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Abstract: Provenance and traceability are crucial aspects of seafood safety, supporting managers
and regulators, and allowing consumers to have clear information about the origin of the seafood
products they consume. In the present study, we developed an innovative spectral approach based
on total reflection X-ray fluorescence (TXRF) spectroscopy to identify the provenance of seafood and
present a case study for five economically relevant marine species harvested in different areas of the
Atlantic Portuguese coast: three bony fish—Merluccius merluccius, Scomber colias, and Sparus aurata;
one elasmobranch—Raja clavata; one cephalopod—Octopus vulgaris. Applying a first-order Savitzky–
Golay transformation to the TXRF spectra reduced the potential matrix physical effects on the light
scattering of the X-ray beam while maintaining the spectral differences inherent to the chemical
composition of the samples. Furthermore, a variable importance in projection partial least-squares
discriminant analysis (VIP-PLS-DA), with k − 1 components (where k is the number of geographical
origins of each seafood species), produced robust high-quality models of classification of samples
according to their geographical origin, with several clusters well-evidenced in the dispersion plots
of all species. Four of the five species displayed models with an overall classification above 80.0%,
whereas the lowest classification accuracy for S. aurata was 74.2%. Notably, about 10% of the spectral
features that significantly contribute to class differentiation are shared among all species. The results
obtained suggest that TXRF spectra can be used for traceability purposes in seafood species (from
bony and cartilaginous fishes to cephalopods) and that the presented chemometric approach has an
added value for coupling with classic TXRF spectral peak deconvolution and elemental quantification,
allowing characterization of the geographical origin of samples, providing a highly accurate and
informative dataset in terms of food safety.
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1. Introduction

The strengthening of legal requirements in food safety in recent decades has led to the
development and implementation of geographical origin authentication methodologies that
allow consumers to know the origin of the food products they consume [1]. To tackle the
growing issue of food fraud, the European Union (EU) published a resolution compelling
all member states to develop and adopt tools to increase food traceability and prevent
mislabeling [2]. Similar regulations worldwide have led to a growing number of studies
focused on the development of elemental and biochemical markers that provide natural
tags of the geographical location of the product capture and production, without interfer-
ence from the producer’s report [1]; the development of genetic approaches have greatly
advanced the ability to identify species in seafood products even after food processing [3].
Various reasons underlie mislabeling, including (i) involuntary mislabeling of origin and
species, (ii) misidentification of closely related species, (iii) misunderstanding of the com-
mon names of species [4], or (iv) deliberate mislabeling of species for direct commercial
benefit [5], replacing labels of low-value species with economically relevant species, e.g.,
farmed catfish (Pangasius sp.) identified as wild-caught Atlantic cod (Gadus morhua) [6].
Moreover, restrictions on the catches of specific species enforced as management measures
can lead to intentional food fraud to obfuscate collection in areas or periods where and/or
when catches are forbidden [7]. Seafood is among the most economically valuable key
components of the human diet, comprising 16.7% of the animal protein consumption per
person on a global scale [8]. Moreover, in recent decades, societal concern to pursue a
healthier lifestyle and diet has boosted seafood products’ consumption from 9.9 kg per
capita in the 1960s to 19.7 kg per capita in 2013 [8]. With this high value and high demand
for seafood products, the risk of food fraud associated with mislabeling is greatly amplified,
either unintentionally or with the intent to gain profit from illegal practices [7].

Several techniques have been employed to trace the geographical origin of food prod-
ucts, including elemental analysis [9–14], isotope analysis [15–17], fatty acid profiles [18–20],
and optical spectroscopy techniques [21–23]. These techniques, alone or combined, pro-
duce large datasets that can be analyzed either through classical statistical techniques or by
advanced chemometric approaches [14,21,22,24,25].

Considering optical spectroscopy techniques that generate large amounts of data,
the use of statistical chemometric approaches for data analysis is especially valuable
since these techniques provide a way to visualize variation or patterns within large mul-
tivariate data sets and enable the subsequent application of calibration or classification
models [21,23,26,27]. The most common optical spectroscopy techniques used for food
traceability purposes are vibration spectroscopy [27] and near-infrared or Fourier trans-
form infrared technologies [21,23,26]. These techniques produce spectral information on
the food sample, and it is the analysis of this (raw or normalized) optical data through
chemometrics that allows for interpretations and identifications of chemical or biochemical
compounds independently of highly specialized technicians or chemistry or biochemistry
researchers [26].

Total reflection X-ray fluorescence (TXRF) spectroscopy elemental data have a high
degree of accuracy in depicting elemental signatures of seafood products of different
geographical origins [12–14]. Nevertheless, as with other spectroscopy techniques, the
generated spectra contain more information than the one used to calculate specific indexes
or compound concentrations [21,23,26,28]. Considering optical spectroscopy techniques,
the use of statistical chemometric approaches for data analysis is especially valuable
because these techniques generate large amounts of data. Thus, the analysis of TXRF full
spectral data through chemometric approaches can improve the capability of this analytical
technology for geographical traceability purposes, improving the classification accuracy of
seafood provenance beyond element-concentration-based classifications [28].

In the present work, we aimed to evaluate the applicability of TXRF full spectral data
coupled with chemometric models to depict the geographical provenance of muscle tissue
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samples of five economically relevant marine species harvested in different areas of the
Portuguese Northeast Atlantic coast.

2. Materials and Methods
2.1. Sample Collection

Five species of seafood were collected from commercial fisheries in five fishing areas
along the North Atlantic Portuguese coast (Figure 1), namely European hake (Merluccius
merluccius), Atlantic chub mackerel (Scomber colias), gilthead seabream (Sparus aurata),
thornback ray (Raja clavata), and common octopus (Octopus vulgaris). A total of 649 in-
dividuals were collected, with four out of five areas sampled per species (except for O.
vulgaris and S. colias, which were sampled in all five areas), and with 30 individuals (i.e.,
replicates) per species per area (except for the center-south area where only 19 individuals
of R. clavata were sampled). Individuals were transported fresh to the laboratory, where
they were individually dissected to collect muscle tissue samples for elemental analysis
and subsequently stored at −80 ◦C and then freeze-dried before chemical analysis.
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Figure 1. Merluccius merluccius, Octopus vulgaris, Raja clavata, Sparus aurata, and Scomber colias
sampling sites along the Portuguese Atlantic coast.

2.2. Sample Processing and TXRF Analysis

All labware used for TXRF analysis was decontaminated in acid baths for 48 h be-
fore use. Freeze-dried samples (approximately 200 mg) were mineralized with HNO3
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in Teflon reactors, following a microwave digestion process (Multiwave GO, Anton Paar
GmbH., Graz, Austria) according to the EPA 3052 method [29]. After cooling, an internal
standard (gallium) was added to each sample, and 5 µL of each sample was then applied
to a siliconized quartz disk (BrukerNano, Berlin, Germany) and dried. Total reflection
X-ray fluorescence spectroscopy was performed in a TXRF S2 PICOFOX (Bruker, Germany).
Instrumental recalibration (gain correction, sensitivity analysis, and multi-elemental stan-
dards) and analytical blanks were used for quality control. The data were acquired using
Spectra PICOFOX Software (version 7.8.20. Bruker, Berlin, Germany).

2.3. Spectrum Data Processing and Chemometric Analysis

Specific transformations are commonly applied before the application of partial least-
squares discriminant analysis, aiming to reduce the unwanted effects of light scatter caused
by the intrinsic physical structure features of the medium of the sample [30]. Among
the most common transformations performed on spectral data are the first and second
derivatives, allowing for the removal of vertical offsets and linearly sloping baselines [30].
One of the most common algorithms used for this purpose is the Savitzky–Golay trans-
formation [31]. This transformation is based on a localized linear regression of several
neighboring points to determine the appropriate polynomial. This polynomial can be
mathematically differentiated and evaluated at the x values (in this case, energy values)
and, in practical terms, is a mathematical equivalent of the regression. The differentiation
procedure is performed by a convolution with a set of derived coefficients [32].

A Savitzky-Golay first-order smoothing normalization coupled with the first deriva-
tive of the spectra data was performed using the mdatools package [33]. A size window
of three points was used throughout the whole spectral range, having as a basis the raw
spectral data obtained from the sample analysis. Savitzky-Golay parameters were selected
according to the literature, allowing for a more direct comparison of the results obtained
with previously reported results. Savitzky-Golay processing of spectral data was performed
for all the biological replicates. After pre-processing, the datasets consisted of 649 individu-
als (generally 30 replicate individuals per sampling site * species; 4 to 5 sites per species, as
described in Section 2.1) with 3025 variables in each spectral dataset.

For the chemometric approach, a partial least-squares discriminant analysis (PLS-DA)
methodology was used, and a variable selection method was implemented, specifically
variable importance in projection (VIP) of PLS-DA. Both analyses were performed using the
DiscriMiner package [34] in R-Studio Version 1.4.1717 [35]. Cross-validation was performed
using the leave-one-out function of the package, and the percentage of correct classification
to the known geographical origin of the sample in cross-validation was used as a measure
of model accuracy. For the leave-one-out cross-validation procedure and considering the N
classes considered for each species, for each ith case in (1, 2, . . . , N), the data were tested
(except for the ith case) to build the classifier model. After this procedure, the model was
applied to the ith case, and its classification was evaluated. This procedure was repeated
N times, allowing all cases to be assigned to a classification label and the model accuracy
evaluated. According to previous works [36], leave-one-out cross-validation is the most
adequate for small sample size studies in comparison with resubstitution and simple split-
sample estimates that lead to serious bias, with the leave-one-out cross-validation being
the method with the smallest bias for discriminant analysis. For each species, the number
of components for the model was set as k − 1, where k is the number of geographical
origins of the species. The model performance was evaluated using the receiver operating
characteristic (ROC) area under the curve (AUC) parameter, the goodness of fit or explained
variation (R2), and the goodness of prediction or predicted variation (Q2). ROC is a
probability curve of the false positive rate in the x-axis (i.e., FPR = 1—specificity, where
specificity = true negative/(true negative + false positive); or FPR = false positive/(true
negative + false positive)) versus true positive rate or sensitivity in the y-axis (i.e., TPR or
sensitivity = true positive/(true positive + false negative)). AUC represents the proportion
of cases when the model can distinguish between classes. In the present case, the model



Foods 2022, 11, 2699 5 of 13

assigned a sample to one of several possible geographical origins, for example, for M.
merluccius from the north: true positives (samples from the north are assigned to the north),
false positive (samples not from the north are assigned to the north), true negative (samples
not from the north not assigned to the north), and false negative (samples from the north
not assigned to the north).

The statistical significance of the AUC parameter was evaluated using a Wilcox test.
Component selection using ROC-AUC was performed using the MixOmics package [37].
After ensuring the correct number of components and high AUC values, model accuracy
variable components coordinates were calculated using the DiscriMiner package [34].

The two parameters (R2 and Q2: goodness of fit or explained variation (R2) and
goodness of prediction or predicted variation (Q2), respectively) differently vary with
increasing model complexity. The parameter R2 is inflationary and approaches 1 as model
complexity (number of model parameters) increases. Therefore, it is not sufficient to only
consider a high R2. The parameter Q2, on the other hand, is not inflationary and, at a
certain degree of complexity, will not improve any further and will then degrade. Models’
performances in internal validation were evaluated in terms of accuracy (%), sensitivity
(%), and specificity (%), according to [38]. The model’s overall accuracy was calculated by
dividing the number of correctly classified samples by the total number of samples.

3. Results and Discussion

Applying a first-order differentiation Savitzky–Golay transformation to the TXRF
spectra allowed for normalization of all samples collected from different organisms, reduc-
ing the potential matrix physical effects on the light scattering of the X-ray beam while
maintaining the spectral differences inherent to the chemical composition of the samples
(Figure 2). The Savitzky–Golay transformation also allowed the removal of baseline effects,
mainly but not entirely due to the derivative, and reduced scaling variations [39]. This
normalization step was essential to remove the physical light-scattering effects of the matrix,
which would have had overfitting effects on the subsequent PLS-DA of the spectra dataset.
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Figure 2. Average raw (upper panel) and processed (lower panel; Savitzky–Golay filter with the
first-order differentiation) X-ray fluorescence reflectance spectra of the Merluccius merluccius, Octopus
vulgaris, Raja clavata, Sparus aurata, and Scomber colias samples collected in 5 areas along the Portuguese
coast (N = 30 per site per species, except for R. clavata in center-south area).
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To select the best PLS-DA components, an evaluation of R2 and Q2 (Figure 3), as
well as of AUC (Figure 4), was obtained from the ROC curves (Supplementary Figure S1).
Moreover, the model classification accuracy was assessed. The best model was selected
when both Q2 and R2 were maximized while maintaining an overall high classification
accuracy of the model. In this sense, a number of components of k − 1 were selected (where
k is the number of geographical origins of the species) as the best model (i.e., the model
with the best combination of R2, Q2, and accuracy) (Figure 3). In contrast, Q2 decreased
when the number of components was above k − 1, despite continuing increases in R2 and
classification accuracy (results not shown).
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Figure 3. Overall cross-validation classification accuracy (accuracy), goodness of fit or explained
variation (R2), and goodness of prediction or predicted variation (Q2) of the PLS-DA models, having
as input the processed (Savitzky–Golay filter with the first derivative) X-ray fluorescence reflectance
spectra for each number of components tested for the five studied species Merluccius merluccius
(4 sites), Octopus vulgaris (5 sites), Raja clavata (4 sites), Sparus aurata (4 sites), and, Scomber colias
(5 sites,) samples collected along the Portuguese coast. Results for the number of components above
k − 1 are not shown.

Additionally, the R2, Q2, and classification accuracy for each species and the number of
PLS-DA components were also compared with the ROC-AUC (Figure 4 and Supplementary
Figure S1). This comparison further supported that the best choice of components was
k − 1 (where k is the number of geographical origins of each species), for which AUC
(Figure 4) and sensitivity (Supplementary Figure S1) were the highest.
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Figure 4. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve of the
partial least-squares discriminant analysis (PLS-DA), having as input the processed (Savitzky–Golay
first-order differentiation filter) X-ray fluorescence reflectance spectra, conducted for each species
(Merluccius merluccius, Octopus vulgaris, Raja clavata, Sparus aurata, and Scomber colias) and sample
geographical origin and number of components. Results for the number of components above k − 1
are not shown.

Following the definition and validation of the number of components per species, PLS-
DA 2D plots were generated for visualization of model dispersion, displaying the samples
along with the first three components of the PLS-DA (Figure 5). Notably, the generated
biplots only represent the data dispersion and grouping in the generated PLS-DA models
considering the first two dimensions, whereas the generated models were all obtained
using more than two components. This resulted in an apparent complete overlap between
some groups, an artifact from the first two components that did not occur when considering
all the dimensions used in each model. Several clusters were evidenced in each species
dispersion plot, generally grouping samples from the same collection site. In agreement
with this definition of clusters, the classification accuracy of models (i.e., percentage of
correct classification to the known geographical origin of the samples) was generally high
(Figure 6). An overall model classification accuracy above 80.0% was observed for most
species, with the exception of the model generated for S. aurata, which had a lower overall
classification accuracy (74.2%). Previous works [40] also indicated that classifiers attained in
PLS-DA approaches can guarantee highly efficient classification results in cross-validation.
This might be due to the existence of a direct linear relationship between TXRF spectral
patterns and the geographical origin of the considered species, promoted by Savitzky–
Golay spectral pre-processing operations, because even in highly complex samples, this
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correlation can be easily extrapolated by traditional linear techniques [40,41]. For all species
analyzed, lower accuracy of classification to geographical origin area (below 75%) was
observed in the center areas (i.e., center-north, center, and center-south; Figure 6). This
occurred in one area per species and was not limited to a specific type of organism, as the
studied marine species have distinct habitat use and biological characteristics: demersal
bony fish (M. merluccius), pelagic bony fish (S. colias), coastal demersal bony fish (S. aurata),
demersal elasmobranch (R. clavata), and benthic cephalopod (O. vulgaris). This points
to a geographical influence rather than a biological feature, possibly driven by physical-
chemical similarities in these coastal areas or by possible capture in areas near the border
of adjacent central areas.

In terms of model performance (Table 1), the samples collected in the central part
of the study area (center-north, center, and center-south) showed the lowest sensitivity
(average sensitivity considering all species of 67.3%). Some of these areas also showed
lower precision (average precision of 78.7%), although other areas with high sensitivity
presented low precision. This finding is mostly due to the high number of false negatives
(samples that were not assigned to their origin), especially evident in O. vulgaris and S.
aurata samples collected in the center area. As for specificity, it was consistently high for
all models, except for the S. aurata in center-south (74.7%) due to the high number of false
positives (samples incorrectly assigned to this origin), thus reducing the specificity of the
model for this location.
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Figure 5. Partial least-squares discriminant analysis (PLS-DA) 3D plots of the first three PLS-DA
components having as input the processed (Savitzky–Golay first-order differentiation filter) X-ray
fluorescence reflectance spectra of Merluccius merluccius, Octopus vulgaris, Raja clavata, Sparus aurata,
and Scomber colias samples collected along the Portuguese coast (average N = 30 per site per species).
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Figure 6. Partial least-squares discriminant analysis (PLS-DA) cross-validation classification accuracy
heatmaps per sampling area and for all the different species considered (Merluccius merluccius, Octopus
vulgaris, Raja clavata, Sparus aurata, and Scomber colias).

Table 1. Partial least-squares discriminant analysis (PLS-DA) model cross-validation performance
(precision, sensitivity, and specificity) per geographical origin area and overall, based on the pro-
cessed (Savitzky–Golay first-order differentiation filter) X-ray fluorescence reflectance spectra of the
Merluccius merluccius, Octopus vulgaris, Raja clavata, Sparus aurata, and Scomber colias samples collected
along the Portuguese coast.

Species Geographical
Origin

Group
Precision

Overall
Precision

Group
Sensitivity

Overall
Sensitivity

Group
Specificity

Overall
Specificity

M. merluccius

North 70.0%

82.5%

93.3%

82.5%

85.5%

82.5%
Center-
North 92.3% 40.0% 98.9%

Center 93.8% 100.0% 97.2%
Center-South - - -

South 82.9% 96.7% 92.1%

O. vulgaris

North 59.0%

80.7%

76.7%

80.7%

86.0%

80.7%
Center-
North 83.3% 100.0% 93.8%

Center 53.3% 26.7% 94.2%
Center-South 100.0% 100.0% 100.0%

South 100.0% 100.0% 100.0%

R. clavata

North 76.7%

83.3%

76.7%

83.3%

91.7%

83.3%
Center-
North 71.4% 66.7% 90.9%

Center 100.0% 100.0% 100.0%
Center-South 84.4% 90.0% 93.6%

South - - -
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Table 1. Cont.

Species Geographical
Origin

Group
Precision

Overall
Precision

Group
Sensitivity

Overall
Sensitivity

Group
Specificity

Overall
Specificity

S. aurata

North 89.7%

73.3%

100.0%

73.3%

96.7%

73.3%
Center-
North 88.2% 96.7% 89.4%

Center 73.2% 10.0% 97.7%
Center-South 88.9% 86.7% 74.7%

South - - -

S. colias

North 89.7%

80.0%

86.7%

80.0%

96.9%

80.0%
Center-
North 88.2% 100.0% 95.7%

Center 73.2% 100.0% 89.1%
Center-South 88.9% 26.7% 99.1%

South 70.3% 86.7% 89.5%

Most chemometric approaches based on spectral data use near-infrared (NIR) as a
basis [21,23,40], where some spectral regions correspond to specific groups of compounds
present in the sample matrix (e.g., lipids, carbohydrates, and proteins) [22]. In X-ray
fluorescence-based spectral data, peaks result from the excitation of certain chemical
elements present in the sample matrix by X-ray photons, generating fluorescence emission
peaks, with each element generating two or more tails [28]. Analyzing the spectral features
with VIP scores above one from all the models generated for the considered species, it
is possible to observe that certain areas of the spectra appear with a higher density of
points corresponding to spectral features with VIP > 1 (Figure 7). The Venn diagram
revealed that the 311 spectral data points (10% of the spectral features in each dataset)
with VIP > 1 were shared among the different species datasets analyzed by the PLS-DA
approach, indicating that they are key features for sample class differentiation throughout
PLS-DA. On the other hand, the unique features highlighted for each species dataset that
were not shared by any other were much more reduced in number, ranging from 159
to 193 (5.3% to 6.4% of the spectral features in each dataset). Although each element
can have several fluorescence peaks, certain spectral windows can be associated with
groups of elements, whereas for elemental concentration calculation, two or more peaks
are normally used for deconvolution. Observing the higher data point density regions, it
is possible to distinguish four main peaks with a particularly high density of VIP scores
with noticeable high values (VIP > 1.5–2). The first observable peak area corresponds to
the beginning of the spectra, where it corresponds to low-atomic-number (Z) elements
such as Na, K, and Ca, highly abundant in marine species [12–14,42,43]. The last three
observable peaks correspond to an area where Cu, Zn, Br, Sr, Pb, and other high-Z elements,
have one of the main fluorescence peaks, with these elements also being very abundant in
marine seafood samples [12–14,42,43]. Nevertheless, the use of specific elements instead
of the full TXRF spectra greatly reduces the number of features used as input for the
chemometric approaches, from several thousand to a few dozen, as it is observable between
elemental analysis and other spectral fingerprinting approaches [40,43]. While for food
safety and nutrition analysis, elemental concentration in edible seafood tissues is essential,
for provenance and traceability, we can used the full power of the spectral analysis to
amplify discrimination and classification success. Nonetheless, XRF spectral data were
already previously included in chemometric approaches in several areas from geochemistry
to ecology, archaeology, agriculture, material, forensic sciences and medicine [28]. To the
best of our knowledge, this is the first time this approach has been employed for food
traceability purposes.
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Figure 7. Scatter plot of the VIP scores (only variables with VIP score > 1) attained from the partial
least-squares discriminant analysis (PLS-DA) of the processed (Savitzky–Golay first-order differentia-
tion filter) X-ray fluorescence reflectance spectra of the Merluccius merluccius, Octopus vulgaris, Raja
clavata, Sparus aurata, and Scomber colias samples collected along the Portuguese coast, and Venn
diagram of the selected variables (VIP score > 1) between the different analysed species.

4. Conclusions

Total X-ray fluorescence (TXRF) analysis provides important elemental data that can
be used for food safety and nutritional purposes but also provides a valuable source
of spectral data that can be leveraged to boost traceability and provenance applications.
Similar to the approach used for infrared spectroscopy, using Savitzky–Golay smoothing
normalization coupled with the first derivative approach, it is possible to produce TXRF
spectra with significant noise reduction while maintaining discriminant features. Applying
PLS-DA to these smoothed spectral datasets was found to be a highly efficient approach
to discriminate samples from each species from different sampling areas, with minimum
overall model accuracies of 74.2% and individual geographical origins identified with 100%
accuracy. It should be emphasized that this approach was achieved for seafood species
with very different sample matrixes (muscle tissue from bony and cartilaginous fishes to
cephalopods) and habitat use (demersal, pelagic, benthic, and coastal), highlighting the
broad applicability of the present methodology. The present methodology is proposed
for provenance and traceability purposes. If coupled with classic TXRF spectral peak
deconvolution and elemental quantification, it additionally allows for the characterization
of different samples in terms of their elemental profiles, providing a highly accurate and
informative dataset in terms of food safety.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11172699/s1, Figure S1: Receiver operating characteris-
tic (ROC) curves for the number of selected partial least-squares discriminant analysis (PLS-DA)
components having as input the processed (Savitzky–Golay filter with the first derivative) X-ray
fluorescence reflectance spectra of Merluccius merluccius, Octopus vulgaris, Raja clavata, Sparus aurata,
and Scomber colias samples collected along the Portuguese coast.

https://www.mdpi.com/article/10.3390/foods11172699/s1
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