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Abstract: A smartphone colorimetric sensor based on the Pt@Au nanozyme was successfully de-
veloped for the visual and quantitative detection of omethoate in fruit and vegetables. The anti-
omethoate antibody was conjugated on the surface of the Pt@Au nanozyme as a catalytic functional
signal probe, and coating antigen conjugated on the surface of magnetic polystyrene microspheres
(MPMs) was used as a separation capture probe. In the sensing system, when the catalytic functional
signal probe was combined with a separation capture probe containing no omethoate, the visible
blue color appeared with the addition of tetramethylbenzidine (TMB) chromogenic solution, and
the maximum B value of the sensing system was obtained via the smartphone. With increasing
concentrations of omethoate, the visualization of the sensing system decreased, and the B-value
obtained via the smartphone dropped. Under optimal detection conditions, the omethoate could
be detected in a linear range of 0.5–50 µg/L (R2 = 0.9965), with a detection limit of 0.01 µg/L. The
accuracy and reliability of the detection results of this colorimetric sensor were successfully con-
firmed by enzyme linked immunosorbent assay (ELISA) and gas chromatography. This colorimetric
sensor provides a technical reference and potential strategy for the immunoassay of hazard factors in
resource-scarce laboratories.

Keywords: colorimetric sensor; Pt@Au nanozyme; visualized biosensing; smartphone-based quantitative
detection; omethoate

1. Introduction

Omethoate, as an organophosphorus pesticide, plays a very important role in im-
proving the yield and quality of edible agricultural products [1]. Omethoate, as a highly
efficient and toxic organophosphorus insecticide and acaricide, has mainly been used to
effectively control various pests of cotton, wheat, fruit trees, vegetables, sorghum and other
crops [2–5]. However, in order to pursue higher economic benefits, omethoate has been
used unreasonably by some producers, and it can be sucked into the plant by the stems and
leaves, and transmitted to various parts of the plant, which can easily result in omethoate
residues [6–8]. Omethoate residue is difficult to degrade via ordinary microorganisms, and
after ingestion by consumers, omethoate can inhibit the activity of acetylcholinesterase,
affecting the function of human muscles and glands [9]. Meanwhile, omethoate also has
serious impacts on food safety, the biological environment, and international trade [10–12].
According to GB 2763-2021 Maximum Residue Limits of Pesticides in Food, the allowable
daily intake (ADI) of omethoate is 0.0003 mg/kg, the maximum allowable amount of
residues in fruits, vegetables, cottonseed and wheat grains is 0.02 mg/kg, and the maxi-
mum allowable residue in soybean, sugar beet, sugarcane, tea, dry grain and multigrain
cereals is 0.05 mg/kg [13]. Therefore, it is necessary to carry out strict testing, and control
the usage and residual amounts of omethoate in accordance with regulations to reduce
safety risks.
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Many frequently used analytical approaches for omethoate have been reported,
such as thin-layer chromatography (TLC) [14], high-performance liquid chromatogra-
phy (HPLC) [15], gas chromatography (GC) [16], gas chromatography coupled with mass
spectrometry (GC/MS) [17], and liquid chromatography coupled with mass spectrometry
(LC-MS/MS) [18]. Although the above-mentioned mass spectrometry-related analytical
methods are accurate, they have the disadvantages of being time consuming, high inspec-
tion and maintenance costs, and requiring professionals for operation [19]. Colorimetric
sensors have been reported because of their high accuracy in the visual detection of target
analytes without the use of complex equipment [20]. Many colorimetric sensors based on
precious nanozymes have been prepared for the visual detection of organophosphorus
pesticides, but the human eye is not sensitive to monochromatic or limited color changes,
which also limits the application of colorimetric sensors in omethoate detection [21]. There-
fore, it is necessary to develop a simple, visual, and quantitative colorimetric sensor based
on a portable and inexpensive reading device for the detection of omethoate.

As natural biocatalysts, enzymes have high specificity and efficiency, and play impor-
tant roles in biological processes such as signal transduction, metabolism, and digestion [22].
However, the production cost of natural enzymes is high, they are easy to denature and
inactivate, and the yield is low, making them difficult to apply [23]. Therefore, researchers
have gradually developed nanozymes with biomimetic enzyme capabilities and nanoscale
dimensions [24]. The developed nanozymes have good stability, low production costs, and
simple preparation and purification processes. At present, nearly a thousand nanomaterials
with different compositions have been found to have enzyme-like activities. So far, a
large number of nanomaterials, such as metal nanoparticles, metal oxide nanoparticles,
carbon-based nanomaterials, and metal–organic framework materials, have been shown to
have excellent catalytic properties for functioning like natural enzymes [25]. They have
been widely used in cancer diagnosis and treatment, food safety detection, environmental
monitoring, and other fields [26–28]. Therefore, compared with natural enzymes, the
colorimetric sensor for omethoate based on the significant advantages of nanozymes are
worth exploring.

In this work, the anti-omethoate antibody was conjugated on the surface of the catalytic
functional Pt@Au nanoparticle to prepare a signal probe (Pt@Au@anti-omethoate antibody).
A colorimetric sensor based on a signal probe and a smartphone was developed for the
visual and quantitative detection of omethoate. Meanwhile, the specificity, practicability,
and stability of the developed colorimetric sensor were evaluated. The colorimetric sensor
is able to achieve the rapid, highly sensitive and low-cost detection of omethoate residue,
providing a useful tool for the detection of omethoate residue in edible agricultural products,
thus promoting food safety.

2. Materials and Methods
2.1. Reagents and Instruments

Omethoate, K2PtCl4, HAuCl4, Pluronic F127, EDC, NHS and bovine serum albumin
(BSA) were purchased from Sigma-Aldrich (Saint Louis, USA). Dimethoate, dichlorvos,
methyl parathion, glyphosate, malathion, profenofos, acetamiprid, trichlorfon were ob-
tained from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Anti-omethoate
monoclonal antibody was purchased from Kejie Industrial Development Co., Ltd. (Shen-
zhen, China). The Spotxel®Reader was obtained from the App Store (Sicasys Software
GmbH, Germany).

2.2. Preparation of Pt@Au Nanozymes, Signal Probe and Capture Probe

Pt@Au nanoparticle nanozymes were synthesized using the liquid phase method with
some modifications [29]. Firstly, 9.0 mL of 20 mM K2PtCl4 solution, 1.0 mL of 20 mM
HAuCl4 solution, and 104.0 mg of Pluronic F127 were added into a 25 mL round-bottomed
flask, and the mixed solution was sonicated to dissolve completely. Then, 1.0 mL of 100 mM
ascorbic acid (Vc) was added into the above solution. The mixed solution was sonicated in
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a water bath at 30 ◦C for 3 h. The mixed reaction solution was separated by centrifugation
at 10,000 rpm/min for 10 min, and the precipitate was washed using ethanol and deionized
water. Finally, Pt@Au nanozyme precipitate was reconstituted with 0.9 mL of deionized
water and stored at 4 ◦C until use.

The Pt@Au@Antibody was prepared as follows. Briefly, 50 µg of anti-omethoate
antibody was added to 3.0 mL of 15-fold-diluted Pt@Au solution with pH 9.0, and the
mixed solution was incubated at 4 ◦C for 4 h. Then, 30 µL of PBS (0.01 M, pH 7.4, containing
10% BSA) was added to block the excess sites on the surface of Pt@Au. The solution
was centrifuged at 10,000 rpm/min for 20 min to remove unconjugated anti-omethoate
antibody and BSA. Finally, the Pt@Au@Antibody of the catalytic signal probe was obtained
by reconstitution in 1.0 mL of PBS (0.01 M, pH 7.4, 10% BSA) and stored at 4 ◦C for later use.

The capture probe was prepared as follows. Briefly, 10.0 mg EDC and 5.0 mg NHS
were added into 1.0 mL of 5.0 mg/mL magnetic polystyrene microspheres (MPMs) to
activate the carboxyl groups on the surface. Then, 50 µg of omethoate coating antigen
(OCA) was added into the solution to incubate for 1 h, and 30 µL phosphate buffer saline
(PBS) (0.01 M, pH 7.4, containing 10% BSA) was used to block excess MPM epitopes. The
supernatant was discarded by external magnetic force, and the conjugation of coating
antigen and MPMs (OCA@MPMs) was washed. Finally, the capture probe was prepared
by reconstituting the precipitate into 5.0 mL PBS (0.01 M, pH 7.4).

2.3. Development of Colorimetric Sensor

The construction process of the colorimetric sensor based on a smartphone was as
follows. For the detection system, 50 µL of the capture probe and 50 µL of omethoate
standard solution (0, 0.05, 0.1, 0.5, 1.0, 5.0, 10, 50, 100, 200, 500 µg/L) were mixed in a
1.5 mL tube. Then, 50 µL of the catalytic signal probe was added, and the solution was
incubated for 20 min at room temperature. The supernatant was discarded by magnetic
separation, and the immunoprecipitated complex (Pt@Au@Antibody-OCA@MPMs) was
washed with PBS (0.01 M, pH 7.4) in the tube. In addition, 400 µL of TMB chromogenic
solution was added into the above tube, and the color reaction time was 5 min at room
temperature. The B value of the detection system was captured using Spotxel®Reader
on the smartphone, and a linear equation was constructed according to the relationship
between the B value and the concentration of the omethoate standard solution. Finally, the
specificity and applicability of the colorimetric sensor was evaluated by using structural
analogs and similar substances, and actual samples testing, respectively.

2.4. Sample Preparation

The samples were pretreated for the developed colorimetric sensor and ELISA accord-
ing to the national standard GB/T 23200.116-2019 with some modification. Briefly, 20.00 g
of Chinese cabbage and small Chinese cabbage samples were put into 150 mL beakers with
40 mL of acetonitrile respectively. The samples were homogenized at high speed for 3 min
and the mixture was filtered into a 100 mL centrifuge tube with 6.50 g sodium chloride.
The mixed sample solution was vigorously shaken for 2 min and let stand for 30 min. Then,
10 mL of the supernatant was pipetted into a colorimetric tube and dried with nitrogen.
One milliliter of pH = 7.0 PBS buffer solution containing 5% methanol was used to dissolve
the residue, and the solution was filtered with a microporous membrane (0.22 × 25 mm) for
later analysis. For GC analysis, the other steps are basically the same as the above, except
that 5.0 mL of acetone was used to reconstitute the sample residue after nitrogen blowing,
and then the 25-fold diluted sample solution was measured.

2.5. ELISA and GC Analysis

The detailed procedure of ELISA for omethoate was listed in Supplementary Mate-
rial. The omethoate concentration in samples was measured by GC 2010 Plus equipped
with flame photometric detector. Then, 50% of polyphenylmethylsiloxane quartz capillary
column (30 m × 0.53 mm (inner diameter) × 1.0 µm) was employed for the detection of
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omethoate. The applied parameters for the detection conditions were: column tempera-
ture, 150 ◦C for 2 min, 8 ◦C/min programmed temperature increase to 210 ◦C, 5 ◦C/min
programmed temperature increase to 250 ◦C, maintained for 15 min, with nitrogen as the
carrier gas at a flow rate of 8.4 mL/min. The temperatures of the injection port and the
detector were 250 ◦C and 300 ◦C, respectively. The injection volume was 1.0 µL.

3. Results and Discussion
3.1. Principle of the Colorimetric Sensor

The preparation of the signal probe, capture probe and detection process is shown in
Scheme 1. K2PtCl4, HAuCl4, Pluronic F127 and Vc were employed to prepare the Pt@Au
nanozymes, and MPMs and coating antigen of omethoate were used to prepare the capture
probe (Scheme 1A). The capture probe, the omethoate standard (or sample) solution, and
the signal probe are dropped into a 1.5 mL centrifuge tube and incubated for 20 min.
As shown in Scheme 1B, the supernatant containing the Pt@Au@antibody-omethoate (or
Pt@Au@antibody) was discarded under external magnetic force. Then, TMB solution
was added into the tube containing the immunoprecipitated complex (Pt@Au@Antibody-
OCA@MPMs). In the absence of omethoate molecules, the color visible to the naked eye
was the bluest, and the B value based on the smartphone reading was the highest. With
the increase of omethoate concentration in the detection system, the less signal probes
captured by the capture probe, the visible color by the naked eye was lighter, and the
B value obtained by the smartphone was relatively lower. According to the obtained B
value and the concentrations of omethoate, the quantitative detection standard curve for
omethoate was constructed.
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detection process of proposed colorimetric sensor (B).

3.2. Characterization of Pt@Au Nanozyme

In this work, Pt@Au nanoparticles with catalytic function were prepared using the
liquid phase method. As shown in Figure 1A, the Pt@Au nanoparticles are spherical
in Pt@Au TEM image, and the average particle size of Pt@Au Pt@Au nanoparticles is
19.0 ± 5.6 nm, on the basis of statistical analysis. The distribution of Au and Pt elements
was analyzed, and elemental mapping images (Figure 1B–D) show the distribution of Au
and Pt elements in Pt@Au nanoparticles. The uniform distribution of Pt and Au elements
shows that Pt@Au nanoparticles have both the catalytic function of Pt and the ability of Au
coupled to antibodies. The XPS spectra of Pt 4f and Au 4f are shown in Figure 1E,F, the
binding energy peaks at 70.73 eV and 74.08 eV correspond to Pt0 4f7/2 and Pt0 4f 5/2, and the
peak at 86.81 eV reflects Au0 4f5/2. The results are basically consistent with those reported
in the literature [30], which indicates that the Pt@Au nanoparticles had been successfully
prepared. Therefore, Pt@Au nanoparticles can be applied to prepare the catalytic signal
probe, based on which the colorimetric sensor for omethoate was constructed.
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3.3. Development of Colorimetric Sensor

To obtain better detection performance with the colorimetric sensor based on a smart-
phone, the amount of anti-omethoate antibody added in the preparation of signal probes,
the amount of coating antigen added in the preparation of the capture probes, the amount
of signal probe added, and the incubation time were optimized. The amounts of added
anti-omethoate antibody and coating antigen were optimized by the conjugation amount
using the BCA protein quantification kit. The signal probe and incubation time were
optimized based on the B value. The results are shown in Figure 2, and the optimal dosages
of anti-omethoate antibody and coated antigen were 50 µg and 50 µg, respectively, and the
corresponding conjugation ratios were 52.80% and 76.60%. Under the above conditions,
two probes were prepared for the colorimetric sensor. According to the B value of the
detection system, the optimal added amount of Pt@Au@Antibody, and the incubation time
for the development of the colorimetric sensor are 50 µL and 15 min, respectively.

Under the above experimental conditions, the omethoate standard solution with
different concentrations (0, 0.05, 0.1, 0.5, 1.0, 5.0, 10, 50, 100, 200, 500 µg/L) was detected by
the developed colorimetric sensor. The immunoprecipitated complex (Pt@Au@Antibody-
OCA@MPMs) was separated by external magnetic force and 400 µL of TMB mixture
solution was added to the above complex system. After color reaction for 5 min, the B value
of the detection system was obtained in a dark box using the SpotxelRReader software. The
dark box device was prepared by transforming an LED photo studio (Figure S1). There is a
circle of lights on the top of the dark box device, and the lights can be lit by a mobile power
supply or a socket power supply. As shown in Figure 3, the B value shows a decreasing
trend with increasing omethoate concentration (0.5, 1.0, 5.0, 10, 50 µg/L), which is due
to the competition between omethoate molecules and the capture probe with respect to
binding to the catalytic signal probe. The visual detection results regarding the presence
of different omethoate concentrations (0, 0.05, 0.1, 0.5, 1.0, 5.0, 10, 50, 100, 200, 500 µg/L)
are shown in Figure S2 in the Supplementary Materials. The linear detection equation
for omethoate is y = 157.6633-24.3453 lg(x) (R2 = 0.9965), and the linear detection range
is 0.5 to 50 µg/mL, with a detection limit of 0.01 µg/mL. To evaluate the sensitivity of
the developed colorimetric sensor under the working conditions (Table S1), the same anti-
omethoate antibody and coating antigen were employed to establish traditional indirect
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competitive ELISA for the detection of omethoate. The standard inhibition curve of the
ELISA for omethoate is shown in Figure S3. The limits of detection (IC15) and sensitivity
(IC50) of ELISA for omethoate are 5.54 µg/L and 131.17 µg/L, respectively. Compared
with the ELISA for omethoate, the sensitivity of the developed colorimetric sensor is
improved by two orders of magnitude. Compared with the other methods for detecting
omethoate presented in the literature [31–34], this proposed colorimetric sensor improves
the specificity and detection speed for omethoate (Table S2).
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3.4. Evaluation of Specificity

The evaluation of specificity is an important indicator for an immunoassay. In this
work, dimethoate, dichlorvos, methyl parathion, glyphosate, malathion, profenofos, ac-
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etamiprid, and trichlorfon, as functional and structural analogs of omethoate, were em-
ployed to evaluate the specificity of the colorimetric sensor. As shown in Figure 4, the ∆B
was 15 and 75 when the concentrations of omethoate were 0.1 µg/L and 10 µg/L, and
the difference in the B value (∆B) between the sample without omethoate and 1000 µg/L
of different analogs of omethoate, respectively. The inset is the structure diagram of the
corresponding structural analog of omethoate. Meanwhile, the ∆B values for dimethoate,
dichlorvos, methyl parathion, glyphosate, malathion, profenofos, acetamiprid, and trichlor-
fon were less than 10. These results indicate that the anti-omethoate antibody specifically
recognized omethoate, and that the constructed colorimetric sensor, with a good specific
recognition for omethoate, would not be affected by the functional and structural analogs
of omethoate. The constructed colorimetric sensor is able to analyze omethoate with high
specificity in real samples.
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3.5. Analytical Application in Food Samples

To evaluate the practicability and stability of the developed colorimetric sensor, we
selected Chinese cabbage and tomato to measure the background concentration and the
different concentration levels of the added omethoate in actual samples. The samples were
spiked with three concentration levels of omethoate: 20 µg/kg, 200 µg/kg, and 1000 µg/kg.
The results obtained when detecting omethoate in Chinese cabbage and tomato using
the developed colorimetric sensor were confirmed by GC and ELISA based on the same
antibody and coating antigen of omethoate. As shown in Table 1, the concentrations of
omethoate in the non-spiked Chinese cabbage and tomato were not detected using the
developed method, ELISA, or GC. With the addition of omethoate into Chinese cabbage
at concentrations of 20 µg/kg, 200 µg/kg, and 1000 µg/kg, the results detected by the
developed assay were 17.67 µg/kg, 178.83 µg/kg and 902.00 µg/kg, respectively, and the
results detected by ELISA (or GC) were 18.40 µg/kg, 177.97 µg/kg, and 895.60 µg/kg (or
19.03 µg/kg, 189.50 µg/kg, and 905.20 µg/kg). The same level gradient concentrations of
omethoate were added into the tomato, and the detection results using the developed assay
were 17.70 µg/kg, 172.30 µg/kg and 803.47 µg/kg, and the detection results using ELISA
(or GC) were 17.53 µg/kg, 168.83 µg/kg, and 854.80 µg/kg (or 17.51 µg/kg, 177.83 µg/kg,
and 897.79 µg/kg), respectively. The above results show that the results detected by the
developed colorimetric sensor are in good agreement with those detected by GC and ELISA
(R > 0.99). The stability of the results detected using the developed colorimetric sensor was
evaluated using the coefficient of variation (CV). The CV value of the colorimetric sensor
(5.16–11.47%) is slightly larger than that of ELISA (4.10–6.19%) and GC (2.12–4.33%), indi-
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cating that the accepted stability of the colorimetric sensor is not as good as that of ELISA
and GC, and subsequent work can focus on improving the stability of the colorimetric
sensor. Meanwhile, the colorimetric sensor could also be a selective tool for the detection of
omethoate in fruits and vegetables.

Table 1. Detection results of omethoate in Chinese cabbage and tomato (n = 10).

Samples Added
(µg/kg)

This Colorimetric Sensor ELISA GC

Detected
(µg/kg)

Recovery
(%)

CV
(%)

Detected
(µg/kg)

Recovery
(%)

CV
(%)

Detected
(µg/kg)

Recovery
(%)

CV
(%)

Chinese
cabbage

0 ND - - ND - - ND - -
20 17.67 88.33 10.92 18.40 92.00 4.10 19.03 95.17 2.12

200 178.83 89.42 9.61 177.97 88.98 6.02 189.50 94.75 3.71
1000 902.00 90.20 5.16 895.60 89.56 6.19 905.20 90.52 4.31

Tomato

0 ND - - ND - - ND - -
20 17.70 88.50 11.47 17.53 87.67 5.71 17.51 87.57 4.33

200 172.30 86.15 8.13 168.83 84.42 5.78 177.83 88.92 3.37
1000 803.47 80.35 6.02 854.80 85.48 6.15 897.79 89.78 3.23

CV, coefficient of variation; ND, not detected; -, not be calculated.

4. Discussion

In this work, the anti-omethoate antibody conjugated to the surface of the prepared
Pt@Au nanozyme as a catalytic signal probe was used to construct a colorimetric sensor. The
developed colorimetric sensor based on the smartphone was able to accurately and rapidly
detect omethoate in Chinese cabbage and tomato. Meanwhile, the constructed colorimetric
sensor could be used to perform semi-quantitative visual detection of omethoate by means
of the naked eye, without sophisticated detection instruments. The constructed colorimetric
sensor has a linear detection of omethoate in the range of 0.5–50 µg/L, with a detection
limit of 0.01 µg/L. The accuracy and reliability of this colorimetric sensor was successfully
confirmed by ELISA and GC, and the detection results obtained by this colorimetric sensor
are in good agreement with the results detected using ELISA and GC. In conclusion, a
convenient, intelligent, and highly sensitive detection method for omethoate is presented
in this work, demonstrating that a strategy based on smartphone and Pt@Au nanozyme
could be successfully applied to the detection and monitoring of pesticide residues in other
fruits and vegetables.
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