin at all con-
centrations (Figure 7d). ERK signaling is involved in rapid proliferation during the MCE
process and the PPARγ expression [38,46]. The lack of modulatory effects of pinostrobin
on the proliferation of post-confluent pre-adipocytes during adipogenesis might be due to
the non-significant change of p-ERK levels. Thus, it seems that pinostrobin works on the
MAPK signaling pathways, i.e., JNK and p38, but not on ERK.

The antiadipogenic activity of pinostrobin was also demonstrated in human pre-
adipocytes [65,66]. Pinostrobin was found to suppress adipogenic differentiation in a
dose-dependent fashion (Figure 8). Cellular lipid accumulation was significantly reduced
to 50% by 20 µM pinostrobin.

5. Conclusions

In summary, this study revealed for the first time about the suppressive effect of
pinostrobin, the major flavonoid found in fingerroot (B. rotunda), on adipogenesis and its
possible regulating machineries. Its regulatory role on Akt (Akt/GSK3β, Akt/AMPK-ACC)
and MAPK (JNK, p38), in association with downregulated levels of PPARγ, C/EBPα, and
SREBP-1c transcription factors, results in the suppression of adipogenesis and cellular lipid
accumulation in differentiated adipocytes (Figure 9). The evidence obtained from this
investigation supports the anti-obesogenic activity of fingerroot.

Foods 2022, 11, 3024 13 of 16 
 

 

can reduce lipid accumulation in adipocytes [45]. Interestingly, pinostrobin at 5 µM 
promptly hindered the activation of JNK (Figure 7b), which was well-correlated with the 
suppressive effect on adipogenesis and cellular lipid storage though the repression of p-
p38/p38 was observed only at 20 µM pinostrobin (Figure 7c). On the other hand, there was 
no alteration of p-ERK/ERK levels in differentiated 3T3-L1 cells cultured with pinostrobin 
at all concentrations (Figure 7d). ERK signaling is involved in rapid proliferation during 
the MCE process and the PPARγ expression [38,46]. The lack of modulatory effects of 
pinostrobin on the proliferation of post-confluent pre-adipocytes during adipogenesis 
might be due to the non-significant change of p-ERK levels. Thus, it seems that pi-
nostrobin works on the MAPK signaling pathways, i.e.,  JNK and p38, but not on ERK. 

The antiadipogenic activity of pinostrobin was also demonstrated in human pre-ad-
ipocytes [65,66]. Pinostrobin was found to suppress adipogenic differentiation in a dose-
dependent fashion (Figure 8). Cellular lipid accumulation was significantly reduced to 
50% by 20 µM pinostrobin. 

5. Conclusions 
In summary, this study revealed for the first time about the suppressive effect of pi-

nostrobin, the major flavonoid found in fingerroot (B. rotunda), on adipogenesis and its 
possible regulating machineries. Its regulatory role on Akt (Akt/GSK3β, Akt/AMPK-ACC) 
and MAPK (JNK, p38), in association with downregulated levels of PPARγ, C/EBPα, and 
SREBP-1c transcription factors, results in the suppression of adipogenesis and cellular li-
pid accumulation in differentiated adipocytes (Figure 9). The evidence obtained from this 
investigation supports the anti-obesogenic activity of fingerroot. 

 
Figure 9. Proposed regulatory mechanisms of pinostrobin on the suppression of adipogenesis. The 
diminution of cellular lipid droplets and adipogenic transcription factors (PPARγ, C/EBPα, and 
SREBP-1c) in pinostrobin-treated adipocytes might be mediated through modulating Akt 
(Akt/GSK3β and Akt/AMPK-ACC) and MAPK (JNK and p38) signals. This figure was created with 
BioRender.com. 

Pinostrobin, once established as an adipogenic suppressor, could be employed as a 
single ingredient or formulated with other herbs in food products for obesity prevention 
and management. However, pharmacokinetics, bioavailability, and toxicity studies in in 
vivo models are required before any clinical applications can be realized. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/foods11193024/s1, Figure S1: Original western blot images for Fig-
ure 5b: Suppression of adipogenic transcription factors in 3T3-L1 cells by 5, 10, and 20 µM pi-
nostrobin; Figure S2: Original western blot images for Figure 6a: Effects of pinostrobin (5, 10, and 

Figure 9. Proposed regulatory mechanisms of pinostrobin on the suppression of adipogenesis.
The diminution of cellular lipid droplets and adipogenic transcription factors (PPARγ, C/EBPα,
and SREBP-1c) in pinostrobin-treated adipocytes might be mediated through modulating Akt
(Akt/GSK3β and Akt/AMPK-ACC) and MAPK (JNK and p38) signals. This figure was created with
BioRender.com.

Pinostrobin, once established as an adipogenic suppressor, could be employed as a
single ingredient or formulated with other herbs in food products for obesity prevention
and management. However, pharmacokinetics, bioavailability, and toxicity studies in
in vivo models are required before any clinical applications can be realized.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods11193024/s1, Figure S1: Original western blot images for Figure 5b:
Suppression of adipogenic transcription factors in 3T3-L1 cells by 5, 10, and 20 µM pinostrobin;
Figure S2: Original western blot images for Figure 6a: Effects of pinostrobin (5, 10, and 20 µM) on the
Akt-related signaling pathway in 3T3-L1 cells; Figure S3: Original western blot images for Figure 6d:
Effects of pinostrobin (5, 10, and 20 µM) on the AMPK-related signaling pathway in differentiated
3T3-L1 cells; Figure S4: Original western blot images for Figure 7a: Effects of pinostrobin (5, 10, and
20 µM) on the MAPK-related signaling pathway.
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