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Abstract: Sugarcane is primarily harvested to meet up to 80% of global sugar demand. Recently,
lipids recovered from their biomass (straw and bagasse) have attracted much attention due to their
possible utilisation in biofuel production but also by the presence of health-promoting compounds
as phytosterols (i.e., improvement of cardiovascular function) or 1-octacosanol (i.e., anti-obesity).
Although this fraction is commonly obtained through solid-liquid isolation, there is scarce informa-
tion about how different solvents affect the composition of the extracts. This research work aimed
to study whether, in sugarcane straw and bagasse samples, Soxtec extraction with widely used
dichloromethane (DCM) would be suitable to recover most of the lipid classes when compared to
other available solvents such as food grade ethanol (EtOH) or solvents without regulation restrictions
for food and drug applications (i.e., acetone and ethyl acetate). The obtained results allow concluding
that sugarcane waxes from straw and bagasse are complex lipid mixtures of polar and non-polar com-
pounds. According to the extraction yield, the best results were obtained with ethanol (5.12 £ 0.30%
and 1.97 £ 0.31%) for both straw and bagasse, respectively. The extractant greatly influenced the
lipid composition of the obtained product. Thus, DCM enriched the isolates in glycerolipids (mono-,
di- and triglycerides), free fatty acids, fatty alcohols, fatty aldehydes, phytosterols and hydrocarbons.
On the other hand, EtOH resulted in polar isolates rich in glycolipids. Therefore, depending on the
application and objectives of future research studies, the solvent to recover such lipids needs to be
carefully selected.
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1. Introduction

Humankind faces a situation in which an increasing population (8.5 billion by 2030
and 9.7 billion in 2050) will continue to increment the demand for both energy and natural
resources [1]. Thus, the need to bring sustainability policies applied to social, economic
and environmental aspects has resulted in the development of the concepts of circular,
green and bioeconomy [2]. The latter focuses on the reutilisation of biowaste (i.e., biological
resources from the land and sea) to produce food, energy and materials [3].

A promising source of biowastes are sugarcane plantations (Saccharum officinarum L.).
Sugar cultivation has increased from 1721 million tonnes in 2008 to 1907 million tonnes in
2018, 731 million tonnes of which came from Brazil and 337 million tonnes from India [4].
This harvest is primarily oriented to meet 80% of total sugar demand [5] and during the
period 2018/2019, production reached 179.3 million tonnes of sugar [6]. The rest of the crop
mass yields residues from the agricultural (i.e., tops and straw) or industrial steps such as
filter cake, molasses, and bagasse [7,8].

Sugarcane lipids have also recently attracted significant attention as different ap-
proaches have demonstrated their suitability in the framework of the bioeconomy. As it is
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a high biomass crop, it could theoretically outperform oil production when compared to
traditional oilseed harvests (i.e., soya), therefore representing a means of decreasing biofuel
production costs [9]. Moreover, sugarcane oil accumulates in the leaves and stems and it is
composed of phospholipids (PLSs)—that can be eliminated with acetone during biofuel
production—in addition to triglycerides (TGs) and free fatty acids (FFAs), the latter of
which are converted into diglycerides (DGs) [10]. Moreover, other initiatives have demon-
strated how genetic engineering can optimise lipid production to reach up to 20% [11].
This is indeed an important breakthrough as the regular content varies from 0.1% to 0.3%
depending on the variety, although the composition is far more complex since it includes
fatty alcohols (FOHs), phytosterols, ketosteroids, hydroxyketosteroids and terpenoids [12].

Such a profile may represent new opportunities as some of those compounds have
been associated with beneficial effects for human health. Works recovering lipids from
sugarcane leaves through supercritical fluid extraction (SFE) have shown yields of 1.6 g
lipid /100 g leaves and sterol contents of 1.09 g/kg leaves [13]. According to EU regulations,
plant sterols contribute to the maintenance of normal blood cholesterol levels when the
daily intake is of at least 0.8 g [14]. Those investigations also reported the presence of
other bioactive compounds such as policosanol (i.e., a mixture of long-chain FOHs) where
octacosanol (FOH 28:0) was present in concentrations of 1.9 g/kg of rind, 0.7 g/kg of
bagasse and 0.1 g/kg of leaves [13]. However, other authors reported that an FOH 28:0
content in hand-peeled rind from different sugarcane cultivars varied from 0.5 g/kg to
1g/kg[15].

Indeed, FOH 28:0 has been suggested as a potential ingredient for the prevention and
treatment of obesity and related metabolic disorders. Thus, mice treated with a diet rich in fat
and supplemented with FOH 28:0 (doses of 60 mg/kg/day) resulted in lower body weight
and fat gain, insulin resistance and hepatic lipid content by increasing brown tissue activity
and improving the hepatic lipid metabolism [16]. Moreover, Lee et al. (2019) [17] conducted a
study on the impact of FOH 18:0 supplementation in tackwondo athletes (40 mg/d during
6 days) subjected to rapid weight loss through caloric restriction with high-intensity exercise
training. This study reported that there was an improvement in the lipid profile which was
accompanied by an increase in the high-density lipoprotein (HDL) levels and a decrease in
low density lipoprotein (LDL) and TGs. A reduction in oxidative stress (increase in superoxide
dismutase) was also observed when compared to the control group. Additionally, in mice
exposed to a cage change strategy to induce mild stress and sleep disturbance, doses of
100-200 mg FOH 28:0/kg clearly restored the stress-affected sleep [18].

In those research works studying the lipid fraction collected from sugarcane biomass,
isolation was performed by either supercritical fluids [13] or by means of Soxhlet with
hexane: methanol (20:1 v/v) [15], carbon tetrachloride [19] or acetone (AcO) [20]. Likewise,
limonene can be used as a solvent to extract sugarcane wax thanks to its lower toxicity,
flammability and environmental risk when compared to conventional solvents such as
n-hexane [21].

In lipid research, Soxhlet extraction has been widely used for solid-liquid isolation,
although it presents the drawback that the process usually extends over several hours.
However, the Randall or immersive (in boiling solvent) method (also commercially called
Soxtec ™) was originally developed, and later recommended by the Association of Official
Analytical Chemists (AOAC) to isolate fat from meat and meat products and drastically
reduce the operation time (i.e., 30 min) [22]. However, further collaborative studies have
shown that this method is also suitable to recover lipids from vegetable biomass [23].

The methods described by Folch et al. [24] and Bligh and Dyer [25] represent the gold
standard in lipid isolation but these involve the use of toxic solvent mixtures (i.e., chloro-
form:methanol) and several steps (i.e., re-isolation, filtration, collecting of lipid-containing
layer) and are therefore also time-consuming. On the other hand, they were originally
intended for animal tissues on the basis that halogenated solvents would recover most
of the lipids while methanol would result in protein precipitation. Regarding sugarcane
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lipids, some authors have assayed those procedures described by Hara and Radin [26] for
analytical purposes in bagasse, stem and juice [27].

Although most of the available data describing the composition of sugarcane lipids
were obtained by the analyses of samples after the solid-liquid extraction, the range of
assayed solvents is generally quite limited. In the framework of lipid extraction from
sugarcane biomass for a further assessment of their health-promoting properties, it is
important to understand how solvents affect the composition of a lipophilic fraction [28].
Moreover, in order to move towards more sustainable processes, it is important to assess the
impact of analytical or food-grade solvents and how these affect extracts” bioactivity [29].

Thus, the authors of this research work hypothesised that different solvents such as
dichloromethane are efficient means of recovering lipids such as FOHs, TGs or hydrocar-
bons, although these are also capable of isolating PLSs. Nevertheless, others such as acetone
are not suitable for isolating polar lipids. Furthermore, it would be useful to test solvents
that are less toxic than those originally proposed (i.e., dichloromethane) or those allowed
by the EU food and drug regulations [30,31], which can be obtained in food grade or can
be produced through sustainable processes such as ethanol (EtOH) or recently acetone
(AcO) [32].

Accordingly, the aim of this research investigation was to study the effect of solid—
liquid extraction using dichloromethane (DCM), EtOH, AcO or ethyl acetate (EtAc) on
the lipid composition of sugarcane bagasse and straw. The obtained results show that the
composition of the extracts is greatly influenced by the solvent, and therefore, the solvent
must be carefully selected depending on its application. The reported result will allow
future research studies to perform a greener and less time-consuming extraction method
using a more efficient and selective solvent for the extraction of bioactive compounds.

2. Materials and Methods
2.1. Materials and Chemicals

Sugarcane straw and bagasse were provided by Raizen, (Brotas, Brazil) and collected in
August 2019. The samples were dried at 50 °C in a ThermoFisher Scientific oven (Waltham,
MA, USA) until they reached a constant weight, milled in a Retsch SM 100 Cutting Mill
and sieved in a Retsch Sieve AS 200 (Haan, Germany) to a 315 < x < 900 pm size.

Extraction solvents including EtOH (F.C.C. Food Grade 96% (v/v)) were purchased
from PanReac AppliChem (Barcelona, Spain), AcO (ACS Grade >99.5%) from Merck
(Darmstadt, Germany), EtAc (HPLC-Grade >99.7%) from Honeywell (Charlotte, NC, USA)
and DCM (HPLC Grade >99.9%) from VWR Chemicals (Radnor, PA, USA).

For HPLC assays, the mobile phases were prepared with the following solvents:
2-propanol (LC-MS Grade >99.9%) and isooctane (HPLC Grade >99.8%) purchased from
VWR Chemicals (Radnor, PA, USA), AcO (HPLC-Grade >99.8%) from ThermoFisher Scien-
tific (Waltham, MA, USA), EtAc (HPLC-Grade >99.7%), water (for HPLC) from Honeywell
(Charlotte, NC, USA), acetic acid (HPLC Grade >99.8%) from Carlo Erba Reagents (Barcelona,
Spain) and triethylamine (TEA) (>99.5%) from Merck (Darmstadt, Germany).

The internal analytical standard tetracosane (99%) and the derivatising reagent N,
O-Bis(trimethylsilyl) trifluoroacetamide with 1% trimethylchlorosilane (BSTFA), used for
the GC-MS analysis, were purchased from Merck (Darmstadt, Germany).

2.2. Lipid Extraction

The lipophilic extraction was carried out in triplicate using the Foss Soxtec ™ 8000
apparatus (Hilleroed, Denmark). The dried straw and bagasse samples (3 g) were extracted
with EtOH, DCM, AcO and EtAc at 1:20 (w/v). The extraction temperature was adjusted
according to the solvent: 130 °C for EtOH and EtAc; 110 °C for AcO; and 90 °C for DCM.
The extraction period comprised 2 h of boiling and 1 h of rinsing at atmospheric pressure.
Afterwards, the solvents were evaporated at Heidolph HeiVAP value digital rotatory
evaporator (Schwabach, Germany) under reduced pressure in a temperature-controlled
bath at 40 °C. The obtained extracts were weighed and the yields assessed.
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2.3. High-Performance Liquid Chromatography—Evaporative Light Scattering (HPLC-ELSD)

The samples were accurately weighed and dissolved in dichloromethane to a concen-
tration of 5 mg/mL. Afterwards, samples were analysed on an HPLC (model 1260 Infinity
II; Agilent Technologies, Santa Clara, CA, USA) attached to an evaporative light scattering
detector (ELSD; 1290 Infinity II, Agilent Technologies, Santa Clara, CA, USA) using nitrogen
as a nebulising gas coupled to a Zorbax RX-SIL column (Agilent; 2.1 x 150 mm, 5 um).
Analysis conditions were assayed as described by Abreu et al. [33], with some changes.
Four mobile phases were used with the following compositions: A, isooctane:ethyl ac-
etate (99.8:0.2, v/v); B, acetone:ethyl acetate (2:1, v/v) containing 0.1% acetic acid (v/v); C,
2-propanol:water (85:15, v/v) containing 0.013% acetic acid (v/v) and 0.031% of TEA v/v;
and D, EtAc.

The flow rate was set at 0.275 mL/min with the gradient composition described in
Table S1. and an injection volume of 20 pL. The detector was set as follows: the evaporator
and nebuliser temperature was set to 60 °C with nitrogen as the nebulising gas ata 1.20 SLM
flow rate.

2.4. Gas Chromatography —Quadrupole Mass Spectrometry (GC-QqQ)

Samples were previously derivatised into their trimethylsilyl derivatives (TMSs). Thus,
in a glass vial, 5 mg of lipid extract was accurately weighed and added to 100 uL tetracosane
(0.5 mg/mL in DCM) and 30 pL of BSTFA. The mixture was incubated during 60 min at
30 °C and DCM was then added to a final volume of 1.3 mL.

Derivatised samples were analysed on a GC-QgQ model EVOQ (Bruker, Karlsruhe,
Germany) mass spectrometer, with a Rxi-55il MS column (30 m x 250 pm x 0.25 pm
nominal) at constant flow of 1 mL/min. The carrier gas used was helium and the operating
conditions were as described by Attard et al. [13] with some modifications. The injector
was set to 330 °C, the oven temperature started at 60 °C with a hold for 5 min, then the
temperature was increased at 3 °C/min until 330 °C and maintained for 20 min. The mass
spectrometer detector was operated in electron ionization mode (EI) at —70 eV, the source
temperature of 280 °C, the transfer line at 300 °C and a quadrupole in a scan range of
33-1000 amu per second. The compound identification was based on the comparison of
the obtained mass spectra with the information on the NIST library (v. 2.3) as well as by
comparison with the reference compounds.

2.5. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)

The samples were analysed on a PerkinElmer Paragon 1000 FTIR (Waltham, MA,
USA) with the ATR accessory. The spectra were obtained in the wavenumber range of
4000-550 cm !, with a resolution of 4 cm ™!, by accumulating 16 scans.

2.6. Differential Scanning Calorimetry (DSC)

The thermal characteristics of the samples (melting, crystallisation, oxidation and
decomposition temperatures) were measured on a 204 F1 Phoenix DSC (Netzsch, Germany).
The samples were weighed (4 mg) in a pierced lid aluminum pan and analysed under an
N flow of 40 mL/min, using the temperature program described below (Figure 1). First,
the sample thermal history was eliminated by heating from 20 °C to 130 °C. Then, cooling
to —10 °C followed by a second heating from —10 °C to 500 °C. The heating and the cooling
were performed at a constant rate of 10 °C/min. Only the transitions observed during the
cooling and the second heating cycles were taken into account.



Foods 2022, 11, 2661

50f18

500°C

130°C

20°C

Figure 1. DSC temperature programme.

2.7. Statistics

Results are reported as mean values + standard deviation. Data were first analysed
for normality distribution. Levene’s test was applied to verify the homogeneity of the
variances. Afterwards, a one-way ANOVA test was applied with a Tukey post hoc test to
determine the differences within groups. The level of significance was set in general at 0.05.
Analyses were performed with the aid of the Jamovi software (v 1.6.3.0; The Jamovi project
(2020)), retrieved from https://www.jamovi.org, accessed on 13 January 2021).

3. Results and Discussion
3.1. Extraction Yields

Straw and bagasse from sugarcane were extracted with different solvents (ethanol,
EtOH; acetone, AcO; ethyl acetate, EtAc; dichloromethane, DCM) by Soxtec ™  As men-
tioned in the Introduction, previous studies have demonstrated that sugarcane produces
healthy lipophilic phytochemicals [13,20]. However, lipid isolation is a complex and cum-
bersome task that involves the utilisation of organic solvents, usually biphasic systems,
which are toxic [34] and complicates their utilisation as bioactives [29]. The current research
work aimed to assess the recovery of lipids from sugarcane straw and bagasse using accel-
erated solid-liquid isolation (e.g., Soxtec™) to reduce both the time and the possibility to
alter the lipids and improve solvent recovery [35]. Moreover, halogenated solvents such as
chloroform or DCM have been widely used in the isolation of lipids but their toxicity has
raised much concern and currently, research is directed towards its replacement [36]. Thus,
in this research investigation, solvents that are allowed by the EU food and drug regula-
tions [30,31], that can be obtained in food grade or can be produced through sustainable
processes such as EtOH or more recently AcO [32], were selected.

After obtaining the extracts, the first approach to understand the suitability of the
different tested solvents was to evaluate the isolation yields. These are presented in Figure 2.
According to those results, the highest yields were obtained using ethanol: 5.12 + 0.30%
and 1.97 £ 0.31% for straw and bagasse, respectively. Straw extraction with acetone
achieved a higher yield than ethyl acetate: 3.78 & 0.31% (AcO) and 3.02 & 0.18% (EtAc),
respectively, while the dichloromethane extraction showed the lowest yields (1.53% and
1.14%, respectively, for straw and bagasse). Therefore, for the straw samples, all the results
were significantly different (EtOH > AcO > EtAc > DMC, p < 0.05), while for bagasse, EtOH
resulted in the best recovery (p < 0.05) while AcO > EtAc and DCM showed no significant
differences. This clearly points towards a matrix effect affecting AcO, EtAc and DCM.
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Figure 2. Lipophilic extraction yields (%) of straw and bagasse samples with different solvents.
Different letters indicate statistically significant differences between solvents (p < 0.05). a, b, cand d
for straw samples and x and y for bagasse samples.

Results on the utilisation of supercritical fluids to recover wax from rind, leaves and
bagasse reported elsewhere resulted in yields of 1.60% for leaves, followed by the rind
(0.8%) and the lowest for bagasse (0.53%) [13]. Other authors performed the isolation by
Soxhlet for 16 h using AcO and recovered 1.4% in straw samples and 0.9% in bagasse [20].
However, other studies found no differences in the lipid content between the straw and
bagasse (0.66% vs. 0.62%, respectively) when using isopropanol/hexane mixtures [27].
This highlights the relevance of the condition selected for the extraction of lipids.

Such differences in extraction yields using different solvents are clearly associated
with their polarity since lipids have a wide scope of different chemical properties. In fact,
DCM was the extraction solvent with the lowest polarity and also the one that obtained
the lowest yield, probably as it is more suitable to extract non-polar compounds. On the
other hand, other solvents despite their higher polarity such as EtOH exerted the best
performance since these can extract both polar and non-polar lipids [37], covering a greater
range of molecules and therefore resulting in higher extraction yields.

Accordingly, to deepen our knowledge of how solvents affect the lipid distribution in
the obtained extracts, their analysis by HPLC-ELSD was then assayed.

3.2. Lipid Classes Profile of the Assayed Samples by HPLC-ELSD

To the best of our knowledge, few previous studies have reported the lipid profile of
sugarcane by-products. Thus, in research works conducted on hand-peeled sugarcane rinds
and cane stalk samples, hexane-methanol Soxhlet extracts were composed of fatty aldehy-
des (FALSs), sterol esters, TGs, FOHs, FFAs and sterols (ST) [15]. According to those results,
FALs and sterol esters were resolved in the same peak and were the main compounds. On
the other hand, further investigations showed that the lipid fraction of sugarcane stems
was composed of TGs, FFAs, plant stanols and STs, glycolipids (i.e., monogalactosyldiacyl-
glycerol and sterol glycosides) and phospholipids (PLSs—phosphatidylethanolamine, PE;
phosphatidylcholine, PC; and phosphatidylinositol, PI) [27].

In the current research work, different extracts obtained after assaying EtOH, AcO, EtAc
and DCM in the straw samples were analysed by HPLC-ELSD (Table 1). The results show that
the main lipid moiety for AcO, EtAc and DCM samples was that corresponding to the elution
of hydrocarbons. The highest concentration was detected in DCM (37.24 +1.07 g/100 g
lipids) and AcO (31.95 + 3.62 g/100 g lipids) followed by EtAc (29.96 £ 1.35 g/100 g lipids),
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while the lowest amount was found in EtOH (24.36 = 0.06 g/100 g) (p < 0.05). In this latter
sample (i.e., EtOH), the glycolipids content was 34.98 & 1.66 g/100 g lipids, while it was
23.63 £2.18 g/100 g lipid and 23.25 £ 1.00 g/100 lipids for the AcO and EtAc samples
(p < 0.05), respectively. Otherwise, the DCM extracts showed the significantly lowest content
(10.55 = 1.83 g/100 g).

Table 1. Lipid classes composition (g/100 g of lipids) of different sugarcane straw extracts.

STRAW
Compound EtOH AcO EtAc DCM
Hydrocarbon 24.36 9 4+ 0.06 31.95% 4 3.62 29.96 ¢ +1.35 3724 +1.07
Wax esters 2,604 4+ 0.04 3.70° +0.06 2.84° +0.01 4242 40.01
Triglycerides 3.66 9 4+ 0.04 4.08€ 4 0.04 4.48°+0.26 5122 4+ 0.27
Fatty alcohols 7.14°+0.12 11.322 4+ 0.55 8.24" 4+ 0.05 11.502 4+ 0.10
Phytosterol 3.582b + (.47 3.58° 4+ 0.09 3.54° 4 0.04 4152 +0.14
Diglycerides 6.182 + 0.60 4.88° +0.16 6.442 +0.12 6.382 4+ 0.29
Free fatty acids 14.58 < £ 0.73 15.04 b¢ +1.35 19.60 2 4+ 1.53 18.63 2 +2.17
Monoglycerides 1.38° 4+ 0.09 140° +0.11 1.67 2 4 0.09 2182 +£0.22
Glycolipids 34982 + 1.66 23.62° +2.18 2325 +1.00 10.55° +1.83
Phosphatidylinositol  0.44 2 £+ 0.04 0.17° 4+ 0.02 nd* n.a n.d*€ n.a
Phosphatidylserine 0.452 +0.09 0.20° 4+ 0.07 nd*¢ n.a nd € na
Phosphatidylcholine  0.65? £ 0.15 0.06° +0.01 nd*® n.a n.d*¢ n.a

Results expressed as mean £ SD (n = 3). EtOH: ethanol; AcO: acetone; EtAc: ethyl acetate; DCM: dichloromethane.
n.d: not detected; n.a: not applied. Different superscript letters in a row indicate statistically significant differences
between solvents (p < 0.05).

In bagasse samples (Table 2), extracts followed the same trend as compounds in the hy-
drocarbon chromatographic region were prominent in DCM samples (38.93 £4.93 g/100 g
vs. 22.66 £ 1.35 g/100 g in EtAc vs. 18.72 4 0.08 g/100 g in AcO and 15.50 £ 0.44 g/100 g
in EtOH; p < 0.05). The variation of glycolipids in bagasse was inversely proportional:
60.15 4 0.02 g/100 g in EtOH; 45.29 £ 0.34 g/100 g in AcO; 35.28 £ 1.07 g/100 g in EtAc;
and 9.76 £ 0.28 g/100 g in DCM (p < 0.05).

Table 2. Lipid classes composition (g/100 g of lipids) of different sugarcane bagasse extracts.

BAGASSE

Compound EtOH AcO EtAc DCM
Hydrocarbon 15.50 4 + 0.44 18.72 € 4 0.08 22.66° 4+ 1.35 38932 +4.93
Wax esters 1.484 4 0.08 1.80 ¢ 4 0.05 2.08° 4+ 0.22 5.282 + 0.07
Triglycerides 1.73 € £ 0.02 2.24° 4 0.08 2.25% 4+ 0.11 2552 +£0.16
Fatty alcohols 8.56 4 4 0.01 11.78 € £ 0.02 14.17° +0.22 19.802 +0.91
Phytosterol 1.96 € + 0.07 2.77° £0.01 3.612 +0.19 3702 £0.13
Diglycerides 3.19P +£0.08 4482 +0.05 4.672 +0.06 4182 +0.68
Free fatty acids 5.51°¢ 4 0.34 10.05° 4+ 0.13 12.60 2 + 0.37 13.99 2 + 1.08
Monoglycerides 1.2 +0.21 2.872 £ 0.20 2.68° +0.01 1.80 P +0.09
Glycolipids 60.152 + 0.02 4529 4 0.34 35.28 € +1.07 9.76 4 4+ 0.28
Phosphatidylcholine 0.69 2 4 0.08 ndb na ndP n.a ndb n.a

Results expressed as mean =+ SD (n = 3). EtOH: ethanol; AcO: acetone; EtAc: ethyl acetate; DCM: dichloromethane.
n.d: not detected; n.a: not applied. Different superscript letters in a row indicate statistically significant differences
between solvents (p < 0.05).

Glycolipids are interesting compounds that are mainly microbiological in origin but are
also produced by photosynthetic organisms [38]. They have been successfully assayed to
avoid Listeria monocytogenes’ biofilms in milk and cheese [39]. Additionally, rhamnolipids
are biosurfactants with remodelling lipid properties in plasma through interaction with lipid
rafts [40] and in lipid—protein complexes involved in cell signalling as well as in transmembrane
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transport. Since research on glycolipids may bring new health and technological applications,
finding new sources and ways to obtain enriched extracts may help in future studies.

As commented above, Asikin et al. [15] reported that aldehydes and sterol esters were the
main lipids in sugarcane rinds followed by TGs, sterols and FFAs. According to the obtained re-
sults, FFA was the third most present group of lipids in terms of concentration. EtAc and DCM
samples had similar values (19.60 &= 1.53 g FFA /100 g and 18.63 £ 2.17 g FFA /100 g, respec-
tively), as it was also observed for AcO (15.04 £1.35gFFA/100g) and EtOH
(14.58 £ 0.73 g FFA /100 g). For bagasse extracts, FFA amounts were lower than in straw sam-
ples. Thus, DCM (13.99 £ 1.08 g/100 g) and EtAc (12.60 =+ 0.37 g/100 g) were the more effi-
cient solvents to recover such compounds. EtOH samples had contents of 5.51 £ 0.34 g/100 g
while AcO exerted a significantly better performance (10.05 + 0.13 g/100 g).

Regarding TG, the contents were much lower than those registered for FFA. As ex-
pected, due to their immiscibility with water, it was revealed that DCM (5.12 + 0.27 g/100 g
straw lipids; 2.55 £ 0.16 g/100 g bagasse lipids) and EtAc (4.48 £ 0.26 g/100 g straw lipids;
2.25 £ 0.11 g/100 g bagasse lipids) are the best solvents to recover TG for both straw and
bagasse. However, AcO (4.08 & 0.04 g/100 g straw lipids; 2.24 £ 0.08 g/100 g bagasse
lipids) showed contents close to those found when using EtAc, although differences were
only significant in the case of sugarcane straw. Previous studies of wild-type sugarcane
showed TG contents of 4.76% [27], therefore agreeing with the concentrations found here.

In the current reported results, the presence of other acylglycerides such as monoglyc-
erides and DGs was detected which was not detected in the works of both Asikin et al. [15]
and Huang et al. [27].

Obtained data showed the presence of PLSs (i.e., PI, PS and PC) in both sugarcane
straw and bagasse but only when assaying EtOH and AcO (extracts of the latter solvent
in bagasse samples did not show the presence of PLSs). The total PLS content in EtOH
was 1.54 £ 0.01 g/100 g straw lipids and 0.69 =+ 0.08 g/100 g bagasse lipids while it was
0.43 £ 0.01 g/100 g straw lipids in AcO. Different methods of isolating phospholipids
have been discussed elsewhere, comparing those assaying EtOH, methanol, AcO or even
acetonitrile, concluding that AcO is an excellent solvent to recover PLSs as they are precip-
itated [34]. However, those kinds of methodusually use chilled AcO, explaining why, in
the current results, phospholipids are present in such extracts although in lower concen-
trations than when using EtOH [37]. Moreover, those works describing PLS recovery by
crystallisation also purified the extract dissolving these compounds in EtOH [37].

In the current study, in straw samples, the PLS fraction was represented by PI, PS
and PC but only this latter compound was detected in bagasse and only when assaying
EtOH. In our results, PC was the main PLS in the straw samples. However, other authors
found a different distribution as PI was the main compound and PC and PE were in similar
concentrations [27]. It must be noted that samples in the assayed study were obtained
from cultivars in Brazil while the aforementioned bibliographic data were from samples
obtained in the USA. Differences in the cultivars, crop season and geographical situation
can affect the composition of the plant.

FOHs are an interesting group of compounds that can be found in different plant
materials such as rice bran [41] and other plant tissues [42], among which sugarcane is an
interesting source [13,15,20]. Such compounds have recently attracted increasing attention
due their promising effect to restore sleep alterations by stress in mice [18] or their capacity
to improve the intimal lesions of the aorta, suggesting anti-inflammatory potential [43].

When comparing the different straw and bagasse extracts, it was observed that
the fatty alcohols concentrations for EtOH samples were 7.14 & 0.12 g/100 g in straw
and 8.56 £ 0.01 g/100 g in bagasse. Furthermore, in the samples obtained after assay-
ing AcO, the fatty alcohols concentrations were 11.32 £ 0.55 g/100 g for straw and
11.78 4 0.02 g /100 g for bagasse. However, when using EtAc, the fatty alcohols content
was 8.24 £ 0.05 g/100 g for straw and 14.17 & 0.22 g/100 g. In general, bagasse had higher
fatty alcohols content than straw.
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According to the obtained results, in the lipid profile, DCM showed the best perfor-
mance results for both sugarcane straw and bagasse in terms of the contents of hydro-
carbons, FFAs, FOHs, esters, phytosterols and acylglycerols (i.e., TGs, MGs and DGs). It
was also found that the lipid proportion when assaying AcO, EtAc and EtOH for some
compounds (i.e., DG) was affected by the matrix.

Finally, glycolipids and PLSs where mainly found in EtOH, therefore suggesting that,
for this kind of samples, this solvent is the best option.

Lipid isolation is a complex task and indeed, several different methods based in
chloroform/methanol, isopropanol /hexane and methyl tert-butyl ether /methanol have
been proposed and are widely used to extract such compounds [34], such as recently
proposed single-layer methods showing a similar performance [44]. However, the selection
of the procedure and solvent system is a crucial step as these can affect the qualitative and
quantitative composition of the extract [28], and in the case of dairy products, it has been
demonstrated that such choices can specifically impact the phospholipids fraction [45].
Thus, the observed variations in the isolation capacity of the solvents tested in the current
work are consistent with the findings of the existing scientific literature.

Moreover, studies to describe how the distribution of lipids is affected by solvents
can be useful to understand the interaction with the sample and select the most suitable
procedure accordingly, specifically if a group of compounds is of interest.

3.3. Extract Characterisation by GC-MS

The results commented upon and discussed in the last section regarding the lipid
classes composition of the EtOH, AcO, EtAc, DCM extracts show how each solvent affects
the different groups of compounds. However, we were interested in obtaining information
about individual compounds (i.e., FFAs, hydrocarbons and FOHs) and thus a GC-MS
analysis was conducted. For both sugarcane straw (Table 3) and bagasse (Table 4) samples,
the same groups were detected such as FFAs, hydrocarbons, FOHs, and STs. Phenolic
compounds were also detected (i.e., coumaric acid), aldehydes (FALs) as octacosanal (FAL
18:0) and terpenes (only in straw samples; friedelan-3-one). During the analyses, other
compounds were detected as polyols, in addition to d-erythrotetrofuranose, levoglucosan
and some other sugars that were not possible to identify (Supplementary Material Table S2).
Moreover, the obtained data show that, regarding polyols, DCM was only able to isolate
glycerol and 1,2,3-butanetriol.

Table 3. Profile (g/kg) in free fatty acids, hydrocarbons, fatty alcohols, sterols, fatty aldehydes, and
terpenes of different sugarcane straw extracts.

STRAW
EtOH AcO EtAc DCM
Octanoic acid (FFA 8:0) 4.36°+0.31 7200 4+ 0.20 20.152 +0.24 8.45b +0.63
Dodecanoic acid (FFA 12:0) 0.24 ¢ +0.03 0.40° +0.09 0.48° +0.03 1402 +0.24
Myristic acid (FFA 14:0) 0.49 ¢ +0.10 1.202 4+ 0.12 0.64° +0.07 1.252 +0.21
Palmitic acid (FFA 16:0) 4.89° 4 0.49 13.33P +1.08 1258 +0.43 19.152 + 0.32
Linoleic acid (FFA 18:1 c9c12) 0.55¢ 4 0.11 1.98° +0.12 223 +0.11 4092 +0.78
Oleic acid (FFA 18:1 ¢9) 2504 +0.50 6.00 ¢ + 1.04 8.88P +0.32 15212 +2.78
Stearic acid (FFA 18:0) 1.69 € +£0.22 401b 4055 412° +0.17 6.582 + 1.20
Arachidic acid (FFA 20:0) 0.31°+0.05 1.502b +0.22 1.48° 4+ 0.09 1.912 +0.23
Behenic acid (FFA 22:0) nd¢ n.a 0.40° +0.14 0.46° +0.02 0.692 +0.14
Lignoceric acid (FFA 24:0) nd € n.a 0.58° +0.19 0.59 " +0.02 1112 +0.21
Octacosanoic acid (FFA 28:0) 0.244 4+ 0.08 1.63P +0.22 0.77¢ £ 0.13 6.892 +1.04
T FFA 15264 +1.25 38.24° + 3.65 52.38b +2.84 66.732 +9.20
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Table 3. Cont.
STRAW
EtOH AcO EtAc DCM
1-Octacosanol (FOH 28:0) 235¢40.35 558P +0.16 2.28¢+0.09 18.192 £ 252
1-Triacontanol (FOH 30:0) 1122 +0.22 352¢+0.15 1.65P +0.11 13.842 + 1.46
1-Dotriacontanol (FOH 32:0) 1.39b 4+ 0.28 448°+0.21 201P 4022 19.432 + 2,56
1-Tetratriacontanol (FOH 34:0) nd¢ n.a 0.35° 4 0.06 nd¢€ n.a 2172 40.22
¥ FOH 486+ 0.89 13.93b +1.14 5.94¢ 4 0.37 53.632 + 6.73
Pentacosane (C25:0) ndP® na ndb na ndb n.a 0.402 + 0.08
Heptacosane (C27:0) ndd n.a 0.45° 4 0.08 0.28 < +0.01 0.942 + 0.06
Nonacosane (C29:0) ndd na 0.47° 4+ 0.07 0.24 € 4+ 0.02 1.322 +0.20
Hentriacontane (C31:0) 0.28 4 4 0.05 097° +0.15 0.49 € £ 0.05 2.182 4+ 0.58
£ HYDROCARBONS 0.284 +0.05 1.89P +0.15 1.01 ¢ + 0.07 484234091
Campesterol (ST 28:1;0) 0.43°¢ + 0.06 0.89° +0.19 0.94° 4+ 0.08 2.873 4 0.57
Stigmasterol (ST 29:2;0) 0.89°¢ 4 0.11 359P +0.34 2.16° +0.05 11.812 +1.62
B-Sitosterol (ST 29:1;0) 1.56 € & 0.09 3.97b +0.69 3.96° +0.35 11.00@ £ 2.01
Stigmast-4-en-3-one (ST 29:2;02) 1.17 ¢ 4+ 0.03 2.62° +0.34 249° 4 0.15 8.493 4+ 0.99
£ ST 4.06°¢ + 0.63 11.07b +1.73 955b 4+ 0.61 34162 +2.73
4-Coumaric acid 1.632 +0.26 0.62° +0.09 0.35°¢ £ 0.05 ndd na
Octacosanal (FAL 28:0) 0.25¢ +0.05 1.70° 4+ 0.20 0.39¢ +0.02 9.223 +1.38
Friedelan-3-one 0.61 ¢ + 0.08 1520 +0.32 1.39b +0.11 4652+ 091

Results expressed as mean & SD (1 = 3). EtOH: ethanol; AcO: acetone; EtAc: ethyl acetate; DCM: dichloromethane.
FFAs: free fatty acids; FOHs: fatty alcohols; STs: sterols; FALs: fatty aldehydes; n.d: not detected; n.a: not applied.
Different superscript letters in a row indicate statistically significant differences between solvents (p < 0.05).

Table 4. Profile (g/kg) in free fatty acids, hydrocarbons, fatty alcohols, sterols, fatty aldehydes and
terpenes of different sugarcane bagasse extracts.

BAGASSE
EtOH AcO EtAc DCM
Dodecanoic acid (FFA 12:0) nd*¢€ n.a 0.16° 4+ 0.02 0.372 4+ 0.08 nd¢€ n.a
Myristic acid (FFA 14:0) ndb n.a 0.402 £+ 0.02 ndb na ndP n.a
Palmitic Acid (FFA 16:0) 2.86 ¢+ 0.62 6.523 + 0.86 6.922 +0.62 433P + 058
Stearic acid (FFA 18:0) 1.03b +0.16 3.682 4+ 0.62 2.702 4+ 0.23 1.77° +0.17
Oleic Acid (FFA 18:1 ¢9) 157 € + 0.47 4502 + 0.06 43723 +0.17 249° 4 0.28
Linoleic acid (FFA 18:2 ¢9c¢12) 0.87° +0.32 2492 +0.35 2473 +0.09 113> +0.25
Arachidic acid (FFA 20:0) 0.44 < 4+ 0.08 1272 4+ 0.16 1283 +0.17 0.92b +0.19
Behenic acid (FFA 22:0) nd¢€ n.a 0.882 +0.13 0962 +0.14 0.48° 4+ 0.11
Lignoceric acid (FFA 24:0) 0.38¢ 4 0.03 1.662 +0.18 1.76 2 + 0.36 14323 4+ 0.24
Octacosanoic acid (FFA 28:0) 2.84° +0.90 13.822 +1.23 11.09° + 2.61 13.813P +1.50
T FFA 9.98¢ + 1.68 35.382 4+ 2.94 31.923b 4+ 314 26360 +3.22
1-Octacosanol (FOH 28:0) 5.89¢+1.16 19.642 +£1.92 11210 +2.81 21.642 £ 2.07
1-Triacontanol (FOH 30:0) 1.294d 4+ 0.21 3.67P +0.59 221¢40.51 43124022
1-Dotriacontanol (FOH 32:0) 0.684 +0.15 2.01° +0.44 116 +0.27 3213 +0.21
¥ FOH 7.85¢ 4 1.54 25323 4+ 2.74 1459 +3.33 29.16 2 + 2.40
Heptacosane (C27:0) 0.36¢ 4 0.10 1672 +0.17 0.99° 4+ 0.21 2152 +0.36
Octacosane (C28:0) ndP® na ndb n.a 0412 +0.07 0.202 + 0.04
Nonacosane (C29:0) ndd na 0.53P +0.13 0.35¢ + 0.09 2.873+222
Hentriacontane (C31:0) nd?b n.a 0.462 4+ 0.03 ndb n.a ndb n.a
£ HYDROCARBONS 0364 +0.10 2.66° + 0.08 1.75¢ £ 0.30 5232 4+ 0.44
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Table 4. Cont.
BAGASSE
EtOH AcO EtAc DCM
Campesterol (ST 28:1;0) 0.65 ¢ + 0.08 1.872 +£0.16 1.782 £ 0.15 133> +0.19
Stigmasterol (ST 29:2;0) 1.48° 4 0.36 5770 +£0.75 455 4+ 0.88 7.062 +0.75
B-Sitosterol (ST 29:1;0) 1.83¢+0.29 5.823 4 0.70 5.87 3 4 0.55 431° +037
4,22-Stigmastadiene-3-one (ST 29:2;0) 0.86° +0.15 3.342 4+ 0.35 3.112 +0.43 3.942 +0.58
Stigmast-4-en-3-one (ST 29:2;02) 2.68°¢+0.48 9.53b +0.98 927P +1.18 11592 +£1.72
£ ST 7.50 € + 1.04 26.333P 4+ 269 24590 +3.10 28223 +1.17
4-Coumaric acid 36.112 +2.13 11.29b +0.30 7.93¢ 4 0.71 ndd na
Octacosanal (FAL 28:0) 22744084 7.91b 4+ 0.08 440°+1.27 13.792 + 1.65

Results expressed as mean & SD (1 = 3). EtOH: ethanol; AcO: acetone; EtAc: ethyl acetate; DCM: dichloromethane.
FFAs: free fatty acids; FOHs: fatty alcohols; STs: sterols; FALs: fatty aldehydes; n.d: not detected; n.a: not applied.
Different superscript letters in a row indicate statistically significant differences between solvents (p < 0.05).

The obtained data from the HPLC-ELSD analyses showed that DCM had a good
capability for isolating non-polar lipids while EtOH was more suitable for recovering polar
compounds such as phospholipids and glycolipids. While these analyses give information
about the distribution of the different lipid subfamilies, through GC-MS, it is possible to
gather individualised data, at least from those compounds that can be volatilised.

Thus, as expected, DCM had the highest contents of FFAs in the straw extracts as the
contents were of 66.73 & 9.20 g /kg while they were 52.38 + 2.84 g /kg, 38.24 + 3.65 g /kg and
15.26 g/kg, respectively (p < 0.05), for EtAc, AcO and EtOH. On the other hand, for bagasse
samples, the amounts were as follows: 35.38 &= 2.94 g/kg AcO extract ~ 31.92 £ 3.14 g/kg
EtAc extract ~ 26.36 + 3.22 g/kg DCM extract > 9.98 & 1.68 g/kg EtOH extract (p < 0.05).
However, it must be noted that, for bagasse, the main FFA was octacosanoic acid (FFA 28:0),
a long-chain saturated fatty acid. Samples collected when using AcO and DCM, FFA 28:0
concentrations were not significantly different (13.82 £ 1.23 g/kg vs. 13.81 £ 1.50 g/kg,
respectively) but were lower for EtAc (11.09 £ 2.61 g/kg). The solvent affected the quanti-
tative profile of the samples in the case of EtOH as the main FFA was palmitic acid (FFA
16:0; 2.86 £ 0.62 g/kg bagasse extract) instead of octacosanoic (2.84 £ 0.90 g/kg bagasse
extract). Such results suggest, as observed in the lipid classes” analyses, that the matrix can
affect the isolation of the compounds.

Previously available information reported that the total FFA concentration when
lipids were isolated through supercritical fluids (SFE) was 1.5 g/kg straw and 0.3 g/kg
bagasse [13], while those research works assaying isolation with acetone found contents of
1.2 g/kg straw and 0.1 g/kg bagasse [20]. Although those values are lower than those found
in the present study, several factors can affect the lipid composition: from those exclusively
related to the crop (season, cultivar, management system) to those associated with isolation
and analysis (i.e., conditions, equipment). Thus, FFA distribution in the elsewhere obtained
acetone extract was mainly composed of palmitic acid (FFA 16:0) while linolenic (FFA
18:2 ¢9c12) and FFA 28:0 were present in similar concentrations [20]. However, FFA 28:0
was predominantly present in bagasse lipids. On the other hand, in the investigations of
Attard et al. [13], FFA C28 was in trace amounts in straw samples while bagasse showed
very low contents (i.e., 0.06 g/kg).

In the fraction of FOHs, 1-dotriacontanol (FOH 32:0) was the featured compound
in straw isolates varying from 19.43 & 2.56 g/kg DCM extract to 1.39 £ 0.28 g/kg EtOH
extract. In bagasse, this moiety was characterised by 1-octacosanol and the values ranged
from 21.64 & 2.07 g/kg DCM extract to 5.89 & 1.16 g/kg EtOH extract.

The FAL equivalent of this compound (i.e., octacosanal, FAL C28:0) was found in
quantities of 9.22 £ 1.38 g/kg DCM straw extract and 13.79 £1.65 g/kg DCM bagasse
extract. The rest of the solvents accounted for significantly lower contents in both straw and
bagasse lipids. This distribution agrees with that previously reported by Attard et al. [13],



Foods 2022, 11, 2661

12 0f 18

although the concentrations (0.3 g FOH 32:0/kg straw and 0.7 g FOH 18:0/kg bagasse)
observed by those authors were lower than those reported herein. Furthermore, data from
Del Rio et al. [20] concluded that FOH 28:0 was the main FOH in both straw and bagasse.

The already commented research works as well as the composition presented here
found a similar FOH profile comprising from FOH C14:0 to FOH C34:0. However, other
authors described in sugarcane rind from different cultivars, a profile comprising com-
pounds from FOH 22:0 to FOH 30:0 where FOH 18:0 was the featured compound. In those
works, contents showed high variability when comparing cultivars (i.e., from 1 g/kg to
0.5 g/kg) [15].

Thus, the differences in the quantities may be related to the isolation method. For
example, in straw, the utilisation of EtOH and EtAc showed contents 2-fold higher than
those reported in the bibliography and such variation could be further associated with
differences among the used cultivar of this present work and those already reported.

Both FFAs and FOHs were mainly composed of long saturated compounds. This aspect
was also observed to be continued in the group of hydrocarbons. Straw DCM extracts were
composed of pentacosane (C25:0; 0.40 & 0.08 g/kg), heptacosane (C27:0; 0.94 £ 0.06 g/kg),
nonacosane (C29:0; 1.32 £ 0.20 g/kg) and hentriacontane (C31:0; 2.18 £ 0.58 g/kg). Never-
theless, pentacosane was not detected in the other extracts. For AcO and EtAc, the contents
for the rest of hydrocarbons were significantly lower than when testing DCM. In EtOH
extracts, hentriacontane was the only hydrocarbon detected (0.28 & 0.05 g/kg).

According to the data obtained from bagasse samples, when comparing the results among
the different solvents, it was clear that DCM extracts were also enriched in hydrocarbons,
mainly in nonacosane (2.87 £ 2.22 g/kg DCM extract vs. 0.53 &= 0.13 g/kg AcO extract vs.
0.35 £ 0.09 g/kg EtAc extract). This compound was not detected in the EtOH samples.

To the best of our knowledge, from the works reporting the composition in lipophilic
phytochemicals from sugarcane materials, only the works assaying SFE reported the com-
position in hydrocarbons [13]. Those results suggested that straw lipids were characterised
by the presence of tritriacontane (C33:0; 0.3 g/kg), while for bagasse, was C31:0 (0.03 g/kg).
As commented above with other fractions, variations can be explained on the basis of the
isolation procedures and cultivars.

As the assayed by-products in the present research work were plant materials, the
presence of phytosterols was expected. In samples obtained from straw, total contents were
34.16 £ 2.73 g/kg in the DCM extract, 11.07 = 1.73 g/kg in the AcO extract, 9.55 & 0.61 g/kg
EtAc extract and 4.06 + 0.63 g/kg in the EtOH extract. This fraction was composed of
campesterol (ST C28:1;0), stigmasterol (ST 29:2,0), 3-sitosterol (ST 29:1;0) and stigmast-
4-en-3-one (S5T29:2,02). Regarding bagasse, there were only slight differences in the total
sterol’s concentrations between DCM (28.22 £ 1.17 g/kg), AcO (26.33 &= 2.69 g/kg) and EtAc
(24.59 £ 3.10 g/kg).

From previous research works reporting ST composition, it can be concluded that there
is a high variability in the contents and distribution of this group of compounds in the lipids
of sugarcane straw and bagasse. Thus, in acetone isolates, this fraction was characterised by
sitosterol (0.1 g/kg straw lipids; 0.01 g/kg bagasse lipids) [20]. Furthermore, the utilisation
of SFE led to phytosterol distributions where, for straw lipids, [3-sitosterol was in levels of
0.6 g/kg and stigmasterol in 0.5 g/kg, while for bagasse, the amounts were 0.1 g/kg and
0.08 g/kg, respectively [13]. Interestingly, such contents testing SFE to recover straw lipids
were close to the results obtained in this investigation assaying EtOH. On the other hand,
as a supercritical fluid, only CO, was used without EtOH as modifier or co-solvent.

Finally, the capacity of EtOH to isolate polar compounds was highlighted by the
presence of coumaric acid (1.64 g/kg straw extract; 36.11 g/kg bagasse extract) as these
samples contained significantly higher levels than those obtained through AcO or EtAc.
This compound was not detected in DCM.
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3.4. FTIR-ATR Results

The FTIR-ATR overlapping spectra of straw (Figure 3) and bagasse (Figure 4) extracts
from different solvents (EtOH, AcO, EtAc and DCM) revealed that the composition of
the obtained waxes was quite similar. The vibrational bands were identified based on
literature [46] and are resumed in Table 5.

The vibrational bands at 3357-3337 cm ™!, 1710 cm !, 1169 cm~! and 1051 cm ™! are
related to the -OH stretching and bending vibrations and C-O asymmetric and symmetric
stretching vibrations, respectively. These vibrations can be produced by alcohol groups,
which agrees with the HPLC-ELSD and GC-MS results that identified several FOHs and
phytosterols.
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Table 5. FTIR frequencies interpretation table.

Wavenumber (cm~1) Origin Assignment

3357-3337 -OH stretching Alcohols

52411; C-H stretching (-CHj3, -CHj; and -CH) Aliphatic chains

1710 -OH bending Alcohols

1605 RONH; Amines

1515 C-N stretching Amides

1462

1423 C-H bending (-CHj3, -CHy) Aliphatic chains

1377

1328 -CHO (CH deformation) Aldehydes
1269-1225 NH, rocking/twisting Amines

1169 C-O asymmetric stretching Alcohols

1123 N-H bending Amines
1051-1030 C-O stretching Alcohols

833 CH; rocking Aliphatic chains

;%g Rotational deformation of CHj in chain High aliphatic chains

Moreover, FTIR-ATR spectra also showed three vibrational bands related to amine
groups, at 1605 ecm~1, 1269-1225 ecm~! and 1123 cm™! (corresponding to the RONH,
functional group, NH; rocking/twisting and N-H bending vibrations, respectively) and
a band at 1515 cm~! from the C-N stretching vibration of the amides functional group.
FTIR-ATR vibrational bands associated with amines and amides were probably due to the
presence of phospholipids such as PI and PS (amine functional group) and glycolipids.

Additionally, a band at 1328 cm 1, associated with the -CH deformation vibration on
a —-CHO functional group (aldehyde), present in the bagasse extracts, is also in accordance
with the compositional identification obtained by HPLC-ELSD and GC-MS, which reveal
the presence of octacosanal. Although this compound is also identified in straw waxes, in
the FTIR-ATR spectra, it is not possible to identify these characteristic vibrational bands.
This fact is probably due to the amount of octacosanal being much lower in straw extracts.

3.5. Differential Scanning Calorimetry (DSC)

All straw and bagasse extracts, from the different solvents were solid at room tem-
perature (waxes). The DSC analysis of these waxes allowed to determine its melting and
crystallisation points, in addition to its oxidation and decomposition temperatures. The first
heating cycle allowed to eliminate the samples’ thermal history [13]. Only the transitions
observed during the cooling and the second heating cycles were considered. The results
are summarised in Table 6. The enthalpies are presented in absolute values.

Table 6. Crystallisation, fusion, oxidation and decomposition temperatures (°C) and enthalpies (J/g)
of sugarcane straw and bagasse.

Temperature (°C) (IAH| (J/g))

Straw Extract Crystallisation Melting Oxidation Decomposition
EtOH 57.8 (17.1) 70.1 (20.4) n/a 354.5 (186.2)
AcO 56.1 (22.4) 66.4 (26.2) n/a 410.6 (65.7)
EtAc 65.9 (53.7) 74.8 (55.3) n/a 374.4 (153.6)
DCM 58.7 (45.2) 70.8 (55.1) 163.6 (23.4) 393.5 (225.6)

Temperature (°C) (1AHI (J/g))

Bagasse Extract Crystallisation Melting Oxidation Decomposition
EtOH 57.9 (11.6) 68.1 (12.4) n/a 362.9 (279.5)
AcO 58.6 (43.5) 68.9 (51.1) n/a 406.9 (176.9)
EtAc 62.1 (64.2) 68.6 (71.7) n/a 393.2 (231.7)
DCM 62.9 (90.3) 72.2 (106.9) 168.0 (35.1) 436.4 (267.3)

n/a—not applicable.
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The crystallisation points of both straw and bagasse waxes are quite similar to one
another. Thus, in the isolates from straw, the temperatures ranged from 65.9 °C in EtAc
to 56.1 °C in AcO. On the other hand, regarding the crystallisation temperature in the
bagasse extracts, the highest values were observed for DCM (62.9 °C) and EtAc (62.1 °C).
Interestingly, the results for EtOH bagasse extract (57.9 °C) are similar to those recorded for
straw isolates using this same solvent (57.8 °C).

The melting points varied from 66.4 °C (AcO straw extract) to 74.8 °C (EtAc straw
extract) while in the bagasse samples, these ranged from 68.1 °C (EtOH) to 72.2 °C (DCM).
According to the results obtained from the GC-MS analyses, it would be expected that,
in the straw samples, the highest melting points were recorded for DCM extracts as the
contents in fatty alkyls, FOHs and STs showed the highest levels in these samples. However,
the results also show that glycerol and other polyols were poorly isolated by this solvent.
Such compounds may have affected the obtained values. However, the enthalpies for the
melting process in DCM was 55.1]/g and 55.3 ] /g for EtAc.

When sugarcane wax from peel was obtained through Soxhlet with carbon tetra-
chloride, the melting temperature was registered at 62 °C [19]. Moreover, in waxes from
sugarcane rind, leaves and bagasse, isolated through SFE, the melting points were 73 °C,
63 °C and 71 °C, respectively [13].

Regarding the values obtained for the melting points, the current lipid extracts can be
considered waxes. Furthermore, for each wax, the enthalpies involved in the respective
melting and crystallisation processes were also similar, suggesting that the crystallised
fraction is completely melted when re-heated.

Still during the second heating cycle, an exothermic process occurred, at 163.6 °C or
168.0 °C, only for the waxes extracted with DCM (straw and bagasse extracts, respectively).
Considering the composition of these waxes, and comparatively to the others, it was
possible to verify that the waxes extracted with DCM do not present 4-coumaric acid in
their composition. Since this compound has antioxidant properties, the fact that it is not
present in DCM waxes facilitates its oxidation. Therefore, this exothermic peak may be
associated with wax oxidation.

When all waxes were heated above 350 °C, they decomposed. The lowest decomposi-
tion temperature was recorded for the straw ethanol wax (354.5 °C), while the highest was
verified for the bagasse dichloromethane wax (436.4 °C). Rueda-Ordoriez et al. [47] also
found a decomposition temperature of 350 °C, although those works were conducted in
whole sugarcane straw.

The DSC curves showed very wide overlapping irregular peaks for decomposition,
that are highly related to the complex composition of the waxes. This resulted into variable
enthalpy values (65.7-279.5]/g).

4. Conclusions

The obtained results confirm that each tested solvent interacted differently with sugar-
cane straw and bagasse matrices and the lipid composition of the extracts depended on the
assayed extractant.

Thus, although EtOH resulted in the highest extraction yield, the analyses also showed
that other non-lipid compounds as polyols may be present in the isolates. Additionally, the
data evidenced that the matrix influenced the lipids recovery since for straw samples, the
solvents AcO, EtAc and DCM showed a decreasing isolating capacity, whilst in bagasse
samples, those solvents led to similar yields.

Regarding the composition of the extracts, DCM was mostly efficient in recovering
non-polar lipids. Moreover, AcO and EtAc showed similar capacities for non-polar lipids,
however, when compared, only AcO recovered PLSs. Glycolipids were mainly found in
the extracts obtained with EtOH, therefore suggesting its suitability for enriching extracts
from sugarcane straw and bagasse in polar lipids.

All isolates had long-chain alkyls and phytosterols in their composition but those
produced by DCM had the highest concentrations in agreement with the lipophilic nature
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of this solvent. Thus, DCM was suitable for recovering the bioactive octacosanol (FOH
28:0) and phytosterols. Accordingly, in further investigations focused on unravelling
the biological effects of these compounds from sugarcane biomass, DCM should be the
solvent of choice. However, such obtained results must be carefully interpreted as this
kind of reagent can interfere with lipid bioactivity and further product development may
face restrictions by regulations. Finally, the presence of long chain alkyls and other high
molecular weight lipids (i.e., TG and ST) results in melting points above 60 °C and samples
are consistent with being waxes.

In summary, the results of this research work enable us to conclude that sugarcane
waxes from biomass such as straw and bagasse are complex lipid mixtures of polar and non-
polar compounds. The extractant greatly influences the distribution of these compounds
in the obtained sample. DCM will enrich the isolates in glycerolipids, FFAs, FOHs, FALs,
STs and hydrocarbons. On the other hand, EtOH will yield isolates rich in glycolipids.
Therefore, depending on the application and objectives of future research studies, the
solvent to recover such lipids needs to be carefully selected.
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