
Citation: Lin, W.; Liu, Y.; Di, J.;

Ren, G.; Wang, W.; He, W.; Wang, Y.

Effects of 1-MCP Treatment on

Physiology and Storage Quality of

Root Mustard at Ambient

Temperature. Foods 2022, 11, 2978.

https://doi.org/10.3390/

foods11192978

Received: 28 August 2022

Accepted: 20 September 2022

Published: 23 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Effects of 1-MCP Treatment on Physiology and Storage Quality
of Root Mustard at Ambient Temperature
Wenyan Lin , Yaping Liu, Jianbing Di *, Gang Ren, Wei Wang, Weichun He and Yu Wang

College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
* Correspondence: dijianbing@126.com; Tel.: +86-135-9310-0129

Abstract: Root mustard is plentiful in vitamins and minerals but shrivels and molds easily. In this study,
freshly harvested root mustard was fumigated with various concentrations of 1-Methycyclopropene
(1-MCP) (1 µL·L−1, 1.5 µL·L−1, and 2.0 µL·L−1) for 24 h and stored at ambient temperature (17 ± 1 ◦C)
for 35 d. Our data showed that 1-MCP fumigation had a striking preservation effect on maintaining
weight loss, fruit firmness, lignin, Vc content, and moisture content, inhibiting respiratory intensity
and ethylene release rate, as well as decreasing cell permeability and malondialdehyde (MDA)
accumulation and maintaining cell membrane integrity of root mustard. In addition, lipoxygenase
(LOX), pyruvate dehydrogenase (PDH), and polyphenol oxidase (PPO) activities were significantly
reduced throughout the storage period. In contrast, the activities of succinate dehydrogenase (SDH),
superoxide dismutase (SOD), ascorbate peroxidase (APX), phenylalanine deaminase (PAL), and
peroxidase (POD) remained at high levels. Results showed that 1-MCP treatments were effective
in maintaining the quality of root mustard, and the preservation effect of 1.0 µL·L−1 1-MCP was
better than other concentrations of 1-MCP. This study could serve as a theoretical reference for root
mustard preservation.
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1. Introduction

Root mustard (Brassica juncea var. megarrhiza Tsen et Lee), also known as kohlrabi and
turnip, is a genus of Brassica in the cruciferous family [1,2], which is widely distributed
in southwest China and Yangtze River basins [3,4]. Root mustard has a high nutritional
value and is rich in various essential amino acids for the human body. Root mustard
has diverse effects, including antibacterial, hypolipidemic, antitumor, anti-aging, and
refreshing effects [5,6]. However, after harvesting, root mustard is highly respiratory and
prone to water loss, shriveling, nutrient loss, and mold, thus resulting in substantial losses.
Therefore, root mustard urgently needs green and efficient storage technology to maintain
its good quality and commodity value.

At present, various post-harvest preservation methods, including low temperature [7,8],
biochemical treatment [9–11], and physical treatment [12,13], have been used to delay senes-
cence, extend shelf life and preserve the quality of fruits and vegetables [14]. However,
these preservation methods present several shortcomings and limitations, including short
storage time at low temperature, high physical treatment costs, and some chemical preserva-
tion may produce potential hazards and pollution problems. To alter the above phenomena,
1-MCP has gradually attracted attention in recent years. 1-MCP is an ethylene receptor
inhibitor cyclopropene compound, which can irreversibly act on ethylene receptors, thereby
preventing regular ethylene binding and restraining a range of physiological and biochemi-
cal responses to fruit ripening [15,16]. Compared to the conventional fresh-keeping agent,
1-MCP has the advantages of non-toxicity, good chemical stability, easy synthesis, and low
use concentration [17]. Some research has demonstrated that 1-MCP takes an essential
role in the post-harvest physiological processes of fruits and vegetables. For instance,
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Cefola [18] found that using 1-MCP markedly extended the shelf life of fresh-cut broccoli,
reduced post-harvest spoilage, and slowed the degradation of chlorophyll. Studies on
sweet potato [19,20] have shown that 1-MCP reduces germination, increases soluble solids
levels, delays the degradation of ascorbic acid content, and inhibits the increase in MDA
content, while maintaining a good antioxidant capacity. Yu et al. [21] found that 1-MCP
treatment inhibited the rise in mitochondrial ROS content of courgette, maintained the ac-
tivity of antioxidant enzymes SOD and APX, and energy metabolizing enzymes SDH, CCO,
H+-ATPase, and Ca2+-ATPase, and maintained normal energy metabolism in fruit tissues.
1-MCP has been proven to postpone maturation in a series of fruits and vegetables, which
include apples [22,23], pears [24,25], peaches [26,27], and ginger [28]. Till now, root mustard
research has mainly focused on mustard fermentation [29,30], strain isolation [4], etc., with
less research on its preservation, while storage methods have mainly focused on traditional
methods [31] (burial method, cellar method, plastic film bagging storage method, stacking
storage method), low temperature storage and air conditioning storage. Sun [32] found
that low temperature (4 ◦C) inhibited the decline in the sensory quality of small mustard,
and a low-temperature refrigeration method was found to be more effective in maintaining
the freshness, nutritional value, and original flavor of the mustard, but its storage time
was shorter. Luo et al. [33] showed that simple gas preservation can effectively reduce
the weight loss rate of stem mustard, reduce the loss of nutrients, and maintain better
color and freshness. So far, the effect of 1-MCP on the storage quality of root mustard has
rarely been studied. Studies have shown that the preservation effect of 1-MCP is related
to the treatment temperature. Serek et al. [34] found that the preservation effect of high
temperature treatment is better than that of low temperature in a certain temperature range.
Ku et al. [35] found that high temperature conditions are more conducive to the binding of
1-MCP to ethylene sites. Sisler et al. [16] found that the reason for the significant decrease
in 1-MCP effect under low-temperature conditions may be related to the change of receptor
protein conformation on the membrane at low temperatures. In this experiment, 1-MCP at
concentrations of 1.0 µL·L−1, 1.5 µL·L−1, and 2.0 µL·L−1 was selected to treat root mustard
based on previous studies on other root vegetables. The effects of 1-MCP treatment with
different concentrations on the postharvest storage properties of root mustard at ambient
temperature were studied, which provided a reference for the storage technology and
preservation of mustard.

2. Materials and Methods
2.1. Materials

Root mustard, a variety of bald mustard, was harvested in Taigu District, Jinzhong City,
Shanxi Province, and the stems and leaves of root mustard were removed. Selection of
samples without mechanical damage, pests, and diseases, uniform size to be used; 0.087 g,
0.1305 g, and 0.1740 g 1-MCP powders were used to configure 1-MCP with concentrations
of 1.0 µL·L−1,1.5 µL·L−1, and 2.0 µL·L−1, respectively.

2.2. Sample Handling

The root mustard was randomly divided into four groups of 85 and placed in a 60 L
plastic barrel. The root mustard was sealed fumigation treatment for 24 h by using different
concentrations (0 µL·L−1, 1 µL·L−1, 1.5 µL·L−1, 2.0 µL·L−1) of 1-MCP (Aladdin Bio-Chem
Technology Co., Ltd. Shanghai, China.), and the cover was opened for ventilation for an
hour. Then, the root mustard was packed in 0.03 mm perforated polyethylene plastic bag
and stored at ambient temperature (17 ± 1 ◦C) with a relative humidity of 65% to 75%
for 35 d. The relevant indexes were measured in 7-day intervals, and the experiment was
repeated three times.
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2.3. Storage Effect and Quality
2.3.1. Measurement of Weight Loss and Hardness

Weight loss rate was ascertained by the weighing approach, and initial mass was fixed
for each group, recorded as m/g, and the mass measured every 7 days was recorded as
m1/g. The weight loss (%) is based on the equation below (1).

weight loss rate (%) =
m − m1

m
× 100 (1)

Hardness measurements were conducted at ambient temperature using a food texture
analyzer (FTA) (TMS-PRO, American TFC Company). The central part of the root mustard
(1 cm × 2 cm × 1 cm) was taken and placed on a plate, then a cylindrical plunger with a
diameter of 3 mm was pushed into the sample at a speed of 100 mm·min−1 [36,37]; 9 points
were tested for each treatment. Finally, the average value was taken.

2.3.2. Measurement of Respiratory Intensity and Ethylene Content

Root mustard was transferred to a 2.5 L plastisol box, allowing carbon dioxide and
oxygen to accumulate in the box at 17 ◦C. After 2 h, gas analyzer was measured using
a carbon dioxide analyzer (F-940, Felix Instruments Inc., Camas, WA, USA), calculated
according to Formula (2).

Respiratory intensity
(

mg·kg−1·h−1
)
=

(
M

22.4
·N· 273

273 + T

)
·V·(m·h)−1 (2)

m represents sample mass, M represents the relative molecular mass of gas, T represents
ambient temperature, N represents CO2 concentration, V represents the volume of the
container used for determination, and h represents measurement time.

Two root mustards were transferred to a 2.5-litre plastic box with a pinhole-sized hole
on the lid for subsequent determination and sealing, allowing ethylene to accumulate in
the box at 17 ◦C. After 24 h, gas analyzer (F-940, Felix Instruments Inc., Camas, WA, USA)
was connected to the injection head to measure the ethylene content.

2.3.3. Measurement of Cell Membrane Permeability and MDA Content

Cell membrane permeability refers to the approach of Wei et al. [38] with some
modifications. The sample was punched into 10 holes with a puncher with a diameter of
10 mm, washed three times with distilled water, and immersed in 25 mL distilled water in
a 50 mL test tube for 30 min to determine the initial conductivity (C1). The solution was
boiled for 30 min, allowed to cool, and then the maximum conductivity (C) was measured.
The experiment was repeated 3 times and the cell membrane permeability was represented
by relative conductivity. The relative conductivity is calculated according to Formula (3).

Relative conductivity (%) =
C1

C
× 100% (3)

Malondialdehyde (MDA) content was assayed as described by Zhang & Liu [39]
and was expressed as µmol·g−1. The sample (1 g) was ground to homogenate with
5% trichloroacetic acid (2 mL) and quartz sand, and then ground again after adding
trichloroacetic acid (8 mL). The homogenate was centrifuged at 4000 r·min−1 for 10 min,
and the supernatant was collected. Add 2 ml 0.6% thiobarbituric acid solution to the
supernatant and mix well. The mixture was placed in boiling water for 10 min, and then,
after cooling, centrifuged at 3000 r·min−1 for 15 min. The absorbance values at 532 nm,
600 nm, and 450 nm were determined with 0.6% thiobarbituric acid solution as blank. The
experiment was repeated three times. MDA content is calculated according to Equation (4).

MDA content =
(OD532 − OD600)× V1

1.55 × 0.1 × VT × W
(4)
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V1 is the volume of sample taken for the determination/mL; VT is the total volume of
the extract/mL; W is the mass of the sample/g; 1.55 × 10−1 is the micromolar extinction
coefficient of MDA.

2.3.4. Measurement of Vit C Content and Lignin Content

Vit C content was determined by titration of 2,6-dichlorophenol indigo [40] and
denoted by mg·100 g−1. Samples of root mustard were ground into a homogenate in 2%
oxalic acid solution. The final volume was 100 mL. After filtering, the 10 mL filtrate was
titrated with the calibrated 2.6-dichloro indophenol sodium solution. When the color of the
solution changed to pink, the dye usage was noted. Vit C content was calculated according
to Equation (5).

W =
(V − V1)

B
×A × b

a
× 100 (5)

W means the 100 g sample contains mg of ascorbic acid; V is the number of ml of dye
used to titrate the sample; V1 is the milligrams of dye used in blank titration; A is 1 mL
dye solution equivalent to milligrams of ascorbic acid; B is the number of milliliters of the
sample solution taken during titration; b is the total milliliters of sample solution after
dilution; a is the number of grams of sample.

The lignin content was assayed according to the approach of Zhi et al. [41] with some
modifications. Root mustard (0.1 g) was extracted with 95% ethanol (10 mL) for 20 min.
Next, centrifuged at 8000 r·min−1 for 20 min, repeated twice, and the supernatant was
poured out. The ethanol: n-hexane = 1:2 (V:V) was extracted for 20 min, then centrifuged at
8000 r·min−1 for 20 min and repeated twice. Afterward, the precipitate was dried at ventila-
tion for 20 h, and 25% bromoacetyl glacial acetic acid (3 mL), 2 mol·L−1 sodium hydroxide
(0.9 mL), 5 mL acetic acid and 7.5 mol·L−1 hydroxylamine hydrochloride (0.1 mL) were
added into the dry matter. Finally, acetic acid was fixed to 15 mL, and the absorbance values
were measured at 280 nm. The lignin content was calculated according to Equation (6).

lignin content (U·g−1) = (A280 × Vr) × (0.01 W × Vs)−1 (6)

Vr represents the total volume of the extract (mL), W represents sample quality (g),
and Vs represents the liquid volume of enzyme used for determination (mL).

2.3.5. Measurement of Moisture Content

Root mustard (1 g~3 g) was placed on the sample plate, the sample room was closed,
and the moisture content in the sample was determined according to the instrument
operation procedure.

2.4. Determination of Enzyme Activity
2.4.1. LOX, SOD, PAL, APX, PDH and SDH Activity

Lipoxygenase (LOX) activity was determined by reference to the method of Ke et al. [42]
with some modifications. Substrate solution: Linoleic acid (0.27 mL) and Tween 20 (0.25 mL)
were added to sodium hydroxide (1.0 mol·L−1, 5.0 mL) and all compounds were mixed
equally. The pH of the mixture was adjusted to 9.0 with hydrochloric acid, and the volume
was adjusted to 500 mL with borate buffer (pH = 9.0). Crude enzyme solution: Samples
(0.5 g), 20 mL phosphate buffer (pH = 7.0) and 20 mL polyvinylpyrrolidone solution were
added to the mortar, respectively. After fully ground, the grinding solution was centrifuged
at 4 ◦C, 12,000 r·min−1 for 30 min, and the middle clear liquid was filtered by using a
0.25 µm filter membrane. At room temperature (25 ◦C), the substrate solution (0.9 mL),
borate buffer (0.2 mol·L−1, 2.0 mL and pH = 9.0) and crude enzyme solution (0.1 mL) were
added to the 1 cm quartz cuvette. Enzyme activity was determined spectrophotometrically
by measuring the increase in absorbance at 234 nm over a 1 min period.

Superoxide dismutase (SOD), phenylalanine deaminase (PAL), ascorbate peroxidase
(APX), pyruvate dehydrogenase (PDH), and succinate dehydrogenase (SDH) activity were
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measured according to the instructions of the Solarbio (Solarbio Science & Technology Co.,
Ltd. Beijing, China) kit.

2.4.2. PPO and POD Activity

Polyphenol oxidase (PPO) and peroxidase (POD) activities were measured by Cao [40].
Enzyme solution preparation: 2 g sample was weighed and put into a mortar, phosphate-
buffered solution (8 mL, pH 6.4) was added and homogenized in an ice bath, then cen-
trifuged at 12,000 r·min−1 at 4 ◦C for 30 min. Determination of PPO activity: supernatant
(0.6 mL) and buffer (0.3 mL) were added to the test tube, and balanced in a water bath at
30 ◦C for 5 min, then 0.05% catechol (3 mL) was added, and the OD420 value was measured
immediately after shaking. Record once every 30 min for a total of 5 min, an increment
of 0.01 in OD420 per minute was regarded as one unit of enzyme activity. Determination
of POD activity: supernatant (0.5 mL) and 0.1% guaiacol (2 mL) were added to the test
tube, and test tube was equilibrated at 30 ◦C water bath for 5 min, then 0. 18% H2O2 (1 mL)
was added, and the OD470 value was measured immediately after shaking. We recorded
once every 30 min for a total of 5 min, and an increment of 0.01 in OD470 per minute was
regarded as one unit of enzyme activity.

2.5. Statistical Analysis

Statistical analyses were performed with SPSS Statistics 23 (IBM SPSS Statistics,
Armonk, NY, USA). Significant differences were ascertained using Duncan’s multiple
range tests at the level of p < 0.05.

3. Results
3.1. Storage Quality of Root Mustard
3.1.1. Weight Loss Rate and Hardness

Weight loss rate and hardness are essential parameters that reflect the texture of root
mustard. It can be seen from Figure 1 that 1-MCP fumigation significantly decreased the
weight loss rate of root mustard compared to the control (p < 0.05). On the 35th day of
storage, the weight loss rate of the control group and 1.0 µL·L−1, 1.5 µL·L−1, and 2.0 µL·L−1

treatment groups were 4.58%, 1.79%, 1.81%, and 1.89%, respectively. Throughout storage,
the control root mustard showed an overall decreasing trend in hardness due to nutrient
depletion (Figure 1B), whereas 1-MCP-treated root mustard first dropped and then rose in
hardness, reaching the peak at 21 days and then gradually decreasing. During storage, root
mustard hardness was better in the 1-MCP fumigation groups than in the control group,
and the hardness of root mustard treated with 1.0 µL·L−1 1-MCP was the best. Therefore,
1-MCP fumigation could better inhibit the reduction of postharvest root mustard hardness
and was most effective at a concentration of 1.0 µL·L−1.
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Figure 1. Effects of 1-MCP on weight loss (A) and hardness (B) of root mustard. Different letters at
each time point indicated a significant difference between treatments (p < 0.05) by Duncan’s multiple
range test.
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3.1.2. Respiratory Intensity and Ethylene Release Rate

Measurements of the respiratory intensity and ethylene release rate are presented in
Figure 2A,B, respectively. During the whole storage period, the respiration intensity of
root mustard showed a fluctuating state. On the 7th–35th day of storage, the respiratory
peaks of all 1-MCP fumigation groups were lower than that of the control group, and
1.0 µL·L−1 was the lowest (Figure 2A). We monitored the production of ethylene in control
and 1-MCP-treated root mustard at various times (Figure 2B). Compared with the control
group, 1-MCP fumigation groups both had an inhibitory effect on ethylene release during
the storage of root mustard. On the 35th day of storage, ethylene release from root mustard
was 0.457 mg·kg−1·h−1, 0.198 mg·kg−1·h−1, 0.224 mg·kg−1·h−1, and 0.225 mg·kg−1·h−1

for each group, with 1.0 µL·L−1 1-MCP being released at the lowest level, respectively.
Thus, respiration of root mustard was inhibited, and ethylene release was reduced by
fumigation with concentrations of 1.0 µL·L−1 1-MCP.
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Figure 2. Effects of 1-MCP on respiratory intensity (A) and ethylene content (B) in root mustard.
Different letters at each time point indicated a significant difference between treatments (p < 0.05) by
Duncan’s multiple range test.

3.1.3. Cell Permeability and MDA Content

The cell permeability of root mustard first increases, followed by a decrease, reaching
a peak at 28 days. The lowest cell permeability of root mustard was observed in the
1.0 µL·L−1 and 1.5 µL·L−1 groups with peaks of 9.21% and 9.32%, which was significantly
lower than the control (18.18%) (p < 0.05) (Figure 3A). As shown in Figure 3B, the MDA
content of root mustard in control displayed an increasing tendency. In contrast, the MDA
content in root mustard treated with 1-MCP showed a downward trend, which had been
maintained at a low level. In addition, root mustard MDA content was significantly more in
control than in the 1-MCP fumigated throughout the storage period (p < 0.05). In summary,
this indicated that 1-MCP fumigation could alleviate the cell membrane damage of root
mustard and prolong the storage time of root mustard.
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3.1.4. The Vit C Content and Lignin Content 
Vit C is a hexolactone compound synthesized in plants. It is not only an essential 

substance for maintaining human health, but also has special functions for plants in main-
taining the redox balance of cell photosynthesis and metabolism [43]. The Vit C content of 
root mustard showed a downward trend, and the control root mustard had a lower Vit C 
content than other groups. No significant differences were detected between pre-storage 
treatment groups, but as time passed, the advantage of concentration 1.0µL L−1 gradually 
emerged (Figure 4A). The lignin content in control displayed an overall uptrend with an 
extensive variation range (Figure 4B). In contrast, the lignin content of 1-MCP treatment 
changed little and tended to be gentle. There was no significant difference between treat-
ments throughout the storage period, but all of them were significantly below the control 
(p < 0.05). 

Figure 3. Effects of 1-MCP on cell permeability (A) and MDA content (B) in root mustard. Different
letters at each time point indicated a significant difference between treatments (p < 0.05) by Duncan’s
multiple range test.

3.1.4. The Vit C Content and Lignin Content

Vit C is a hexolactone compound synthesized in plants. It is not only an essential
substance for maintaining human health, but also has special functions for plants in
maintaining the redox balance of cell photosynthesis and metabolism [43]. The Vit C
content of root mustard showed a downward trend, and the control root mustard had a
lower Vit C content than other groups. No significant differences were detected between
pre-storage treatment groups, but as time passed, the advantage of concentration 1.0 µL·L−1

gradually emerged (Figure 4A). The lignin content in control displayed an overall uptrend
with an extensive variation range (Figure 4B). In contrast, the lignin content of 1-MCP
treatment changed little and tended to be gentle. There was no significant difference
between treatments throughout the storage period, but all of them were significantly below
the control (p < 0.05).
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of 1.5µL L−1 1-MCP treatment was significantly lower than that of the other two groups at 
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cantly lower than 2.0 µL L−1 (p > 0.05). The trends in PAL activity were similar for control 
and treated root mustard (Figure 5D). However, the treated PAL activity values were con-
sistently higher than the control. Among them, 1.0 µL L−1 of 1-MCP fumigation was more 
useful in the maintenance of PAL reduction and retardation of root mustard aging. 

Figure 4. Effects of 1-MCP on Vit C content (A) and lignin content (B) of root mustard. Different
letters at each time point indicated a significant difference between treatments (p < 0.05) by Duncan’s
multiple range test.

3.1.5. Moisture Content

The moisture content of root mustard decreased continuously with the increasing
storage duration, and moisture content of the 1-MCP treatment groups was higher than
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the control for the entire duration of storage, with 1.0 µL·L−1 1-MCP having the highest
moisture content (Table 1).

Table 1. Effect of 1-MCP on moisture content of root mustard.

Time/d

Treatment
CK 1.0 µL·L−1 1.5 µL·L−1 2 µL·L−1

0 91.22 ± 0.12 a 91.22 ± 0.12 a 91.22 ± 0.12 a 91.22 ± 0.12 a

7 88.88 ± 0.04 d 90.51 ± 0.04 b 90.38 ± 0.03 c 90.99 ± 0.07 a

14 88.16 ± 0.05 b 89.28 ± 0.06 a 89.25 ± 0.09 a 89.25 ± 0.08 a

21 87.39 ± 0.17 c 89.76 ± 0.13 a 89.01 ± 0.06 b 89.08 ± 0.07 b

28 86.82 ± 0.31 c 89.61 ± 0.18 a 88.84 ± 0.20 b 88.76 ± 0.08 b

35 86.24 ± 0.10 d 89.48 ± 0.12 a 88.69 ± 0.12 b 88.46 ± 0.06 c

Different letters at each time point indicated a significant difference between treatments (p < 0.05) by Duncan’s
multiple range test.

3.2. Enzyme Activity
3.2.1. The Activity of PDH, LOX, PPO, and APX

PDH activity, LOX activity, and PPO activity in mustard increased during storage.
Significant suppression of PDH activity, LOX activity and PPO activity were observed
in 1-MCP fumigated root mustard in comparison to control (p < 0.05) (Figure 5A–C). On
day 7 and 14, PDH and PPO activities with 1.0 µL·L−1 1-MCP treatment were lower than
other groups, reaching 208.9 U kg−1 and 50.1 U kg−1, respectively. Nevertheless, the
LOX activity of 1.5 µL·L−1 1-MCP treatment was significantly lower than that of the other
two groups at the early stage of storage. Afterward, the difference between 1.0 µL·L−1

and 1.5 µL·L−1 1-MCP treatment was insignificant, but the difference between the two
groups was significantly lower than 2.0 µL·L−1 (p > 0.05). The trends in PAL activity were
similar for control and treated root mustard (Figure 5D). However, the treated PAL activity
values were consistently higher than the control. Among them, 1.0 µL·L−1 of 1-MCP
fumigation was more useful in the maintenance of PAL reduction and retardation of root
mustard aging.

Foods 2022, 11, x FOR PEER REVIEW 9 of 17 
 

 

a

a a a a

a

c c

b d

a

b
c

b
c

a

b
b b b

0 7 14 21 28
0

50

100

150

200

250

300

350

PD
H

 a
ct

iv
ity

 (u
·g

-1
)

Storage time/d

 ck
 1.0μL/L
 1.5μL/L
 2.0μL/LA

 

a

a a

a
a

a
c

c
c

c

a d d

c

c

a

b

b
b

b

0 7 14 21 28
0

5

10

15

20

LO
X

 a
ct

iv
ity

 (U
·g

-1
)

Storage time (d)

 CK
 1.0μL/L
 1.5μL/L
 2.0μL/L

B

 

a

a

a

a a

a

b
c

b c

a c

bc

b c

a c

b

b b

0 7 14 21 28
0

10

20

30

40

50

60

70

80

PP
O

 a
ct

iv
ity

 (U
·k

g-1
)

Storage time (d)

 ck
 1.0μL/L
 1.5μL/L
 2.0μL/L

C

 

a

b
c

c

b

a

a a

a

a

a

ab
b

b

ab

a

ab
b

b

b

0 7 14 21 28
0

2

4

6

8

10

12

PA
L 

ac
tiv

ity
  (

U
·g

-1
)

Storage time (d)

 ck
 1.0μL/L
 1.5μL/L
 2.0μL/L

D
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0.05) by Duncan’s multiple range test. 

3.2.2. The Activity of SOD, SDH, POD, and APX 
The activity changes of SOD, SDH, and POD showed similar trends, which increased 

first and then decreased. Compared to the control, 1-MCP promoted SOD and SDH activ-
ities during storage, with 1.0 µL L−1 superior to the other concentrations (Figure 6A,B). 
The POD activity of root mustard peaked on day 14, 1.0 µL L−1 had the highest activity, 
the peak was 61.97 U·g−1, next was 1.5 µL L−1, the peak was 59.79 U·g−1, and the lowest was 
control group, the peak was 40.15 U·g−1 (Figure 6C). At the beginning of storage, APX 
activity of root mustard treated with 1-MCP decreased rapidly (Figure 6D). In contrast, 
the control group decreased slowly. Since then, APX activity remained on a downtrend in 
control, while it was on an upswing in the treatment groups. The APX activity of root 
mustard in the treated groups was obviously above that in control (p < 0.05). The results 
demonstrated that 1-MCP treatment could better maintain the reduction of APX content 
in root mustard at the late storage stage. 

Figure 5. Effects of 1-MCP on PDH activity (A), LOX activity (B), PPO activity (C), and PAL
activity (D). Different letters at each time point indicated a significant difference between treat-
ments (p < 0.05) by Duncan’s multiple range test.
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3.2.2. The Activity of SOD, SDH, POD, and APX

The activity changes of SOD, SDH, and POD showed similar trends, which increased
first and then decreased. Compared to the control, 1-MCP promoted SOD and SDH
activities during storage, with 1.0 µL·L−1 superior to the other concentrations (Figure 6A,B).
The POD activity of root mustard peaked on day 14, 1.0 µL·L−1 had the highest activity,
the peak was 61.97 U·g−1, next was 1.5 µL·L−1, the peak was 59.79 U·g−1, and the lowest
was control group, the peak was 40.15 U·g−1 (Figure 6C). At the beginning of storage, APX
activity of root mustard treated with 1-MCP decreased rapidly (Figure 6D). In contrast,
the control group decreased slowly. Since then, APX activity remained on a downtrend
in control, while it was on an upswing in the treatment groups. The APX activity of root
mustard in the treated groups was obviously above that in control (p < 0.05). The results
demonstrated that 1-MCP treatment could better maintain the reduction of APX content in
root mustard at the late storage stage.
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(D). Different letters at each time point indicated a significant difference between treatments (p < 
0.05) by Duncan’s multiple range test. 

3.3. Correlation Analysis 
3.3.1. Effects of 1-MCP Treatment on Storage Quality and Enzyme Activity of Root Mus-
tard Based on PCA analysis 

As can be seen from Figure 7, the contribution of the first principal component of root 
mustard PCA at different storage times in the control and 1.0 µL L−1 1-MCP-treated groups 
was 46.0% and the contribution of the second principal component was 31.1%, with a cu-
mulative contribution of 77.1%, indicating that these two principal components basically 
reflected all the characteristics between the control and 1.0 µL L−1 1-MCP-treated root mus-
tard sample groups. The root mustard samples of CK14d and 1.0 µL L−1 1-MCP28d were 
clustered together, indicating a high similarity between the first and second principal 
components of these two samples, which could laterally respond that the storage effect of 
1.0 µL L−1 1-MCP-treated root mustard at day 28 of storage was similar to that of the con-
trol at 14 days of storage, indicating that 1.0 µL L−1 1-MCP could effectively prolong the 
storage quality of root mustard. 

Figure 6. Effects of 1-MCP on SOD activity (A), SDH activity (B), POD activity (C) and APX
activity (D). Different letters at each time point indicated a significant difference between treat-
ments (p < 0.05) by Duncan’s multiple range test.

3.3. Correlation Analysis
3.3.1. Effects of 1-MCP Treatment on Storage Quality and Enzyme Activity of Root
Mustard Based on PCA Analysis

As can be seen from Figure 7, the contribution of the first principal component of
root mustard PCA at different storage times in the control and 1.0 µL·L−1 1-MCP-treated
groups was 46.0% and the contribution of the second principal component was 31.1%,
with a cumulative contribution of 77.1%, indicating that these two principal components
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basically reflected all the characteristics between the control and 1.0 µL·L−1 1-MCP-treated
root mustard sample groups. The root mustard samples of CK14d and 1.0 µL·L−1 1-MCP28d
were clustered together, indicating a high similarity between the first and second principal
components of these two samples, which could laterally respond that the storage effect
of 1.0 µL·L−1 1-MCP-treated root mustard at day 28 of storage was similar to that of the
control at 14 days of storage, indicating that 1.0 µL·L−1 1-MCP could effectively prolong
the storage quality of root mustard.
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times for control and 1.0 µL·L−1 1-MCP. Ellipse represent confidence intervals.

3.3.2. Effects of 1-MCP Treatment on Storage Quality and Enzyme Activity of Root
Mustard Based on OPLS-DA

The analysis of OPLS-DA in the control and 1.0 µL·L−11-MCP treatment group
is shown in Figure 8. The overall contribution of the changes in the indicators of the
two groups to the model can be seen from the projection value (VIP). The horizontal coordi-
nate of the S-plot indicates the covariance coefficients of the main features and metabolites,
and the vertical coordinate indicates the correlation coefficients of the main components
and metabolites. The farther away from the center point, the more outstanding the contribu-
tion to the differentiation of the storage effect of root mustard between the two treatments,
and the greater the corresponding VIP value. Based on the VIP values greater than 1,
the root mustard difference indicators could be identified as lignin, weight loss, Vit C,
MDA, hardness, SOD, LOX, PDH, and POD, which indicated that these indicators were the
leading landmark indicators for judging the quality differences between the control and
1.0 µL·L−1 1-MCP-treated root mustard samples.
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The analysis of OPLS-DA in the control and 1.0 µL L−11-MCP treatment group is 
shown in Figure 8. The overall contribution of the changes in the indicators of the two 
groups to the model can be seen from the projection value (VIP). The horizontal coordi-
nate of the S-plot indicates the covariance coefficients of the main features and metabo-
lites, and the vertical coordinate indicates the correlation coefficients of the main compo-
nents and metabolites. The farther away from the center point, the more outstanding the 
contribution to the differentiation of the storage effect of root mustard between the two 
treatments, and the greater the corresponding VIP value. Based on the VIP values greater 
than 1, the root mustard difference indicators could be identified as lignin, weight loss, 
Vit C, MDA, hardness, SOD, LOX, PDH, and POD, which indicated that these indicators 
were the leading landmark indicators for judging the quality differences between the con-
trol and 1.0 µL L−1 1-MCP-treated root mustard samples. 
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Figure 8. VIP and S-plot plots of storage quality and enzyme activity of root mustard treated with
control and 1.0 µL·L−1 1-MCP during ambient temperature storage. Red represents VIP values
greater than 1, and green represents VIP values greater than 1.

4. Discussion

Root mustard is a root vegetable with a high respiratory metabolism, which accelerates
shriveling, yellowing of the rind, and loss of nutritional quality after harvest. In the studies
indicated that 1-MCP has been extensively used in postharvest storage with its functions of
inhibiting ethylene and extending storage life [44]. Currently, 1-MCP delays the ripening
of several fruits, including kiwifruit [45], mangosteen (Garcinia mangostana L.) fruit [46],
banana [47], etc. Ma et al. [48] found that 1-MCP can reduce the weight loss of Yate kiwifruit,
keep high moisture and reduce rot. Based on these studies, we examined the storage quality
of root mustard treated with different concentrations of 1-MCP. The results showed that
different concentrations of 1-MCP treatment could inhibit the deterioration of appearance
quality and weight loss of root mustard, reduced fruit rot and mildew, inhibited stem and
leaf rot and abscission, delay the softening of root mustard and maintain high hardness,
and 1.0 µL·L−1 had the best storage effectiveness. A study on apples has been conducted
showing that 1-MCP treatment inhibited the hydrolysis activity of the cell wall, maintained
the pectin of the apple cell wall, and decreased the dissolution of polysaccharides and
neutral sugar to delay the softening process [49]. Zkaya et al. [50] also found that 1-MCP
can better maintain the hardness of nectarines. In addition, we found that the epidermis
of the control group turned yellow during storage; the yellowing phenomenon is more
serious. In contrast, the epidermis of root mustard treated with 1-MCP was only slightly
yellowed. Cheng et al. [51] found that pears treated with 1-MCP had higher chlorophyll
content, complete chlorophyll, neat arrangement of grana thylakoids, and lower rate of
yellow flowers in peel compared with the control. Studies also showed that six Asian
vegetables treated with 1-MCP combined with exogenous ethylene significantly reduced
the yellow flower rate of West Indian lime fruit, and mustard peer [52–54].
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Respiratory metabolism and ethylene release are important physiological activities that
provide nutrients and energy to sustain the normal vital processes in post-harvest fruits and
vegetable harvests. They reflect the maturation and aging of fruits and vegetables during
storage [55]. The role of 1-MCP in postponing ethylene manufacture and respiration rates
has been broadly confirmed [56–58]. A lot of research has indicated that 1-MCP significantly
improves post-harvest fruit hardness due to the suppression of ethylene [56,59]. Our
findings are consistent with this viewpoint. Our data showed that 1.0 µL·L−1 1-MCP could
inhibit the respiration and ethylene release rate of root mustard, indicating that 1-MCP
prevented the formation of the ethylene receptor complex and blocked the ethylene-induced
signaling pathway.

In recent years, brassica vegetables have attracted much attention because of their
functions as antioxidants, preventing cancer and cardiovascular diseases and delaying
the aging process [60]. Liang et al. [61] found that 1-MCP treatment could maintain a low
level of active oxygen in fresh jujube fruit, improve the antioxidant capacity of the fruit
itself, and activate SOD, PPO and POD. Studies on fresh-cut peach and Pyrus communis L.
showed that 1-MCP inhibited PPO activity, delayed fruit browning, and increased SOD and
POD activities [62,63]. With these findings, the influence of 1-MCP on the activity of Vit C
content, PPO, POD, and SOD were examined. The results suggested that 1-MCP treatment
was effective in maintaining Vit C content of root mustard during storage, inhibited the PPO
activity, reduced the oxidation rate of phenolic compounds, and increased the activities of
POD and SOD, indicating that 1-MCP can diminish the build-up of ROS by increasing the
activity of ROS metabolic enzymes and enhance the antioxidant capacity of mustard. The
root mustard treated with 1.0 µL·L−1 1-MCP had better quality, lower PPO activity, and
better POD and SOD activity.

The changes in relative conductivity and MDA content reflected the damage degree to
cell membrane. When plants are injured by stress, cell membrane lipids and membrane
proteins are vulnerable to damage, resulting in a large number of intracellular substances
extravasation, thereby increasing the relative conductivity [58]. MDA content is one of the
primary products of membrane lipid peroxidation. The increase in MDA content indicates
that membrane lipid peroxidation is enhanced and fruit senescence is aggravated [64].
LOX is a crucial enzyme causing membrane lipid peroxidation and generates ROS during
degradation, and the increase in LOX activity will contribute to the accumulation of
MDA and accelerate fruit senescence and ripening [65]. Xie et al. [66] found that 1-MCP
treatment significantly reduced the activity of pineapple LOX and MDA levels to reduce
ROS production. In this study, we found that the MDA content, Cell permeability, and
LOX activity of 1-MCP-treated root mustard were lower than those of the control, showing
that 1-MCP treatment slowed down the degree of cell membrane breakage of root mustard,
thus slowing down the aging process of root mustard. APX plays an important role in
scavenging reactive oxygen species and ascorbic acid metabolism, which can delay the
aging of fruits and vegetables [67]. This function was seen many fruits such as kiwifruit [68]
and pear [39] during their storage stages. SDH is a vital enzyme in the tricarboxylic acid
cycle, catalyzing the dehydrogenation of succinic acid, which is absolutely required to
catalyze ATP synthesis [69]. Zhou [70] also indicated that alterations in SDH activity might
lead to the disorder of electron flow in the mitochondrial respiratory chain, leading to body
damage. In addition, PDH is the prominent the pyruvate dehydrogenase complex, and
as one of the key enzymes of aerobic respiration, the decrease in pyruvate dehydrogenase
activity indicates a reduction of aerobic respiration [71]. In this experiment, the SDH
activity of 1-MCP treatment was more significant than the control, and the PDH activity
was lower than that of the control group. In addition, we also found that 1.0 µL·L−1

and 1.5 µL·L−11-MCP had better effects on promoting SDH activity and inhibiting PDH
activity than 2.0 µL·L−11-MCP treatment. The results showed that as an important enzyme
involved in energy metabolism, the increase in SDH activity and the decrease in PDH
activity might help alleviate the senescence of mustard through 1-MCP treatment.
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5. Conclusions

In this experiment, 1.0 µL·L−1,1.5 µL·L−1, and 2.0 µL·L−1 1-MCP were used to treat
root mustard, and the changes in physiological indicators and associated enzyme activities
were analyzed over the storage period. The results indicated that, compared to the control,
the three groups of 1-MCP could effectively slow down the decrease in weight loss rate,
hardness, lignin, and Vit C content, inhibit respiration intensity, reduce ethylene release,
decrease cell permeability and MDA accumulation, maintain cell membrane integrity,
inhibit the increase in LOX, PDH, and PPO activities, and maintain SDH, SOD, APX, PAL,
and POD activities at a high level. The effect of 1.0 µL·L−11-MCP was better than 1.5 µL·L−1

and 2.0 µL·L−11-MCP. In summary, 1.0 µL·L−11-MCP treatment delayed the senescence
and quality deterioration of mustard and maintained good edible quality and nutritional
value after 35 days of storage. At the same time, 1-MCP is a non-toxic, trace amount of a
safe chemical preservative that is easy to handle and economical to use.
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