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Abstract: Starch retrogradation is desirable for some food textures and nutritional traits but detri-
mental to sensory and storage qualities of other foods. The objective of this study was to determine
the impact of sweetener structure and concentration on the retrogradation of wheat starch gels. The
effects of 20 sweeteners selected based on common food usage and stereochemical structures of
interest, and ranging in concentration from 10 to 50%w/w, on the retrogradation of wheat starch
gels were monitored spectrophotometrically over time. The sweeteners were sucrose, xylose, ri-
bose, glucose, galactose, fructose, mannose, mannitol, L-sorbose, xylitol, tagatose, allulose, maltose,
lactose, isomaltulose, isomalt, sorbitol, maltitol, and raffinose. Retrogradation rates and amounts
were compared by Avrami equation rate constants (k = 0.1–0.7) and absorbance values measured on
day 28 (Abs = 0.1–1.0), respectively. Both sweetener concentration and type significantly affected
retrogradation. Gels made with sugar alcohols and high sweetener concentrations (≈≥40%) tended
to retrograde more and faster, whereas gels made with sugars and low sweetener concentrations
tended to have lower retrogradation rates and amounts. Sweeteners with more equatorial and
exocyclic hydroxyl groups (e.g., glucose and maltitol) and those with larger molar volumes (e.g.,
isomaltulose and raffinose) tended to increase the rate and amount of retrogradation, particularly
at higher concentrations. The impact of sweeteners on retrogradation was a balance of factors that
promoted retrogradation (intermolecular interactions and residual short-range molecular order)
and inhibiting behaviors (interference at crystallization sites), which are influenced by sweetener
concentration and structure. Understanding which sweeteners at which concentrations can be used
to promote or inhibit retrogradation is useful for product formulation strategies.

Keywords: starch; retrogradation; sweetener stereochemistry; molar volume; Avrami equation; sugar;
sugar alcohol

1. Introduction

Starch granules are semicrystalline biological structures largely composed of two
α-glucans: amylose and amylopectin. Native starch granules are water insoluble and
relatively inert in foods, but in the presence of water (or other low molecular weight
plasticizers such as glycerol or sugar solutions) and sufficient heat to reach the gelatinization
temperature, the crystalline regions of the starch granule melt and there is an irreversible
loss of the native structure [1,2]. During gelatinization and pasting, starch granules imbibe
more of the surrounding solution, swell to several times their original size, and amylose
begins to leach out; with continued heating and mixing, the granules eventually rupture,
releasing their remaining contents [2]. The type and concentration of sweetener in solution
elevate the gelatinization temperature (Tgel) of starch due to the formation of stabilizing
hydrogen bonds between sweeteners and starch polymers in the amorphous regions of
the starch granules and reduction in the volume density of hydrogen bonding sites with
corresponding reduced plasticizing ability of the solvent compared to water [3,4].
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Upon cooling after gelatinization, amylose and amylopectin begin to retrograde,
reassociating via chain entanglements that lead to the formation of ordered crystalline
regions [5]. The rate and extent of amylose and amylopectin retrogradation differ. Amy-
lose crystallizes in minutes to hours and contributes to starch gel formation as well as
the setting of bread [6]. Amylose can crystallize either as a double helix or as a single
helical V-type crystal with a less polar molecule (e.g., fatty acid, alcohol, surfactant) in
the hydrophobic center, and both of these crystal types have a relatively high melting
temperature at ≈120 ◦C [5]. Amylopectin retrogrades more slowly (days) and has a lower
melting temperature range, from ≈35 to 80 ◦C depending on the storage conditions [7].
Amylopectin retrogrades into double helical B-type crystals but, at higher temperatures
(>55 ◦C), can crystallize into the A-type or C-type (mixture of A and B-type crystals) [5].
The external amylopectin chains may also form some single helix V-type crystalline regions
with lipids [5]. Amylopectin crystallization may be undesirable in some food products,
leading to syneresis, decreased gel clarity, increased gel stiffness, and bread staling, but
desirable in other products including the production of resistant starch [2,6,8].

The rate and amount of retrogradation are dependent on many factors such as the
botanical source and starch fine structure [8–10], relative humidity and moisture content
(i.e., glass transition temperature (Tg) of amorphous fraction) [11,12], storage tempera-
ture [13,14], heating conditions (e.g., cooking time and temperature) [15,16], starch–lipid
interactions [17,18], and amylase hydrolysis of the starch structure [19]. Thus, both intrinsic
and extrinsic factors affect starch retrogradation. More details on the effects of these factors
on retrogradation have been extensively reported in reviews such as by Wang et al. [20],
Hoover [21], Fu et al. [22], and Zobel and Kulp [5]. A recent study has also explored the
relationship of the amount of residual short-range molecular order in gelatinized wheat
starch to the subsequent retrogradation [23].

The effects of sweeteners (sugars and sugar alcohols) on starch retrogradation have
also been investigated; however, the findings are contradictory. For example, sweeteners
were reported to promote the retrogradation of oat [24], normal corn [25], normal, high
amylose, and waxy corn [18], and potato starches [26], whereas, sweeteners were also
reported to suppress retrogradation of wheat [27], oat and wheat [28], tapioca [29], normal
and waxy corn [30], and rice starches [31–33]. Depending on additional experimental
variables (sweetener type, concentrations, storage temperatures), sweeteners were also
reported to both increase and decrease retrogradation of wheat [26,34], waxy corn, wheat,
potato and pea [35], rice [36], waxy corn [37,38], waxy and normal corn [39], Pueraria lobata
(kudzu) [40], and amaranth starches [41]. These contradictory findings demonstrate the
complexity of the effects of different sweeteners on starch retrogradation and highlight the
need for a better understanding of what sweetener traits are associated with their effects
on starch retrogradation. Therefore, the objective of this study was to compare the effects
of 20 different sweeteners across a wide range of concentrations on the retrogradation of
wheat starch gels to elucidate which sweetener properties are responsible for promoting or
inhibiting starch retrogradation. This will provide foundational information and aid in the
development of food formulation strategies to control starch retrogradation, and/or reduce
or replace conventional sugars.

2. Materials and Methods
2.1. Materials

Aytex® P wheat starch, an unmodified, highly purified native wheat starch (<0.2%
protein, <0.1% fat, <0.2% ash, 9.9% water, and 25% amylose) [42] was donated by ADM
(Minneapolis, MN, USA) and used “as is”. Twenty different sugars and sugar alcohols
that may be found in food products and/or have stereochemical structures of interest
were used: xylose, ribose, glucose, galactose, fructose, mannose, and mannitol from Acros
Organics (Fair Lawn, NJ, USA); L-sorbose and xylitol from Sigma-Aldrich (St. Louis, MO,
USA); trehalose dihydrate from Hayashibara Company (Okayama, JP, USA); tagatose
and allulose from Sensato (Albany, NY, USA); maltose monohydrate and lactose monohy-
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drate from Fisher Chemical (Fair Lawn, NJ, USA); isomaltulose monohydrate and isomalt
ST (~1:1 ratio of glucopyranosyl sorbitol and glucopyranosyl mannitol dihydrate [43])
from BENEO-Palatinit Gmbh (Mannheim, DE, USA); sorbitol from Amresco (Solon, OH,
USA); sucrose from Mallinckrodt Chemicals (Phillipsburg, NJ, USA); and maltitol and
raffinose pentahydrate from Alfa Aesar (Ward Hill, MA, USA) (Table 1). Calcium propi-
onate was from Sigma-Aldrich. The water used in this study was processed using reverse
osmosis, then filtered by a Barnstead E-Pure Lab Water System (Dubuque, IA, USA) to
>17.4 milliohm-cm.

Table 1. Sugar and sugar alcohol properties.

Sweetener # of Carbons Type Reducing
Sugar Tg (◦C) Exocyclic + Equatorial

OH (Table S1)
Molar Volume

(cm3/mole)

Allulose 6 Sugar (Ketose) Yes 0.5 2.7
Fructose 6 Sugar (Ketose) Yes 15.2 [3] 2.7 110.4 [44]

Galactose 6 Sugar (Aldose) Yes 31.9 [3] 3.6 111.9 [44]
Glucose 6 Sugar (Aldose) Yes 38.3 [3] 4.6 112.2 [44]
Isomalt 12 Sugar Alcohol No 58.7 [3] 9.0

Isomaltulose 12 Sugar Yes 60.6 [3] 5.2 219.5 [45]
Lactose 12 Sugar Yes 101.0 [46] 6.6 207.6 [44]
Maltitol 12 Sugar Alcohol No 46.4 [3] 9.0 215.4 [47]
Maltose 12 Sugar Yes 49.0 [3] 7.4 208.8 [44]

Mannitol 6 Sugar Alcohol No 10.7 [48] 6.0 119.4 [49]
Mannose 6 Sugar (Aldose) Yes 35.9 [3] 3.3 111.7 [44]
Raffinose 18 Sugar No 103.2 [50] 8.0 303.2 [44]

Ribose 5 Sugar (Aldose) Yes −11.6 [3] 2.4 95.3 [44]
Sorbitol 6 Sugar Alcohol No −1.6 [3] 6.0 119.9 [49]
Sorbose 6 Sugar (Ketose) Yes 19.0 [46] 4.0 110.6 [44]
Sucrose 12 Sugar No 59.4 [3] 6.0 210.2 [44]
Tagatose 6 Sugar (Ketose) Yes 14.1 [3] 3.1 108.9 [51]
Trehalose 12 Sugar No 117.5 [3] 8.0 206.9 [44]

Xylitol 5 Sugar Alcohol No −23.8 [3] 5.0 102.4 [49]
Xylose 5 Sugar (Aldose) Yes 11.0 [3] 3.6 94.8 [44]

#: Number of carbons.

2.2. Methods
2.2.1. Sweetener Solution Preparation

Sweetener solutions at 10, 20, 30, 40, and 50%w/w (when possible based on sweetener
solubility limits) were prepared in 10 mL volumes in 15 mL centrifuge tubes and stored
at −20 ◦C when not in use for extended periods. The solubility limits for mannitol and
lactose prevented production of the higher solution concentrations. Moisture contents of
the sweeteners that were crystal hydrates were accounted for when preparing solutions.
To defrost and encourage sweetener dissolution, solutions were heated at 60–80 ◦C in
a heating block for 5–15 min, followed by rotational mixing on a Scientific Industries
Roto-Shake Genie (Bohemia, NY, USA). This was repeated until the sweetener was fully
dissolved. Solutions were not used if crystals were visibly present after overnight storage
at ambient conditions.

2.2.2. Spectrophotometric Absorbance Measurements

The retrogradation measurement method using spectrophotometric absorbance values
of starch gels was adapted from Jacobson et al. [52]. An advantage to using spectropho-
tometry for monitoring retrogradation is that the measurements are repeated for the same
sample throughout the experiment since the method is non-destructive, which eliminates
sample-to-sample variability between timepoints and more efficient throughput than more
destructive analyses such as differential scanning calorimetry. Wheat starch-sweetener
slurries were prepared in 1.5 mL centrifuge tubes using 0.1 g wheat starch, 1 mL sweetener
solution (of 20 sweetener types ranging in concentration from 10 to 50%w/w), and 4 µL of a
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25%w/w calcium propionate solution (preservative). Slurries were made on a starch weight-
to-solution volume ratio to achieve similar gelatinized starch volumes in each gel. Slurries
were vortexed until fully mixed, immediately poured into the well of a folded hexagon
polystyrene weigh dish (4.7 cm inner diameter), then 40 µL of slurry was pipetted into
each of 6 wells of a clear polystyrene flat bottomed 96-well plate using a 6 channel pipettor.
The plates were sealed with a thermal adhesive sealing film for polymerase chain reaction
plates and heated for 90 min at 99 ◦C (to gelatinize the starch) in a digital AccuTemp-09s
vacuum oven (Across Instruments, Livingston, NJ, USA) at ambient pressure. Preheated
metal blocks were also placed on top of each plate to maintain the seal and for better heat
transfer. After heating, the plates were held at ambient temperature for 1 h to allow for the
initial amylose retrogradation and vapor condensation inside the wells to take place. Water
that condensed on the inside of the film was knocked back into the wells by gently tapping
the plate to maintain the original moisture contents. The plates were then loaded into a
Beckman Coulter AD 340 (Brea, CA, USA) Microplate Reader, and the absorbance values
at 620 nm were measured (day 0). Plates were resealed with a new adhesive sealing film
and stored at 4 ◦C. Absorbances were measured on days 1, 3, 7, 14, 21, and 28, and plates
were resealed with a new adhesive sealing film after each absorbance measurement. The
controls were starch with water and water alone.

2.2.3. Differential Scanning Calorimetry

The gelatinization temperatures of the starch-sweetener slurries across all sweetener
concentrations were determined using differential scanning calorimetry, as described by
Allan, Rajwa, and Mauer [3]. Additionally, sucrose-starch gels made using 0, 10, 20, 30,
40, and 50% sucrose solutions were prepared, ~10 mg of each slurry (precise weight was
recorded) was pipetted into a Perkin Elmer 50 µL differential scanning calorimeter (DSC)
pan (BO143017), and each pan was hermetically sealed with a lid (BO143003). Six replicates
were made for each sucrose concentration. These sealed pans were placed in a 96-well
plate and held at 99 ◦C for 90 min in an AccuTemp-09s vacuum oven followed by storage
at 4 ◦C, replicating the conditions used for the absorbance measurement studies. Of
the 6 replicates for each sucrose concentration, 3 replicates were analyzed after 7 days
and the other 3 after 14 days of incubation at 4 ◦C. The enthalpy of retrogradation (∆H)
was measured by manually transferring pans into a Perkin Elmer DSC 4000 (Waltham,
MA) that was calibrated using water, indium, and zinc. Each sample was heated from
30 to 100 ◦C at 10 ◦C/min. The retrogradation peak in the thermogram was identified
as the single endothermic event that occurred between 40 and 60 ◦C. An additional set
of sucrose-starch slurries containing 0, 10, 20, 30, 40, and 50% sucrose solutions were
prepared for determining starch gelatinization properties. The sweetener solutions and
starch were combined, ~10 mg was sealed into a DSC pan, the pans were transferred into
the DSC, and each sample was heated from 30 to 100 ◦C at 10 ◦C/min. The regions of
the thermogram from 2 to 5 ◦C before and after the end of the endothermic peaks were
used to determine the onset temperature, peak temperature, and ∆H of retrogradation and
gelatinization endotherms by the “peak calculation” function with the “Standard” baseline
in Pyris Software (version 10.1.0.0412). The ∆Hs of retrogradation and gelatinization were
calculated as the area of the peak, and the reported J/g is the enthalpy of the slurry.

2.2.4. Data Analysis

A modified Avrami equation adapted from Berski, Ziobro, Witczak, and Gambus [28]
was used to model and compare the rate constants of retrogradation:

Abst = Abs∞ − (Abs∞ −Abs0) ∗ e−ktn
(1)

where Abst was the predicted absorbance at time t, Abs∞ was the absorbance at day 28, k
was the calculated rate constant, t was days of incubation, and n was the Avrami exponent.
Rate constants (k) of retrogradation were calculated using absorbance measurements and
the Curve Fitting Application in MatLab R2019a (MathWorks Inc., Natick, MA, USA) for
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the 620 nm absorbances (y-axis) plotted with respect to time (days, x-axis). The Avrami
exponent (n) was set to 1 to compare retrogradation rate constants (k) despite the slightly
weaker fit than with a free n variable in Equation (1). The Avrami exponent (n) for starch
retrogradation has been previously calculated to be 1, which assumes that starch crystal-
lization was “rod-like growth from an instantaneous nuclei” [53]. Equation (1) and the
calculated k values were used to model the absorbances of the starch gels. In addition to
determining rate constants (k), the amount of retrogradation was documented by using
Abs∞ (absorbance at day 28) and the change of absorbance from day 0 to day 28 (Abs(∞-0))
to offset for initial absorbance differences.

The effects of categorical sweetener solution properties (number of carbons in a
sweetener, sugar or sugar alcohol, reducing sugar, and sweetener concentration (Table 1))
on retrogradation properties (k, Abs∞, and Abs(∞-0)) were analyzed using 2-way ANOVA
(α = 0.05) in the Standard Least Squares “personality” in JMP Pro 14.0.0 (SAS Institute Inc.,
Cary, NC, USA). Statistical differences between the onset temperatures, peak temperatures,
and enthalpies measured by DSC were compared by one-way ANOVA with a Tukey post
hoc test (α = 0.05) in JMP Pro 14.0.0.

The molar effective number of hydroxyl groups (NOH,eff) and effective volume fraction
of the solvent φw,eff of sweetener solutions were calculated as described in van der Sman
and Mauer [4] using values from Table 1. The effects of numerical sweetener properties
(number of equatorial and exocyclic hydroxyl groups, dry Tg, molar volumes (Table 1),
NOH,eff, and φw,eff (Table S3)), as well as onset Tgel, on retrogradation were investigated by a
series of linear correlations. Retrogradation rate constants (k) and amounts (Abs∞, Abs(∞-0))
for the sweetener-starch gels were grouped by sweetener concentration, then individual
Pearson correlation coefficients (r) were calculated between the retrogradation properties
(y-axis) against the numerical sweetener properties (x-axis). For example, r was calculated
for the linear correlation between the k values of gels made with 10% sweetener solutions
against the molar volumes of the sweeteners. Significances of r values were assessed using
two-tailed t-statistics with Microsoft Excel 365 (Redmond, WA, USA).

3. Results and Discussion
3.1. Sucrose Concentration Effects on Retrogradation of Wheat Starch Gels

Wheat starch gels made with 0 to 50% sucrose solutions exhibited increasing Abs620nm
values over time, and the initial absorbance values (day 0) were greater with increasing
sucrose concentrations (Figure 1). The Abs620nm values of the sweetener solutions with-
out starch were ≈0.0; thus, the sweetener solutions themselves did not contribute to the
absorbance values. Differences in the initial starch gel Abs620nm values were likely from
varying degrees of granule swelling and extents of amylose retrogradation because initial
starch gel turbidity is attributed to granule remnants and swollen granules that refract and
scatter light [54]. Starch granule swelling likely varied due to the increasing sweetener
concentrations increasing both the gelatinization temperature [3] and pasting tempera-
ture [55,56]. Increasing sucrose concentrations increased the Tgel of starch from 64.3 ◦C
in 10% sucrose solutions to 89.6 ◦C in 50% solutions (Table 2); therefore, the temperature
differential between Tgel and the gel preparation conditions (90 min at 99 ◦C) varied even
though all samples were heated above the Tgel. Wheat starch pasting temperatures in
43% (1.5M) and 55% (2M) sucrose solutions are less than 95 ◦C, but the starch in these
solutions does not fully swell as indicated by lowered peak pasting viscosities with no
viscosity breakdown [56]. Thus, the samples in Figure 1 would have all gelatinized and
begun pasting, but more residual short-range molecular order and less granule swelling
likely occurred as sucrose concentrations increased which contributed to higher initial
Abs620nm values.
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Figure 1. Changes in 620 nm absorbance over 28 days at 4 ◦C of 10%w/v wheat starch gels made with
water (black, ×—-), 10% (purple, •·····), 20% (blue, •—-), 30% (green, •- - -), 40% (yellow, •- · - ·), 50%
(red, •— —) w/w sucrose solutions. Lines are Avrami modeled absorbance values and the error bars
are 1 standard deviation of the measured absorbance values.

Table 2. The onset gelatinization temperature (Tgel) of wheat starch in the presence of different
concentrations of sweetener solutions (10% to 50%).

Onset Tgel (◦C)

Sweetener 10% 30% 40% 50%

Ribose 60.28 ± 0.25 62.00 ± 0.10 64.67 ± 0.22 68.62 ± 0.19
Xylose 61.55 ± 0.49 63.91 ± 0.10 67.63 ± 0.05 72.07 ± 0.12
Xylitol 62.90 ± 0.09 67.15 ± 0.30 72.66 ± 0.27 78.69 ± 0.34
Tagatose 63.13 ± 0.12 66.65 ± 0.17 71.71 ± 0.18 78.30 ± 0.20
Mannose 63.90 ± 0.11 68.45 ± 0.24 74.48 ± 0.12 82.20 ± 0.07
Fructose 63.87 ± 0.13 69.03 ± 0.09 75.12 ± 0.19 82.22 ± 0.10
Allulose 62.28 ± 0.03 65.54 ± 0.08 71.19 ± 0.08 80.05 ± 0.38
Galactose 64.53 ± 0.17 71.12 ± 0.42 N/A N/A
Glucose 64.54 ± 0.07 70.41 ± 0.19 77.17 ± 0.50 86.19 ± 0.64
Sorbitol 64.76 ± 0.11 71.62 ± 0.67 78.90 ± 0.38 88.75 ± 0.02
Mannitol 65.18 ± 0.11 N/A N/A N/A
Maltose 63.10 ± 0.61 70.10 ± 0.13 77.39 ± 0.37 N/A
Trehalose 64.51 ± 0.24 71.36 ± 0.17 79.73 ± 0.17 N/A
Sucrose 64.31 ± 0.12 72.28 ± 0.16 79.98 ± 0.06 89.64 ± 0.12
Maltitol 63.82 ± 0.19 72.04 ± 0.21 81.36 ± 0.22 N/A
Isomalt 64.26 ± 0.47 73.21 ± 0.53 82.33 ± 0.49 N/A
Isomaltulose 63.67 ± 0.32 73.15 ± 0.30 83.45 ± 0.48 N/A
Raffinose 64.57 ± 0.08 71.10 ± 0.69 N/A N/A
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Increases in absorbance over time are attributed to amylopectin retrogradation. As
starch retrogrades, intra- and intermolecular starch–starch junction points grow into crys-
talline zones, resulting in lower starch solubility and dispersed particles large enough
to scatter light [54]. The rate and extent of retrogradation was affected by the sucrose
concentration: the gels made with 10 and 20% sucrose solutions retrograded less than
the control (0% sucrose) and gels made with 30, 40, and 50% sucrose solutions had more
retrogradation (Figures 1 and 2). The calculated Avrami rate constant (k) decreased with
sucrose concentrations up to 20% but then increased with increasing sucrose concentrations
in gels made with >30% sucrose solutions (Figure 2). This suggests that increasing sucrose
at lower concentrations (0 to 20%) may have a retrogradation antagonistic effect (34%
reduction in k and 22% reduction in Abs∞) but increasing sucrose at higher concentrations
will promote retrogradation (≈2 fold increase in k and Abs∞). In the absence of sugar,
Huang, Chao, Yu, Copeland and Wang [23] found that initial increases in water content
and heating temperature promoted the retrogradation of wheat starch (attributed to greater
glucan chain flexibility upon some decrease in short-range molecular order) but further
increases in water content and heating temperature inhibited starch retrogradation (at-
tributed to a weaker nucleation effect from the decreased amount of residual short-range
molecular order). The addition of increasing amounts of sucrose in solution decreases
the volume fraction of water, stabilizes the amorphous regions of starch, increases the
Tgel, and resulted in increases in retrogradation, which were likely due to enough residual
short-range molecular order to serve as nucleation sites and enough molecular mobility of
the glucan chains to facilitate retrogradation. However, this does not explain the inhibition
of retrogradation at the lower sucrose concentrations compared to the water control.
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The melting enthalpies of wheat starch–sucrose gels determined by DSC analysis
of the same sucrose-containing gels analyzed in the spectrophotometer are reported in
Figure 3. Consistent with the retrogradation trends determined by monitoring absorbance
(Figure 1), the melting enthalpy results indicate that gels made with 30, 40, and 50% sucrose
solutions exhibited increased retrogradation after 7 and 14 days (Figure 3), with the most
retrogradation occurring at the highest sucrose concentration. The effects of lower sucrose
concentrations on retrogradation differed between the DSC and spectrophotometer results
in that no inhibition of retrogradation was found in the DSC analyses. Gels made with
10 and 20% sucrose solutions were not different from the control after 7 days, gels made
with 20% sucrose had a greater enthalpy of retrogradation after 14 days (Figure 3). Both gel
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absorbance/turbidity and melting enthalpy values are associated with retrogradation but
are measurements of different retrogradation attributes [20]. The enthalpy is the energy
to remelt retrograded starch, while absorbance/turbidity measures light scattering from
retrograded starch aggregates [20]. The lower amounts of sucrose affected the trends in
these two measurements differently.
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Figure 3. Enthalpies of retrogradation of 10%w/v wheat starch gels made with (from left to right)
water (black), 10% (purple), 20% (blue), 30% (green), 40% (yellow), 50% (red) w/w sucrose solutions
and incubated at 4 ◦C for 7 and 14 days. Error bars are 1 standard deviation and significant differences
are indicated by capital letters (A–E).

The melting peak temperatures of retrograded sucrose-starch gels ranged from 55.07
to 60.92 ◦C, and only gels made with 40 and 50% sucrose had higher melting temperatures
than gels made with water (Table S1). Retrograded starch melting temperatures and
temperature ranges were much lower than the gelatinization temperatures in 0 to 50%
sucrose solutions (Table S1). The lower melting temperatures of retrograded starch were
likely due to retrograded starch adopting the B-type polymorph, which has a lower melting
temperature than the native wheat starch A-type polymorph [5,57].

3.2. Effects of 20 Sweeteners at Different Concentrations on the Retrogradation of Wheat
Starch-Sweetener Gels

The effects of sweetener solutions (20 sweeteners at 10 to 50%w/w concentrations) on
the retrogradation rate constants (k) and amounts (Abs∞ and Abs(∞-0)) in 10% wheat starch
gels were compared (Figure S1). Both sweetener type and concentration were found to
significantly affect retrogradation (Table 2), in some cases increasing retrogradation and in
others decreasing retrogradation (Figure 4). The control starch gel containing no sweetener
was near the median for k and absorbance values, at the 43rd, 41st, and 59th percentile
from the bottom of k, Abs∞, and Abs(∞-0) values, respectively. Starch–sweetener gels with
the highest rates and amounts of retrogradation, exhibiting k, Abs∞, and Abs(∞-0) values
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in the top quartile, were made with 50% glucose, 30 and 40% isomalt, 40% isomaltulose,
40 and 50% maltitol, 30% raffinose, 40 and 50% sorbitol, 50% sucrose, and 40 and 50%
xylitol solutions. Gels in which retrogradation was inhibited, for which k, Abs∞, and
Abs(∞-0) were in the lowest quartile, were made with 30% maltose, 20% mannose, and 10%
sucrose solutions.
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Figure 4. Changes in 620 nm absorbances of 10%w/v wheat starch gels stored at 4 ◦C over 28 days
made with water (black, ×—-), 10% (purple, •·····), 20% (blue, •—-), 30% (green, •- - -), 40% (yellow,
•- · - ·), 50% (red, •— —) solutions of 5-C sugars (A,B), a 5-C sugar alcohol (C), 6-C sugars (D–J),
6-C sugar alcohols (K,L), 12-C sugars (M–P), 12-C sugar alcohols (Q,R), and a 18-C sugar (S). Lines
are Avrami modeled absorbance values and the error bars are 1 standard deviation of the measured
absorbance values.
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Based on the absorbance data (Figure 4), sweeteners were grouped into three general
categories: retrogradation promoters, retrogradation inhibitors, and those that inhibited
retrogradation at low concentrations but promoted retrogradation at high concentrations
(Figure 5). The retrogradation promoters were sweeteners that tended to increase retrogra-
dation rates and amounts with increasing concentrations, and this group included xylitol,
sorbitol, isomaltulose, isomalt, and raffinose (Figure 4). Trehalose was considered to be a
retrogradation promoter since the Abs∞, and Abs(∞-0) values of these gels increased with
trehalose concentration; however, k values remained similar to the control (≈0.1 day−1).
Isomalt and isomaltulose were two of the strongest retrogradation promoters and both
have an α(1–6) glycosidic linkage, which allows for greater molecular extensibility and
flexibility [58]. These two sweeteners also had the greatest effect on elevating the Tgel
of starch at the 30% and 40% concentrations (Table 2). Retrogradation inhibitors were
sweeteners that tended to decrease the amount of retrogradation compared with the control
and included: ribose, xylose, allulose, sorbose, and tagatose. These sweeteners were among
those that also had the least effect on elevating the Tgel (Table 2). It is important to note that
retrogradation inhibitors did not always have low calculated k values. For example, when
Abs(∞-0) was ≈ 0.0, the calculated k values were artificially high (e.g., ribose and allulose in
Figure 4). Sweeteners that acted as retrogradation inhibitors at low concentrations but as
retrogradation promoters with increasing concentrations were: sucrose, glucose, mannose,
galactose, fructose, maltose, and maltitol. Biliaderis and Prokopowich [38] previously
noted that a sweetener could behave either as a retrogradation inhibitor or promoter based
on concentration, documenting that fructose at low concentrations slowed retrogradation
while high concentrations of fructose increased retrogradation. Lactose and mannitol were
not classified due to solubility limitations.
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Figure 5. Overview of sweetener solution type and concentration effects on starch retrogradation in
wheat starch gels.

The information presented in Figure 5 could be useful for product developers when
considering which sweeteners, at which concentrations, might create conditions favorable
for the desirable amount of retrogradation in a given product. Sweeteners that inhibit ret-
rogradation could be beneficial for use in products for which retrogradation is undesirable,
e.g., to inhibit the staling of bread. In contrast, sweeteners that promote retrogradation
could be used as a controlling formulation factor [59,60] to increase the amount of resistant
starch type 3, which has documented health benefits.

To better understand why different sweeteners affected retrogradation differently and
at different concentrations, the effects of categorical sweetener solution properties (Table 1)
on starch retrogradation in the wheat starch gels were investigated. The concentration of
the sweetener solution and sweetener type (sugar alcohol or sugar) significantly affected
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the k, Abs∞, and Abs(∞-0) values; the number of carbons was significant for Abs(∞-0) but
not k or Abs∞; and if the sweetener was a reducing sugar, it was not a significant factor
(Table 3). Significant interactions were sweetener type with the number of carbons on
Abs∞, and sweetener type with concentration on Abs(∞-0) and k values. The gels that
retrograded the most (i.e., highest Abs∞, and Abs(∞-0) values) and the fastest (i.e., highest
k values) were predominately made with sugar alcohols at high concentrations (40 and
50%), whereas the gels that retrograded the least and the slowest were made with sugars
at low concentrations. Baek, Yoo and Lim [25] also reported sugar alcohols increased
retrogradation of corn starch gels more than sugars. Therefore, a generalization is that a
sugar solution at a low concentration would likely interfere with starch recrystallization,
while a sugar alcohol solution, particularly at high concentrations, would likely promote
starch crystallization.

Table 3. p-values of retrogradation properties and significant p-values are bolded (α = 0.05).

p Value
Source k (day−1) Abs∞ Abs(∞-0)

# of Carbons 0.455 0.072 0.027
Sugar vs. Sugar
Alcohol 0.002 0.001 <0.001

Reducing Sugar 0.075 0.711 0.125
Concentration <0.001 <0.001 <0.001

#: Number of carbons.

Moderate but significant correlations were found between the onset gelatinization
temperature of wheat starch in the different sweetener solutions and retrogradation of
the starch in gels made using these same sweetener types and concentrations (Figure 6,
Table 4). The φw,eff was also moderately but significantly negatively correlated to Abs∞,
but to a lesser extent than Tgel. Sweetener solutions that resulted in the highest onset Tgels
also tended to result in the most retrogradation. Increasing the concentration of all of the
sweeteners studied increased the Tgel, although the extent of Tgel elevation varied across
the different sweetener types attributed to structural differences between the sweeteners,
including measures of their intermolecular hydrogen bonding ability and φw,eff [3,4]. It is
important to note that more than the temperature differential between the onset Tgel and
the preparation of the gels (99 ◦C) affected retrogradation, as reflected in the distribution of
Abs∞ values at any given onset Tgel value (Figure 6). The amount and type of sweetener in
solution affected the onset Tgel and would therefore have also likely altered the amount
of residual short-range molecular order in the gelatinized starch as well as the molecular
mobility of the glucan chains, factors shown to be influential in retrogradation [23].

Table 4. Pearson correlation coefficient (r) of linear correlations of wheat starch gel retrogradation
properties (k, Abs∞, Abs(∞-0)) with sweetener solution properties (NOH,eff, and φw,eff calculated as
shown in Table S2) and the onset gelatinization temperature of starch in the sweetener solutions.

Correlation Coefficient (r)

Sweetener Solution
Parameter k (day−1) Abs∞ Abs(∞-0)

Onset Tgel 0.1700 0.6811 *** 0.6077 ***
NOH,eff −0.1263 −0.1882 −0.1593
φw,eff −0.1768 −0.5009 *** −0.4062 **

** p-value < 0.01, *** p-value < 0.001.
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Figure 6. Relationship between the onset gelatinization temperature of wheat starch in solutions
of the twenty sweetener solutions across a range of concentrations and a spectrophotometric mea-
sure of subsequent retrogradation of the starch in gels made using these same sweetener types
and concentrations.

To further separate the effects of different sweetener structural traits on retrogradation,
linear correlations of the number of equatorial and exocyclic groups on a sweetener (Table 1)
with starch gel retrogradation k, Abs∞, and Abs(∞-0) values were investigated (Table 5).
The number of equatorial and exocyclic hydroxyl groups on a sweetener in solution were
negatively correlated with the k values of gels made with 10 and 20% sweetener concen-
trations but positively correlated with k values of gels made with 40 and 50% sweetener
concentrations (Table 5 and Figure S1). In addition, the number of these hydroxyl groups
was positively correlated with Abs∞ and Abs(∞-0) values at 20 to 50% sweetener concen-
trations. The e-OH was more influential than the NOH,eff. The equatorial and exocyclic
hydroxyl groups in a monosaccharide have been shown to be more reactive than axial
hydroxyl groups [61]; thus, sweeteners with a greater amount of these more reactive hy-
droxyl groups are likely to form more intermolecular interactions. This suggests sweeteners
with stereochemistries favorable for intermolecular interactions (i.e., H-bonding) may slow
retrogradation rates at low concentrations but increase the amount and rate of starch ret-
rogradation at high concentrations. Sweetener stereochemistry and the orientation of the
hydroxyl groups have been associated with many phenomena that likely influence retrogra-
dation including: how a sweetener fits in the structure of water [49], the extent to which a
sweetener increases the gelatinization temperature of starch [3], the amount of unfreezable
water and changes of solution specific heat [62,63], the dynamic hydration number of the
sweetener [64], the intrinsic viscosity of the sweetener [45], and the diffusion coefficient of
the sweetener [65]. The stereochemistry of sweeteners has also been correlated with their
effects on starch retrogradation rates. Muira, Nishimura, and Katsuta [33] and Katsuta,
Nishimura, and Miura [31] reported negative correlations between the retrogradation rate
constants (k) in a first-order kinetic equation of 6% sweetener and 30% rice starch gels and
the number of equatorial hydroxyl groups in the sweeteners. This is in agreement with the
retrogradation behaviors of wheat starch gels made with 10 and 20% sweetener solutions
because there were also negative correlations with the retrogradation rate constants (k) and
the number of equatorial and exocyclic hydroxyl groups in a sweetener (Figure 6).
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Table 5. Pearson correlation coefficient (r), slope, and p-values of linear correlations of starch gel
retrogradation properties (k, Abs∞, Abs(∞-0)) in respect to sweetener factors (number of equatorial
+ exocyclic hydroxyl groups (e-OH), dry Tg, molar volume, NOH,eff, and φw,eff) with correlations
grouped by sweetener concentrations. Correlations with p-values < 0.10 are indicated by * and
p-values < 0.05 are indicated by **. Sample size of correlations varied because of solubility limitations
and missing values in Table 1.

Sweetener
Concentration Sweetener Factor

k Abs∞ Abs(∞-0)

r Slope p-Value r Slope p-Value r Slope p-Value

10 e-OH 0.562 −0.013 0.012 ** 0.166 0.005 0.484 0.197 0.005 0.405
20 e-OH 0.556 −0.012 0.017 ** 0.503 0.031 0.028 ** 0.498 0.022 0.030 **
30 e-OH 0.407 0.015 0.116 0.715 0.080 0.001 ** 0.667 0.046 0.002 **
40 e-OH 0.525 0.034 0.045 ** 0.746 0.103 0.001 ** 0.703 0.054 0.002 **
50 e-OH 0.548 0.058 0.097 * 0.711 0.097 0.010 ** 0.595 0.049 0.041 **
10 Dry Tg 0.492 −0.001 0.037 ** 0.238 0.000 0.326 0.234 0.000 0.333
20 Dry Tg 0.468 −0.001 0.057 * 0.342 0.001 0.164 0.335 0.001 0.174
30 Dry Tg 0.352 0.001 0.179 0.434 0.003 0.081 * 0.361 0.002 0.154
40 Dry Tg 0.118 0.000 0.686 0.339 0.003 0.215 0.293 0.001 0.288
50 Dry Tg 0.366 −0.003 0.294 0.173 0.002 0.610 0.171 0.001 0.613
10 Molar Volume 0.405 0.000 0.107 0.164 0.000 0.516 0.258 0.000 0.302
20 Molar Volume 0.470 0.000 0.067 * 0.471 0.001 0.056 * 0.541 0.001 0.025 **
30 Molar Volume 0.570 0.001 0.027 ** 0.579 0.002 0.019 ** 0.522 0.001 0.038 **
40 Molar Volume 0.370 0.001 0.213 0.519 0.003 0.057 * 0.504 0.002 0.066 *
50 Molar Volume 0.131 0.001 0.737 0.349 0.002 0.323 0.279 0.001 0.435
10 NOH,eff 0.416 1.296 0.085 * 0.012 0.000 0.961 0.149 −0.003 0.541
20 NOH,eff 0.198 0.120 0.430 0.325 −0.565 0.175 0.466 −0.585 0.050 *
30 NOH,eff 0.460 −0.071 0.071 * 0.398 0.079 0.112 0.393 −0.537 0.106
40 NOH,eff 0.589 −0.530 0.025 ** 0.506 −1.002 0.053 * 0.560 −0.615 0.029 **
50 NOH,eff 0.322 −0.340 0.361 0.358 1.214 0.253 0.299 0.990 0.346
10 φw,eff 0.114 1.296 0.663 0.128 2.106 0.614 0.066 −0.842 0.795
20 φw,eff 0.275 0.000 0.303 0.363 −5.817 0.152 0.471 −5.352 0.056 *
30 φw,eff 0.244 −1.439 0.382 0.407 0.002 0.118 0.422 −5.101 0.103
40 φw,eff 0.111 0.001 0.717 0.088 −1.026 0.765 0.094 −0.609 0.750
50 φw,eff 0.614 −5.705 0.078* 0.607 2.160 0.063 * 0.500 1.632 0.141

Sweetener molar volumes (Table 1) were also significantly correlated with retrograda-
tion k values of gels made with 20 and 30% sweetener solutions and the Abs∞ and Abs(∞-0)
values of gels made with 20, 30, and 40% sweetener solutions (Table 5 and Figure S1).
However, the slopes of the significant correlations (Table 5 and Figure S1) were ≈10 to 100x
less than the slopes of correlations with the number of equatorial and exocyclic hydroxyl
groups (Table 5 and Figure S1), indicating the effect of the sweetener molar volume on the
retrogradation behavior may not be as great as the effect of the sweetener stereochemistry.
Despite lower impacts, sweeteners with larger molar volumes were more likely to increase
the amount of retrogradation (Abs∞ and Abs(∞-0)) without greatly affecting retrogradation
rates (k). The molar volume is the space the solute takes up in solution [44], so conceptually,
sweeteners with a larger molar volume could span further distances to form hydrogen
bond bridges between starch chains, which could initiate retrogradation.

The k, Abs∞, and Abs(∞-0) values of retrogradation were also compared with the dry
glass transition temperatures (Tg) of sweeteners (Table 1). The slopes of these correlations
were ≈0 and few correlations were statistically significant (Table 5, Figure S1). It was there-
fore concluded that the dry Tg of a sweetener did affect the retrogradation of these 10%w/v
gels. Slade et al. [66] proposed sweeteners delay retrogradation because they function
as antiplasticizers, restricting starch chain mobility and thereby slowing or preventing
recrystallization. The Tgs of the 10%w/v starch gels in this study were likely not greatly
affected by the presence of sweeteners because the water content was high and the Tg
values of the gels were much lower than the storage temperature (4 ◦C). For example, the
Tg of the wheat starch gel made with a 50% sucrose solution was estimated to be ≈−63 ◦C
(210 K) using the Fox equation (1/Tg,i = Σi wi/Tg,i where wi is the mass fraction of the
component i, and Tg,i is the dry Tg of component i [67]; Tg of starch was 416 K [68], Tg of
sucrose was 333 K (Table 1), and Tg of water was 144 K [69]). Therefore, the Tg values of the
gels were well below the storage condition and Tg differences from the varying sweeteners
and concentrations did not affect the retrogradation behaviors.
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3.3. Retrogradation Promoting and Inhibiting Traits

Different sweeteners promoted or inhibited retrogradation across all concentrations,
while some sweeteners had a concentration-dependent effect on retrogradation (Figure 5).
For a sweetener to impact retrogradation, it will affect one or more the reported stages of
retrogradation: (1) double helix formation without true crystallinity, (2) an induction time
before crystal growth, (3) primary crystallization wherein measurable crystalline regions
form, and (4) crystal propagation and perfecting [70]. The influence of the sweetener on the
Tgel of the starch and retention of residual short-range molecular order in the gelatinized
starch [23] must also be considered. All sweeteners increased the Tgel relative to the water
control, yet some sweeteners delayed retrogradation compared with the control. These
sweeteners that delayed retrogradation likely functioned as starch crystallization impurities
and contained structures less favorable for intermolecular interactions. The sweeteners
that inhibited retrogradation (ribose, xylose, tagatose, allulose, and sorbose) tended to
have the least effect on elevating the Tgel (Table 2), another indicator that their interactions
with starch were less favorable than other sweeteners in the study. In gels with higher
sweetener concentrations and/or with sweeteners that have structures more favorable for
intermolecular interactions, the sweeteners functioned as bridges between starch chains [24]
and competed for water molecules [38], both forces promoting starch–starch interactions.
More retrogradation occurred in the presence of sweetener types (e.g., isomalt, isomaltulose,
and sorbitol) and concentrations that tended to also elevate Tgel the most, indicative of the
favorable intermolecular interactions and stereochemistries, such as the sugar alcohols,
which have flexible open structures [71], and the sweeteners with α(1–6) linkages (isomalt
and isomaltulose) [58].

The concentration-dependent influence of some of the sweeteners on inhibiting ret-
rogradation at lower concentrations then promoting retrogradation at higher concentrations
underscores that more than one factor affects starch retrogradation in the presence of the
same sweetener. The retrogradation behaviors (k, Abs∞, and Abs(∞-0)) of starch gels made
with sucrose, glucose, mannose, galactose, fructose, maltose, and maltitol were not linear
with concentration but instead were primarily “U”-shaped (Figure 2 and S1). Increasing
sweetener concentration decreases water content and increases Tgel (and in turn T-Tgel
and associated residual short-range molecular order). Huang, Chao, Yu, Copeland, and
Wang [23] reported that retrogradation of wheat starch (in the absence of sugars) is depen-
dent on a balance of the molecular mobility of glucan chains and the amount of residual
short-range molecular order and that there is an optimal amount of short-range molecular
order determined by the heating temperature and water content that will favor retrogra-
dation. In that study, retrogradation initially increased as sample treatment decreased the
residual short-range molecular order but further decreases in the molecular order decreased
retrogradation. The addition of sweeteners to the system would have altered both the glu-
can mobility and amount of residual starch structure, as well as the structure and mobility
of water. It is interesting to note that the sweeteners with the concentration-dependent
inhibition and then promotion effects on retrogradation relative to the control were the
sweeteners that tended to have intermediate effects on the elevation of the starch Tgel.
Higher sweetener concentrations increased Tgel and would have retained more residual
starch structure, which likely served as nucleation sites and promoted retrogradation.
At the lower sweetener concentrations, despite having higher Tgels and, therefore, more
residual short-range order than the water control, the number of equatorial and exocyclic
hydroxyl groups in the sweeteners was negatively correlated with retrogradation. It could
be that the favorable intermolecular hydrogen bonding between these sweeteners and
starch resulted in interference with crystal growth in these conditions, but not in systems
containing higher amounts of these sweeteners and more residual short-range order.

4. Conclusions

The effects of twenty sweeteners across a range of concentrations on the retrogradation
of wheat starch gels fit into three general categories: retrogradation promoters, retrogra-
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dation inhibitors, and retrogradation inhibitors at low concentrations and promoters at
high concentrations. Gels tended to retrograde more and faster with higher sweetener
concentrations (≥40%) and with sweeteners with molecular configurations favorable for
intermolecular interactions, such as more equatorial and exocyclic hydroxyl groups, α(1,6)
linkages, larger molar volumes, and sugar alcohols. The sweeteners that promoted ret-
rogradation also tended to elevate the Tgel to a greater extent, an indicator of favorable
and stabilizing intermolecular interactions between the sweetener and starch glucans.
Retrogradation tended to be inhibited in the presence of low sweetener concentrations
and sweeteners with configurations less favorable for intermolecular interactions. It is
important to consider how different sweeteners at different concentrations affect starch
retrogradation, given the wide landscape of sweetener type and concentration effects on
retrogradation rates and amounts. While useful for improving the understanding of how
different sweeteners influence starch retrogradation, these findings can also help guide food
product developers in selecting sweeteners for starchy products for which retrogradation is
either desirable or undesirable.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods11193008/s1, Table S1. Thermal properties of wheat starch
slurries (gelatinization) and gels (retrogradation) made with 10 to 50% sucrose solutions. Enthalpies
were not adjusted to dry starch content. Capital letters indicate significant differences. Table S2.
Anomeric and tautomeric forms of sweeteners in solution and the number of equatorial and exocyclic
hydroxyl groups. Table S3. Calculated sweetener solution NOH,eff, and φw,eff values. Figure S1.
Plots of 620 nm absorbances after 28 days (Abs∞) with one standard deviation, changes in 620 nm
absorbances from day 0 to day 28 (Abs(∞-0)) with one standard deviation, and the calculated Avrami
rate constants (k) with 95% confidence intervals that were grouped by sweetener concentrations
within sweeteners.
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