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Abstract: Atrazine, an herbicide used to control grassy and broadleaf weed, has become an essential
part of agricultural crop protection tools. It is widely sprayed on corn, sorghum and sugar cane,
with the attendant problems of its residues in agri-food and washing water. If ingested into humans,
this residual atrazine can cause reproductive harm, developmental toxicity and carcinogenicity. It
is therefore important to find clean and economical degradation processes for atrazine. In recent
years, many physical, chemical and biological methods have been proposed to remove atrazine
from the aquatic environment. This review introduces the research works of atrazine degradation in
aqueous solutions by method classification. These methods are then compared by their advantages,
disadvantages, and different degradation pathways of atrazine. Moreover, the existing toxicological
experimental data for atrazine and its metabolites are summarized. Finally, the review concludes
with directions for future research and major challenges to be addressed.

Keywords: atrazine; degradation; residue; agri-food; water

1. Introduction

Atrazine (Figure 1) is a triazine herbicide with a wide range of applications, for grassy
and broadleaf weed control in corn, sugarcane, sorghum and certain other crops [1–4]. Due
to of its efficiency and low cost, its average consumption worldwide is 70,000 to 90,000 tons
per year [5]. If shopping for conventional groceries, consumers are likely to have eaten food
that has been sprayed with atrazine. Since atrazine is applied to crops used as livestock
feed, its residues are found not only in crops, but also in milk and meat. According
to the consumer risk assessment performed by the European Food Safety Authority [6],
atrazine input values used for the dietary chronic exposure calculation of maize and other
cereals except maize are 0.025 mg/kg and 0.05 mg/kg, respectively, based on the mean
consumption data representative for 22 national diets. Although not considered acutely
toxic to people, atrazine affects long term human health. Atrazine can act as the endocrine
disrupting chemicals (EDC) [7] that can produce damage to the endocrine system, and
cause a series of pathological changes and reproductive abnormalities [8]. Additionally,
atrazine is also a potential carcinogen due to negative impact on human health such as
tumors, breast, ovarian, and uterine cancers as well as leukemia and lymphoma [9]. For
these reasons, atrazine was banned in the European Union (EU) in 2003 [10]. However, the
commercial formulations of the herbicide atrazine (such as Gesaprim 90% WG) are still
widely employed in Latin America. For example, herbicides were the main pesticide class
used in Brazil between 2009 and 2018, with oscillations from 52.4% (2011) to 62.5% (2012),
and atrazine was the top two active ingredient in this period [11]. Brazil is the world’s
third biggest exporter of agricultural products and organic food market leader in Latin
America [12]. In addition, Brazil’s main export markets are the European Union and the
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United States [13]. So, the residual problem of atrazine still remains a concern. Atrazine
is chemically stable with long half-life in water (30–100 days) [14,15], and its microbial
degradation in soil environments is a relatively slow process (the range of field half-lives
is 18 to 148 days [16,17]). It is also slightly soluble in water (33 mg·L−1 at 22 ◦C) and has
low adsorption in soil [18]. Thus, it contaminates both surface and ground water [19]. The
upper limit for atrazine in drinking water is 3 µg/L in America whereas in Europe, it is
fixed as 1 µg/L [20,21]. However, investigations [22–24] have shown that concentrations of
atrazine exceed the authorized limit of water contamination in surface water and ground
water. Lots of works [25–28] have been conducted on the detection and quantification of
atrazine in water, which is important to the food safety and quality control. Controlling the
pollution of residual atrazine in agri-food and washing water has become a major issue.
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So far, many treatment technologies of aqueous atrazine have been developed, including
microwave assisted photo reactions, advanced oxidation processes (AOPs), bioremediation,
etc. This review summarizes recent degradation progress of atrazine in water, with an em-
phasis on current chemical methods (Fenton/Fenton-like Method [29–33], Sulfate Radical
Oxidation [34–38], Photocatalytic Method [39–43], Electrocatalytic Method [44–48], Ozone Ox-
idation Method [49–53]), Biodegradation (Microbial Degradation [54–58] and Phytodegra-
dation [59–63]) and physicochemical methods (High Voltage Electrical Discharges [64–69],
Ultrasound [70–72], Microwave [73–75] and Ionizing Radiation [76–78]). Although two
recently published reviews [79,80] also describe atrazine degradation techniques, they
do not cover degradation methods comprehensively. This review not only expands the
atrazine degradation techniques, but also compares them in terms of degradation pathways,
atrazine mineralization, and metabolite toxicity.

2. Chemical Method
2.1. Fenton/Fenton-like Method

The classical Fenton reaction describes the activation of hydrogen peroxide (H2O2) by
ferrous (Fe2+) ions to generate hydroxyl radicals (HO) [3]. The hydroxyl radical abstracts a
hydrogen atom from organic substrate (R−H), and generates an organic radical (R), which
subsequently undergoes a series of chemical transformation to form various oxidation
products. The reactions are as follows:

Fe2+ + H2O2 → Fe3+ + HO·+ OH− (1)

RH + HO· → H2O + R· → f urther oxidation (2)

Although the classic Fenton oxidation achieves the generation of free radicals and has
strong oxidizing ability under ambient conditions, insoluble ferric hydroxide precipitates
are generated during the process, which reduces the overall oxidation efficiency and
requires continuous addition of Fe2+ salt. Therefore, Fenton-like methods with higher
oxidation efficiency have been developed. For example, photo-Fenton, electro-Fenton
and sono-Fenton are improvements of Fenton oxidation combined with photochemistry,
electrochemistry, and ultrasound, respectively, and they have been used for the degradation
of aqueous atrazine. In 2002, Venturaet et al. [29] designed an electro-Fenton system and
used it for the degradation of atrazine. The electro-Fenton system could continuously
produce the ferrous iron and the hydrogen peroxide, thereby allowing more efficient
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generation of ·OH, which led to a more thorough oxidation of atrazine. In the same year,
Saltmiras et al. [30] published a similar work using anodic Fenton treatment to degrade
70% of atrazine in 3 min.

In 2020, Yang et al. [81] prepared a heterogeneous Fenton catalyst Fe/TiO2 using
TiO2 synthesized by sol-gel method as carrier and ferric nitrate as Fe source, which could
effectively remove atrazine under visible light, achieving over 95% removal efficiency
within 30 min. In 2020, Shi et al. [82] reported Fe3S4 Fenton oxidation of atrazine using
visible light, and atrazine was completely degraded within 35 min. In 2021, Fareed et al. [83]
adopted the UV/FeCl3/H2O2 system and achieved a 97% degradation rate of atrazine.
In addition, the use of iron-modified mesoporous molecular sieve materials to degrade
atrazine using UV–vis irradiation was reported by Benzaquén et al. [84]. Additionally,
there are other related photo-Fenton systems, using tantalum (oxy)nitrides to prepare
photocatalytic materials, on the degradation of aqueous atrazine [32,33,85,86].

The stepwise-Fenton’s processes for the degradation of atrazine were developed by
Chu et al. in 2007 [31]. And according to the system models built through the examination
of reaction kinetics, they found that the performance of stepwise- Fenton’s processes was
better than that of conventional Fenton’s processes.

2.2. Sulfate Radical (SO−4 ) Oxidation Method

Compared with OH, the sulfate radical SO−4 has a higher redox potential, longer half-
life, and higher selectivity for electron transport reactions, receiving increasing attention on
the degradation of pollutants [34]. So far, there are many generation methods of SO−4 for
atrazine removal (Table 1).

Table 1. Generation methods of SO−4 · for atrazine removal.

Generation Methods Removal Effect

Carbon sheet fabricated from corn straw and
potassium oxalate activated persulfate.

97.2% of atrazine was removed by the system within
20 min, when the concentration of persulfate was

2 mM [34].

Biochar supported nZVI composites (nZVI@BC)
activated persulfate. The atrazine removal rate was up to 93.8% [35].

Siderite/CaSO3 system was used to provide Fe2+ to
activate sulfite.

>90% atrazine was removed within 6 min
at 45 ◦C [36].

Pyrite activated persulfate.
100% of atrazine was degraded in 45 min and the
TOC(total organic carbon) removal efficiency was

26% within 7 h [37].

Mechano chemically synthesized S-ZVIbm

composites activated persulfate.
The degradation of atrazine was up to 90%, which

was pH-independent [38].

Nanoscale LaFe1-xCuxO3-δ perovskite activated
peroxymonosulfate.

Atrazine (23 µM) was removed completely within
60 min in the presence of 0.5 g/L catalyst and 0.5 mM

peroxymonosulfate [87].

Composite of nanoscale zero valent iron and
graphene activated persulfate.

92.1% of atrazine was removed within 21 min using
mass ratio of 5:1 nanoscale zero-valent iron (nZVI) to

graphene (GR) [88].

Natural negatively-charged kaolinite with abundant
hydroxyl groups activated peroxymonosulfate.

When the kaolinite dosage increased to 1.0 g/L, the
degradation of atrazine exceeded 90% at 60 min [89].

Cobalt-impregnated biochar activated
peroxymonosulfate. 99% of atrazine was degraded within 6 min [90].

Co-doped mesoporous FePO4 activated
peroxymonosulfate.

100% of atrazine was degraded for CoFeP-0.1 after
30 min at pH = 7 [91].

LaCoO3/Al2O3 activated peroxymonosulfate.
Under the optimal conditions, the removal rate and
mineralization efficiency of ATZ reached 100% and

30.8%, respectively [92].

Copper sulfide activated persulfate. The degradation of atrazine was up to 91.6% [93]
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Table 1. Cont.

Generation Methods Removal Effect

Hydroxylamine drinking water treatment residuals
activated peroxymonosulfate.

The removal efficiency of atrazine was 95.5% in
30 min [94].

Fe3O4-sepiolite activated persulfate. 71.6% of atrazine and 20% of solution TOC were
removed after 60 min [95].

CoMgAl layered double oxides activated
peroxymonosulfate. The degradation of atrazine was up to 98.7% [96].

In addition, there are processes that combine sulfate radical oxidation with other tech-
nologies such as UV-vis [97,98]. The photocatalysis technology is needed for the activation
of sulfite to generate SO−4 effectively at the neutral pH condition without any precipitation
of metal-hydroxyl species, thus greatly improving the degradation rate of atrazine.

2.3. Photocatalytic Method

Photocatalysis generally refers to a photochemical reaction with the participation of a
catalyst. Under the irradiation of ultraviolet or visible light, electron–hole pairs are created
by photocatalysts, which generate free radicals such as OH able to oxidize and decompose
organic pollutants. The image below (Figure 2) refers to reference [99].
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The general photocatalysts are N-type semiconductor materials, which have the char-
acteristics of low band gap, such as TiO2, ZrO2, ZnO, CdS, WO3, Fe2O3, Bi2O3, etc. Among
them, Ti-based, W-based, and Bi-based materials and their oxides are commonly used in
the photodegradation of aqueous atrazine (Table 2).

In addition, photoelectrocatalysis (PEC), which combines both electrochemistry and
photocatalysis, has also used in the degradation of aqueous atrazine. In 2018, Fernández-
Domene et al. [100] reported the degradation of atrazine by photo-electrocatalysis using
a photoanode based on WO3 nanosheets. And atrazine was completely degraded after
180 min. In 2021, Xie et al. [101] used the bias potential applied on the photo-anode to
achieve a 96.8% removal efficiency of atrazine.

The photocatalytic method has received widespread attention because of its high
efficiency, non-toxicity, and lack of secondary pollution. It is recommended to use visible
light catalytic process to degrade atrazine, because the use of solar energy is sustainable
and environmentally friendly.
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Table 2. Photodegradation of aqueous atrazine.

Photocatalyst Preparation Light Source Removal Effect

In, S-TiO2@rGO
nanocomposite

TiO2@rGO
nanocomposites were

synthesized based on a
new ultrasonic-assisted
hydrothermal method.

Visible-light, a 300 W
tungsten xenon lamp.

The complete
degradation and 95.5%

mineralization of
atrazine was achieved

within 20 min [39].

Boron-doped TiO2
Used a one-step

calcination method.

Visible-light, a 350 W
(15 A) Xenon lamp with

a 300 nm cutoff filter
(CHF-XM-350 W, Beijing

Trusttech. Co., Beijing,
China).

The degradation of
atrazine was up to

95% [40].

Metalloporphyrins
supported on TiO2

Tetra (4-carboxyphenyl)
porphyrin with different

metal centers and
metal-free was adsorbed

on TiO2 surface.

Visible-light, an open
borosilicate (Pyrex) glass

cell with an optical
window of 11 cm2 area.

82% of atrazine was
degraded using Cu(II)

porphyrin within
1 h [41].

Crystal TiO2 nanowires
with high specific

surface area

Use a PEG-assisted
hydrothermal method.

UV irradiation, two
15 W Philips UV light

lamps (365 nm
wavelength, intensity:
2.47 ± 0.16 mW cm−2).

The degradation of
atrazine is up to 60% in

1 h [42].

TiO2 nanoparticles
involved boron

enrichment waste

UV irradiation, a UV
lamp (400 W,

λ = 250–570 nm).

The degradation of
atrazine is up to 60% in
70 min. The removal of

atrazine followed a
pseudo-first-order

reaction kinetic [43].

Mesoporous
Ag-WO3/SBA-15

composite

Visible-light, a
broadband light source

(450 W Xe arc lamp)
fitted with a neutral

density optical filter to
allow light of

wavelength above
400 nm.

70% of atrazine was
degraded in
18 min [102].

Heterojunction
BiVO4-Bi2O3

Platelet-like BiVO4 was
synthesized by
hyperbranched

polyethyleneimine [103].

Visible-light, a mercury
250 W

High-Pressure lamp.

The heterojunction
efficiently removed

>90% of atrazine [104].

CdS/BiOBr/Bi2O2CO3
ternary heterostructure

materials

Used a simple one pot
hydrothermal method.

Visible-light, a 250 W
xenon lamp with a
400 nm cutoff filter.

The degradation of
atrazine was up to 95%

in 30 min [105].

BiOBr/UiO-66
composite

Used an in situ growth
method.

Visible-light, a 300 W Xe
lamp (Beijing

Zhongjiaojinyuan,
CEL-HXF300) with a

400 nm cut-off
glass filter.

The degradation of
atrazine was up to 90%

in 3 h [106].

Cu-BiOCl Used a one-pot
solvothermal method.

UV irradiation, a
Steripen Mercury UV
lamp with emission

wavelength of 254 nm.

29% of atrazine was
degraded [107].

2.4. Electrocatalytic Method

Electrocatalysis is a catalytic process involving oxidation and reduction reactions
through the direct transfer of electrons, which requires electrocatalysts to lower the overpo-
tential of the reactions [108]. Electrocatalytic oxidation technology can produce ·OH in situ
and no additional chemical reagent is required, which can remove atrazine from wastewater
efficiently and environmental-friendly [44]. Electrode materials play an essential role in the
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progress of electrocatalytic oxidation. Various types of electrodes have been exploited for
the degradation of atrazine in water (Table 3).

Table 3. Electrocatalytic oxidation of aqueous atrazine.

Electrodes Removal Effect

Co/Sm-modified Ti/PbO2 anode
The maximum degradation rate of 92.6% and the
chemical oxygen demand (COD) removal rate of
84.5% are achieved in electrolysis time 3 h [44].

Fly ash-red mud particle electrode 90.1 % atrazine was degraded in 30 min [45].

Bifunctional nickel foam composite cathode
co-modified with CoFe@NC and CNTs

The removal of atrazine reached 100% in 105 min
under the given conditions, the removal

efficiency of TOC after 420 min was
78.7 ± 2.6% [46].

Boron Doped Diamond (BDD) anode Around 100% removal rate of atrazine was
achieved in 4 h [47].

BDD anode

Permanganate was in situ electrochemical
generated for the treatment of atrazine. Atrazine

degradation increased significantly with
permanganate production [48].

BDD anode A high mineralization rate of 82% was
obtained [18].

BDD, Carbon Felt, and Mixed Metal Oxides
Anodes with Iridium and Ruthenium

BDD completely removes atrazine, and rest of
anodes reached approximately 75% atrazine

removal [109].

In addition, electrochemistry has also been combined with ozone oxidation to degrade
aqueous atrazine [110]. In 2016, Zhou et al. proposed a novel oxidation process using iron
electrodes and ozone in atrazine degradation [111]. Moreover, atrazine degradation by
in situ electrochemically generated ozone was reported by Vera et al. in 2009 [112]. The
combination of electrochemistry and ozonation exhibited higher removal efficiency for
ATZ than ozonation and electrocoagulation [111].

Moreover, Electrochemical Advanced Oxidation Processes (EAOPs) is also an efficient
method to remove recalcitrant molecules. Atrazine is a very stable molecule with a relative
resistance to microbial attack. Therefore, EAOPs can be used for pretreatment, before the
biodegradation of atrazine [109].

2.5. Ozone Oxidation Method

Ozone is a strong oxidant, which can oxidize organic or inorganic substances in wastew-
ater, thereby disinfecting, oxidizing or decolorizing. Because atrazine is resistant to the
degradation by ozone, additional catalysts are required for the ozonation of atrazine [113]. In
recent years, the ozonation of aqueous atrazine has been reported (Table 4).

In addition, using ozone oxidation combined with other oxidation processes can improve
the degradation efficiency and mineralization rate of atrazine. In 2006, Bianchi et al. [114]
studied the mechanism of atrazine degradation in aqueous phase under sonolysis at 20 kHz,
ozonation, photolysis at 254 nm and photocatalysis in the presence of TiO2, employed
either separately or in combination. Ozonation and photocatalysis induced atrazine de-
alkylation, followed by slower de-chlorination, and simultaneous sonolysis increased the
rate of photocatalytic de-alkylation. The highest degradation rate of atrazine was achieved
when photolysis at 254 nm was combined with ozonation.
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Table 4. Ozonation of aqueous atrazine.

Catalyst Removal Effect

Manganese
The presence of humic substances has a

substantial influence on the Mn-catalysed
ozonation of atrazine [49].

A non-ionic surfactant, Brij35 (polyoxyethylene
(23) lauryl ether)

Atrazine was completely removed after a
reaction time of 2 h [50].

Nano-ZnO The degradation efficiency of atrazine was 99%
after 5 min reaction at pH 6 [51].

Mesoporous Fe3O4 The removal rate of atrazine was up to 97% [52]

Hydroxylamine 80% of atrazine was degraded by ozonation in
the presence of hydroxylamine [53].

Rutile TiO2
The removal rate and the mineralization of

atrazine was 93% and 56%, respectively [115].

Oxygen functionalized graphitic carbon
nitrideO@g-C3N4

The removal rate of atrazine was 93%, after
5 min reaction at pH 6 [116].

Three-dimensional Co/Ni bimetallic
organic frameworks 94% of atrazine were removed [117].

3. Biodegradation

Biodegradation refers to the partial, and sometimes total, transformation or detoxifica-
tion of contaminants by microbial, plants or enzymes [118]. It has advantages over physical
and chemical methods in terms of low costs and environmental friendliness [119]. Since
the discovery of biotic atrazine degradation [120,121], biodegradation has been a major
method for atrazine catabolism [1].

3.1. Microbial Degradation

Microbial degradation exploits the ability of microorganisms for removal of pollutants
from contaminated sites [122]. That is because indigenous microorganisms that are already
present in polluted environments may transform pollutants to harmless products via reac-
tions that take place as a part of their metabolic processes [123]. Generally, isolated microbes
are selected for the degradation due to nature and type of pollutants. Different atrazine-
degrading bacteria and fungi have been isolated (Table 5). Because microorganisms are
easily drained in water making their effectiveness greatly reduced, Yu et al. [58] developed
a self-immobilized biomixture (SIB) with biosorption and biodegradation properties, that
can obtain better atrazine removal rate.

Table 5. Microbial degradation of aqueous atrazine.

Strain Origin Removal Effect

Arthrobacter sp. DNS10 Black soil [54]
The removal rate of 100 mg/L atrazine
reached 95% and 86% in 0.05 mM Zn2+

and 1.0 mM Zn2+, respectively at 48 h [55].

Bacillus badius ABP6 Maize fields

Response-surface-methodology (RSM)
was used to optimize environmental

factors such as pH, temperature, agitation
speed and atrazine-concentration on

atrazine degradation by utilizing Bacillus
badius ABP6 strain. In the optimum

conditions (pH 7.05, temperature 30.4 ◦C,
agitation speed 145.7 rpm, and

atrazine-concentration 200.9 ppm), the
degradation rate of atrazine reaches a

maximum value of 90% [56].
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Table 5. Cont.

Strain Origin Removal Effect

Bjerkanderaadusta Rotten wood surfaces

In the optimum conditions (pH 4,
temperature 28 ◦C, biomass 2 g, and
atrazine-concentration 50 ppm), the

removal rate of atrazine was up to 92% in
5 days [57].

Agrobacterium sp. WL-1,
Arthrobacter sp. ZXY-2 Jilin Pesticide Plant

After adding biochar ZXY-2 pellets, the
removal rate of atrazine reached 61%

within 1 h, higher than that treated by
ZXY-2 pellets without biochar. The

addition of biochar could enhance the
connection between ZXY-2 and

pellets-based carrier, and the favorable
biodegradation pH of ZXY-2 changed to 6

and 10 [58].

Chlorella sp.
The Freshwater Algae Culture
Collection at the Institute of

Hydrobiology, China

Atrazine with initial concentration of
5 mg/L was photocatalytic degraded for

60 min with degradation ratio of 31%.
After an 8 d exposure of the microalga

Chlorella sp., 83% and 64% of the atrazine
were removed from the degraded

solutions containing 40 µg/L and 80 µg/L
of atrazine, respectively [124].

Myriophyllum spicatum Wuhan Botanical Garden

Myriophyllum spicatum absorbed more
than 18-fold the amount of atrazine in
sediments and degraded atrazine to

hydroxyatrazine (HA), deelthylatrazine
(DEA), didealkylatrazine (DDA), cyanuric
acid (CYA) and biuret. The formation of

biuret suggested for the first time, the ring
opening of atrazine in an aquatic plant.

The residual rate of atrazine was
6.5 ± 2.0% in M. spicatum-grown sediment

on day 60 [125].

3.2. Phytodegradation

The phytodegradation of organic compounds take place inside the plant or within the
rhizosphere of the plant [126]. Rhizosphere, the immediate vicinity of plant roots, is a zone
of intense microbial activity, and the use of vegetation at the waste sites can overcome the
inherent limitations such as low microbial population or inadequate microbial activity [59].
It has been reported that atrazine can be degraded or detoxified in crops [60,61], and the
molecular mechanism for catabolism and detoxification of atrazine in plants is a major
research topic (Table 6).

Table 6. Phytodegradation of aqueous atrazine.

Plant Gene/Enzymes Result

Pennisetum cladestinum Soil dehydrogenase Within 80 days, nearly 45% of
atrazine was degraded [59].

Rice
Two novel methyltransferases

LOC_Os04g09604,
LOC_Os11g15040

Atrazine degradation and
detoxification are

regulated [62]

Alfalfa (Medicago sativa)

Genes encoding
glycosyltransferases,

glutathione S-transferases or
ABC transporters

Atrazine in alfalfa can be
detoxified through different

pathways [63].

Generally, atrazine may be degraded within the plant biomass by plant enzymes as
well as in its rhizosphere by microbial biotransformation [127,128].
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4. Physicochemical Method
4.1. High Voltage Electrical Discharges (HVED)

High Voltage Electrical Discharges (HVED) is one of the advanced oxidation processes
that has been used for the treatment of wastewater. During the discharge processes of gas
and liquid system, the low-temperature plasma, high-energy electrons and UV-radiation
are generated to degrade wastewater. The generated plasma is a conductive fluid that
is electrically neutral and consists of electrons, positive and negative ions, free radicals,
neutral particles and excited-state atoms [129]. Among them, the high-energy electrons
bombard water molecules to ionize and generate oxidants such as ·OH and H2O2, which
can efficiently degrade organic substances. The main reactions include:

H2O→ H·+ ·OH (3)

H·+ O2 → HO2· (4)

H·+ HO2· → H2O2 (5)

H2O2 + e → ·OH + OH− (6)

RH + ·OH → R·+ H2O (7)

The plasma reactors can be divided into three types. One is the non-thermalizing
electrical discharge applied in the air above an aqueous solution, generating an atmospheric
plasma. The second is the discharge applied into the water, creating high-temperature
plasma channels. In addition, the hybrid reactors utilize both gas phase nonthermal
plasma formed above the water solution and direct liquid phase corona-like discharge in
water [130].

In 1997, Houben et al. [64] reported a research work on the degradation of atrazine by
pulsed corona discharges above the water surface, in which 0.12 mM atrazine was oxidized
for 5 h and the degradation rate was 57%. This is the earliest work using plasma reactors
to degrade atrazine. Several years later, in 2005, Karpel Vel Leitner et al. [65] applied
the pulsed arc electrohydraulic discharge (PAED) system on the degradation of atrazine.
PAED was generated by a spark gap type power supply (0.5 kJ/pulse) with rod-to-rod
type electrodes in water. The removal rate of atrazine (0.5 µmol/L) achieved 80% with
inter-electrode gap of 4 mm when the input energies were higher than 10 kJ/L. In 2007,
Mededovic and Locke [66] present an investigation of the atrazine degradation by pulsed
electrical discharge in water. Different electrolytes and electrode materials were studied.
An initial pH 3 (adjusted with H2SO4) 90% of the atrazine (2 × 10−5 M) was degraded in
1 h, and the final degradation product was ammeline. When ferrous ions were used as an
electrolyte, atrazine was degraded within 10 min due to the hydrogen peroxide produced
by the discharge which reacted with ferrous ions. In addition, they compared their work
with the above two pulsed electrical discharge works. The comparison of energy efficiency
showed that the underwater pulsed electrical discharge had higher atrazine conversion for
the same energy input than discharge above the water surface and pulsed arc discharge
(Table 7).

Table 7. Comparison of energy efficiency for the three pulsed electrical discharge processes.

Technology Concentration of Atrazine (M) Energy Efficiency (mol/J)

Pulsed electrical discharge in
water [66] 2 × 10−5 3 × 10−9

Pulsed corona discharges above
the water surface [64] 0.12 × 10−3 7.67 × 10−10

Pulsed arc electrohydraulic
discharge in water [65] 2 × 10−6 1.56 × 10−10
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Moreover, there are four other works using dielectric barrier discharge (DBD), a typical
non-equilibrium high-voltage gas discharge. In 2014, Zhu et al. [67] designed a novel wire–
cylinder DBD plasma reactor for atrazine degradation, and the degradation rate was up
to 93.7%, and 12.7% of total organic carbon (TOC) was removed after 18 min of discharge
at the optimum conditions (input power = 50 W, air flow rate = 140 L·h−1). In 2015,
Patrick Vanraes et al. combined DBD with absorption of activated carbon [69] or nanofiber
membrane [68] on the degradation of atrazine. In 2021, Wang et al. [131] combined DBD
with microbubbles (MBs) for persulfate (PS) activation and atrazine removal in water.
Under these DBD/MBs/PS systems, the degradation efficiency reached 89% after 75 min
of treatment at a discharge power of 85 W, a PS concentration of 1 mM, and an air flow
rate of 30 mL/min. And according to the calculated energy yield (EY 41.8 mg/kWh at a
discharge power of 85 W), they supposed that DBD/MBs/PS system was economically
viable in treating large scale atrazine wastewater.

In addition, there is another report on the remediation of atrazine in a plasma reactor.
In 2018, Aggelopouloset al. [132] used DBD plasma at atmospheric air pressure to treat a
sandy soil polluted with atrazine. The atrazine degradation rates of 87% and 98% were
achieved after 60 min of plasma treatment, starting from initial pollutant concentrations of
100 and 10 mg/kg, respectively.

HVED is an innovative technique, which combines sonochemistry, high-energy elec-
tron radiation, photochemistry, etc., and can effectively decompose organic pollutants.
Nevertheless, the use of HVED for wastewater treatment is still under development, and
further research is needed. The research on the degradation behavior of aqueous atrazine
by plasma deserves more attention.

4.2. Ultrasound

The main principles of ultrasonic degradation of pollutants in water are cavitation
effect and free radical oxidation. The high energy generated by the collapse of the ultrasonic
cavitation bubble is sufficient to break the chemical bond and generate hydroxyl radicals
·OH and hydrogen radicals ·H, which oxidize organic substances and transform into
CO2, H2O, inorganic ions or low-toxic organic compounds. At the same time, the rupture
of bubbles enhances the purification. In wastewater treatment, ultrasound technique
is often combined with other techniques [133] (ozone oxidation, ultraviolet irradiation,
biodegradation, etc.) to achieve efficient degradation.

The earliest report on ultrasonic treatment of aqueous atrazine was reported by W.C.
Koskinen et al. in 1994 [134], and the kinetic of sonochemical decomposition of atrazine
in water was determined. In 1996, Petrier et al. [70] used two frequencies (20 kHz and
500 kHz) to degrade atrazine in aqueous solution. The degradation rate of atrazine was
nearly 100% after 80 min at 500 kHz and 55% after 120 min at 20 kHz.

Later, ultrasonic treatment was combined with other techniques to degrade aqueous atrazine,
and it is common to combine US and UV, or US and ozonation. In 2001, A. Hiskia et al. [135]
published a report on US/UV decomposition of atrazine in the presence of polyoxometa-
lates (POM) within a few minutes, giving common intermediates, namely, 2-hydroxy-4-
(isopropylamino)-6-(ethylamino)-s-triazine (HA), 2-chloro-4-(isopropylamino)-6-amino-s-
triazine (DEA), 2-chloro-4-amino-6-(ethylamino)-s-triazine (DIA), ammeline (AM) among
others. The final products for both methods, US and UV with POM, were cyanuric acid,
NO3

−, Cl−, CO2, and H2O. In 2012, R. Kidak and S. Dogan [136] investigated the efficiency
of O3 and US and also of their combined application (US + O3) for the degradation and
potential mineralization of atrazine in water, leading to 95% removal for O3 and 78% for
US after 90 min of treatment, and 100% for US + O3 after 20 min of treatment. In 2014,
Xu et al. [71] reported sonophotolysis (US/UV) for the degradation of atrazine. After
60 min of sonophotolysis treatment, the complete degradation of atrazine and 60% total
organic carbon (TOC) removal rate were achieved. In 2017, Jing et al. [72] used a pilot-
scale UV/O3/US flow-through system to remove atrazine from wastewater. The optimal
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atrazine removal rate (98%) was obtained at the conditions of 75 W UV power, 10.75 g·h−1

O3 flow rate and 142.5 W ultrasound power.
Ultrasonic treatment has a strong effect on the degradation of organic substances, but

it has the problem of high energy consumption. For the degradation of aqueous atrazine,
more consideration can be given to combine ultrasonic treatment with other techniques,
such as biodegradation, electrochemistry, Fenton oxidation, etc.

4.3. Microwave

Microwave treatment is a breakthrough, innovative, and broad-spectrum water treat-
ment technique. It achieves the effect of decontamination and sterilization through the
selective heating, low-temperature catalysis, and rapid penetration by the microwave
field. The principle is that microwave heating generates efficient internal heat-transfer
by penetrating subjects and causing uniform energy distribution throughout the material
irradiated, which leads to an even chemical reaction [137]. Microwave irradiation can cause
atrazine degradation through formation of micro-scale “hot spots” on the pore wall surface
that pyrolyze the absorbed organic molecules [138].

In existing reports, microwave is often used as an auxiliary technique for the treatment
of atrazine. The earliest work was on the microwave-assisted extraction of atrazine from
soil, reported by Xiong et al. [73] in 1998. The combination of microwave (MW) power
and ultraviolet (UV) light can improve the photochemical process, thereby making the
degradation of atrazine more efficient. In 2006, Ta et al. [74] reported the degradation of
atrazine by microwave-assisted electrode less discharge mercury lamp (MW-EDML) in
aqueous solution. Microwave improved the photolysis of atrazine under UV-vis irradi-
ation, so that it was completely degraded in a relatively short time (i.e., t1/2 = 1.2 min
for 10 mg/L). Additionally, the main degradation products during atrazine degradation
process were identified by gas chromatography mass spectrometry (GC–MS) and liquid
chromatography mass spectrometry (LC–MS), according to which the degradation mecha-
nism including four possible pathways for atrazine degradation was proposed. In 2007,
Gao et al. [75] reported a method of microwave-assisted photocatalysis on TiO2 nanotubes
for the degradation of aqueous atrazine. Atrazine was completely degraded in 5 min and
the mineralization efficiency was 98% in 20 min, which superior to many other atrazine
degradation works (they cannot achieve complete atrazine degradation with the formation
of many toxic intermediates such as Deethylatrazine, Deisopropylatrazine, ammeline, etc.).
High mineralization efficiency means that atrazine was released in soluble inorganic forms
such as CO2, H2O, NH4

+ and small acids, which is beneficial to the non-toxic treatment
of wastewater. Therefore, for the degradation of atrazine, not only a high degradation
efficiency, but also a high mineralization rate is very important. In 2011, Chen et al. [139]
used a microwave photochemical reactor to degrade atrazine in the presence of hydrogen
peroxide H2O2. The optimal condition of atrazine degradation by MW/UV/H2O2 process
was 53 ◦C, 300 mg/L H2O2, MW power Pappl = 30 ± 0.3 W (half-life t1/2 = 1.1 min for
20.8 mg/L initial concentration). Comparing with other processes such as UV alone [139]
(half-life t1/2 = 9.9 min for 20 mg/L initial concentration), UV/H2O2 [140] (half-life
t1/2 = 1.2 min for 8.4 mg/L initial concentration with 343.4 mg/L H2O2) and MW/UV [139]
(half-life t1/2 = 2.2 min for 20.8 mg/L initial concentration), microwave-assisted photo-
catalytic method is better than traditional photocatalytic methods, and adding H2O2 can
achieve high-efficiency degradation of aqueous atrazine.

In addition, for traditional adsorption, its degradation efficiency highly depends on
the adsorbent, while microwave heating can modify the adsorbent to bring about highly
efficient adsorbent performance. Therefore, the adsorption and degradation of aqueous
atrazine under microwave heating has attracted attention. Hu et al. [138,141] reported
the adsorption and degradation of atrazine in transition metal-loaded microporous under
microwave induction. In 2017, Wei et al. [142] enhanced adsorption of atrazine using
a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under
microwave heating. In the same year, Sivarajasekar et al. reported a fixed-bed column
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towards sorptive removal of Atrazine from aqueous solutions using microwave irradiated
Aegle marmelos Correa fruit shell.

4.4. Ionizing Radiation (γ-Rays, Electron Beams)

In recent years, due to environmental protection, ionizing radiation treatment of
pollutants has received more and more attention. Ionizing radiation can cause displacement
of electrons from atoms and breaks in chemical bonds, and γ-rays and electron beams are
most commonly employed forms [143].

In 2009, Basfar et al. [76,77] reported the degradation of atrazine herbicide in humic
substances (HS) aqueous solutions and distilled water solutions on a laboratory scale upon
γ-irradiation from a 60Co source, which can achieve 90% degradation rate of atrazine. And
they later use γ-irradiation to degrade atrazine present in natural ground waters on a
laboratory scale.

In 2015, Khan et al. [78,144] studied the kinetics, degradation pathways, influence
of hydrated electron and radical scavengers in the degradation of aqueous atrazine by
γ-irradiation, and the degradation rate can reach 69% under optimal conditions.

In addition, electron beams induced degradation of atrazine in aqueous solution was
reported by Xu et al. [145] in 2015. Atrazine can be almost completely degraded (95%) and
completely mineralized without any residue of cyanuric acid in aqueous solution.

5. Degradation Pathways, Atrazine Mineralization and Metabolites Toxicity

The degradation of atrazine is a complex process with different pathways through
different biotic or abiotic water treatment processes. Regarding the biotic degradation pro-
cesses, there are two stages [146] (Figure 3). In the first stage, hydrolytic dichlorination and
N-dealkylation of atrazine generate cyanuric acid in the role of the enzymes that have broad
substrate specificity [147]. For hydrolytic dichlorination of atrazine, enzyme atrazine chloro-
hydrolase (AtzA) [148] or hydrolase triazine (TrzN) [149] catalyzes hydrolytic dichlorination
of atrazine, but they display substantial differences in their substrate ranges: AtzA is re-
stricted to atrazine analogs with a chlorine substituent at carbon 2 and N-alkyl groups, rang-
ing in size from methyl to t-butyl [150], and TrzN hydrolyzes a range of leaving groups (e.g.,
OCH3, –SCH3, –Cl, –F, –CN) from both triazines and pyrimidines [149]. For N-dealkylation
of atrazine, hydroxyatrazine N-ethylaminohydrolase (AtzB) [151] catalyzes the hydrolytic
conversion of hydroxyatrazine to N-isopropylammelide, and N-isopropylammelide iso-
propylaminohydrolas (AtzC) [152] catalyzes the hydrolysis of N-isopropylammelide to
cyanuric acid. In the second stage, cyanuric acid is converted to ammonium and carbon
dioxide by a set of enzymes AtzDEF [153,154] and TrzD [153,155].
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The above discussion is based on the enzymatic steps catalyzed by the gene products.
In actual operation, atrazine degradation may be achieved by a consortium of organisms
harboring the appropriate combination of enzymes, for example, the enriched mixed culture
as well as the isolated strain, designated as Arthrobacter sp. strain GZK-1, mineralized
14C-ring-labeled atrazine up to 88% to 14CO2 in a liquid culture within 14 d [156].
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In addition, for abiotic water treatment processes, as shown in Sections 2 and 3 of
this article, many advanced oxidation processes (AOPs) have been involved in the degra-
dation of atrazine in water. These AOPs can be used individually or in combination
to improve efficiency such as US/UV [71,157], US/UV/O3 [114,158], electrochemistry
(EC)/O3 [111], UV/H2O2 [159], UV/US/PS [160], UV/MW [161,162], UV/Fenton [83], etc.
Generally, AOPs rely on the in situ formation of reactive species [78], such as hydroxyl
radical (•OH) [163], sulfate radical (SO4

•−) [164,165], singlet oxygen (1O2) [132], superoxide
radical anions (O2

•−) [37], hydrated electron (eaq
−) [78] and hydrogen radical (H•) [78].

These reactive species have different redox potential and reaction selectivity. Therefore,
the degradation pathways of atrazine vary from different AOPs. The general involved
mechanisms were de-chlorination, hydroxylation of the s-triazine ring, de-alkylation of
the amino groups, oxidation of the amino groups, de-amination and the opening of the
s-triazine ring [71] (Figure 4). In most previous works [71,92,114,132,165], the final products
of atrazine degradation tend to be cyanuric acid, ammelide and ammeline, because it is
difficult to cleave the s-triazine ring [166]. At present, few studies [45,75,81,167,168] have
reported the complete mineralization of atrazine, in which s-triazine ring-cleavage pro-
duced the less toxic compound biuret [167], and biuret hydrolyzed to allophanate, followed
by the final generation of CO2, H2O, NH4

+ and small acids. The complete mineralization
of atrazine thus reduces the toxicity of the treated wastewater for subsequent release.
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Toxicity studies on atrazine degradation are still incomplete, because some atrazine metabo-
lites such as ammeline lack toxicological data. According to the book “Pesticide residues in food:
2007, toxicological evaluations”, published by the World Health Organization [169], atrazine,
and its chloro-s-triazine metabolites are of moderate or low acute oral toxicity in male rats
(LD50), 1870–3090, 1890, 2290 and 3690 mg/kg bw for ATZ, DEA, DIA and DDA, respec-
tively; and the acute oral toxicity of hydroxyatrazine in male rats (LD50, >5050 mg/kg
bw) is lower than that of atrazine or its chlorometabolites. However, toxicity comparisons
based on these LD50 values are still inaccurate, as the results of toxicity tests vary based on
different subjects (plants, animals, human cells, etc.) or different concerns (reproductive
or developmental toxicity, liver toxicity, etc.). More toxicity tests data are shown above
(Table 8). Combining these data, the following toxicity ranking can be roughly obtained:
atrazine (ATZ) > deethylatrazine (DEA) > deisopropylatrazine (DIA) > ammeline (AM) >
didealkylatrazine (DDA) > hydroxyatrazine (HA).
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Table 8. Chemical structures and toxicity tests data of atrazine and its metabolites.

Name Atrazine
(ATZ)

Deeth-
Ylatrazine

(DEA)

Deisoprop-
Ylatrazine

(DIA)

Ammeline
(AM) Cyanuric Acid

Dideal-
Kylatrazine

(DDA)

Hydroxy-
Atrazine

(HA)

Chemical
structure

Foods 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 

Toxicity studies on atrazine degradation are still incomplete, because some atrazine 
metabolites such as ammeline lack toxicological data. According to the book “Pesticide 
residues in food: 2007, toxicological evaluations”, published by the World Health Organ-
ization [169], atrazine, and its chloro-s-triazine metabolites are of moderate or low acute 
oral toxicity in male rats (LD50), 1870–3090, 1890, 2290 and 3690 mg/kg bw for ATZ, DEA, 
DIA and DDA, respectively; and the acute oral toxicity of hydroxyatrazine in male rats 
(LD50, >5050 mg/kg bw) is lower than that of atrazine or its chlorometabolites. However, 
toxicity comparisons based on these LD50 values are still inaccurate, as the results of tox-
icity tests vary based on different subjects (plants, animals, human cells, etc.) or different 
concerns (reproductive or developmental toxicity, liver toxicity, etc.). More toxicity tests 
data are shown above (Table 8). Combining these data, the following toxicity ranking can 
be roughly obtained: atrazine (ATZ) > deethylatrazine (DEA) > deisopropylatrazine (DIA) 
> ammeline (AM) > didealkylatrazine (DDA) > hydroxyatrazine (HA). 

Table 8. Chemical structures and toxicity tests data of atrazine and its metabolites. 

Name 
Atrazine 

(ATZ) 

Deeth-
Ylatrazine 

(DEA) 

Deisoprop-
Ylatrazine 

(DIA) 

Ammeline 
(AM) 

Cyanuric 
Acid 

Dideal-
Kylatrazine 

(DDA) 

Hydroxy-At-
razine (HA) 

Chemical structure 
       

Acute oral toxicity in 
male rats (LD50) [169] 

1870–3090 
mg/kg 

1890 mg/kg 2290 mg/kg   3690 mg/kg >5050 mg/kg 

Median lethal concentra-
tions (LC50) for Pseudo-

kirchneriella subcapitata in 
96 h of exposure [170] 

1600 μg/L 2000 μg/L >3000 μg/L     

Concentration for 50% of 
maximal effect (EC50) on 
algal photosynthesis for 

A. variabilis [171] 

0.1 ppm 0.7 ppm 4.7 ppm   100 ppm >100 ppm 

Acute oral toxicity in rats 
(LD50) [171]     >5000 mg/kg   

Adverse effects in sheep 
[172] 

   

An average 
daily intake 
of ammeline 
296 mg/kg 

body weight 
per day for 
42 days for 

sheep 
caused half 

death. 

No adverse 
effects at 

doses from 
198 to 600 

mg/kg body 
weight per 
day for 77 

days. 

  

In addition, Banghai Liu et.al. [90] used the ECOSAR program to predict the acute 
and chronic toxicity of atrazine and its transformation intermediates, and it was found 
that although the vast majority of detected products possessed lower toxicity compared 
to atrazine, they remained classified as very toxic compounds to aquatic organisms. 

The degradation mechanism, atrazine degradation rate, mineralization rate and main 
products are different for different treatment process. For better elaboration, the following 
discussion is based on treatment process type. 

Foods 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 

Toxicity studies on atrazine degradation are still incomplete, because some atrazine 
metabolites such as ammeline lack toxicological data. According to the book “Pesticide 
residues in food: 2007, toxicological evaluations”, published by the World Health Organ-
ization [169], atrazine, and its chloro-s-triazine metabolites are of moderate or low acute 
oral toxicity in male rats (LD50), 1870–3090, 1890, 2290 and 3690 mg/kg bw for ATZ, DEA, 
DIA and DDA, respectively; and the acute oral toxicity of hydroxyatrazine in male rats 
(LD50, >5050 mg/kg bw) is lower than that of atrazine or its chlorometabolites. However, 
toxicity comparisons based on these LD50 values are still inaccurate, as the results of tox-
icity tests vary based on different subjects (plants, animals, human cells, etc.) or different 
concerns (reproductive or developmental toxicity, liver toxicity, etc.). More toxicity tests 
data are shown above (Table 8). Combining these data, the following toxicity ranking can 
be roughly obtained: atrazine (ATZ) > deethylatrazine (DEA) > deisopropylatrazine (DIA) 
> ammeline (AM) > didealkylatrazine (DDA) > hydroxyatrazine (HA). 

Table 8. Chemical structures and toxicity tests data of atrazine and its metabolites. 

Name 
Atrazine 

(ATZ) 

Deeth-
Ylatrazine 

(DEA) 

Deisoprop-
Ylatrazine 

(DIA) 

Ammeline 
(AM) 

Cyanuric 
Acid 

Dideal-
Kylatrazine 

(DDA) 

Hydroxy-At-
razine (HA) 

Chemical structure 
       

Acute oral toxicity in 
male rats (LD50) [169] 

1870–3090 
mg/kg 

1890 mg/kg 2290 mg/kg   3690 mg/kg >5050 mg/kg 

Median lethal concentra-
tions (LC50) for Pseudo-

kirchneriella subcapitata in 
96 h of exposure [170] 

1600 μg/L 2000 μg/L >3000 μg/L     

Concentration for 50% of 
maximal effect (EC50) on 
algal photosynthesis for 

A. variabilis [171] 

0.1 ppm 0.7 ppm 4.7 ppm   100 ppm >100 ppm 

Acute oral toxicity in rats 
(LD50) [171]     >5000 mg/kg   

Adverse effects in sheep 
[172] 

   

An average 
daily intake 
of ammeline 
296 mg/kg 

body weight 
per day for 
42 days for 

sheep 
caused half 

death. 

No adverse 
effects at 

doses from 
198 to 600 

mg/kg body 
weight per 
day for 77 

days. 

  

In addition, Banghai Liu et.al. [90] used the ECOSAR program to predict the acute 
and chronic toxicity of atrazine and its transformation intermediates, and it was found 
that although the vast majority of detected products possessed lower toxicity compared 
to atrazine, they remained classified as very toxic compounds to aquatic organisms. 

The degradation mechanism, atrazine degradation rate, mineralization rate and main 
products are different for different treatment process. For better elaboration, the following 
discussion is based on treatment process type. 

Foods 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 

Toxicity studies on atrazine degradation are still incomplete, because some atrazine 
metabolites such as ammeline lack toxicological data. According to the book “Pesticide 
residues in food: 2007, toxicological evaluations”, published by the World Health Organ-
ization [169], atrazine, and its chloro-s-triazine metabolites are of moderate or low acute 
oral toxicity in male rats (LD50), 1870–3090, 1890, 2290 and 3690 mg/kg bw for ATZ, DEA, 
DIA and DDA, respectively; and the acute oral toxicity of hydroxyatrazine in male rats 
(LD50, >5050 mg/kg bw) is lower than that of atrazine or its chlorometabolites. However, 
toxicity comparisons based on these LD50 values are still inaccurate, as the results of tox-
icity tests vary based on different subjects (plants, animals, human cells, etc.) or different 
concerns (reproductive or developmental toxicity, liver toxicity, etc.). More toxicity tests 
data are shown above (Table 8). Combining these data, the following toxicity ranking can 
be roughly obtained: atrazine (ATZ) > deethylatrazine (DEA) > deisopropylatrazine (DIA) 
> ammeline (AM) > didealkylatrazine (DDA) > hydroxyatrazine (HA). 

Table 8. Chemical structures and toxicity tests data of atrazine and its metabolites. 

Name 
Atrazine 

(ATZ) 

Deeth-
Ylatrazine 

(DEA) 

Deisoprop-
Ylatrazine 

(DIA) 

Ammeline 
(AM) 

Cyanuric 
Acid 

Dideal-
Kylatrazine 

(DDA) 

Hydroxy-At-
razine (HA) 

Chemical structure 
       

Acute oral toxicity in 
male rats (LD50) [169] 

1870–3090 
mg/kg 

1890 mg/kg 2290 mg/kg   3690 mg/kg >5050 mg/kg 

Median lethal concentra-
tions (LC50) for Pseudo-

kirchneriella subcapitata in 
96 h of exposure [170] 

1600 μg/L 2000 μg/L >3000 μg/L     

Concentration for 50% of 
maximal effect (EC50) on 
algal photosynthesis for 

A. variabilis [171] 

0.1 ppm 0.7 ppm 4.7 ppm   100 ppm >100 ppm 

Acute oral toxicity in rats 
(LD50) [171]     >5000 mg/kg   

Adverse effects in sheep 
[172] 

   

An average 
daily intake 
of ammeline 
296 mg/kg 

body weight 
per day for 
42 days for 

sheep 
caused half 

death. 

No adverse 
effects at 

doses from 
198 to 600 

mg/kg body 
weight per 
day for 77 

days. 

  

In addition, Banghai Liu et.al. [90] used the ECOSAR program to predict the acute 
and chronic toxicity of atrazine and its transformation intermediates, and it was found 
that although the vast majority of detected products possessed lower toxicity compared 
to atrazine, they remained classified as very toxic compounds to aquatic organisms. 

The degradation mechanism, atrazine degradation rate, mineralization rate and main 
products are different for different treatment process. For better elaboration, the following 
discussion is based on treatment process type. 

Foods 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 

Toxicity studies on atrazine degradation are still incomplete, because some atrazine 
metabolites such as ammeline lack toxicological data. According to the book “Pesticide 
residues in food: 2007, toxicological evaluations”, published by the World Health Organ-
ization [169], atrazine, and its chloro-s-triazine metabolites are of moderate or low acute 
oral toxicity in male rats (LD50), 1870–3090, 1890, 2290 and 3690 mg/kg bw for ATZ, DEA, 
DIA and DDA, respectively; and the acute oral toxicity of hydroxyatrazine in male rats 
(LD50, >5050 mg/kg bw) is lower than that of atrazine or its chlorometabolites. However, 
toxicity comparisons based on these LD50 values are still inaccurate, as the results of tox-
icity tests vary based on different subjects (plants, animals, human cells, etc.) or different 
concerns (reproductive or developmental toxicity, liver toxicity, etc.). More toxicity tests 
data are shown above (Table 8). Combining these data, the following toxicity ranking can 
be roughly obtained: atrazine (ATZ) > deethylatrazine (DEA) > deisopropylatrazine (DIA) 
> ammeline (AM) > didealkylatrazine (DDA) > hydroxyatrazine (HA). 

Table 8. Chemical structures and toxicity tests data of atrazine and its metabolites. 

Name 
Atrazine 

(ATZ) 

Deeth-
Ylatrazine 

(DEA) 

Deisoprop-
Ylatrazine 

(DIA) 

Ammeline 
(AM) 

Cyanuric 
Acid 

Dideal-
Kylatrazine 

(DDA) 

Hydroxy-At-
razine (HA) 

Chemical structure 
       

Acute oral toxicity in 
male rats (LD50) [169] 

1870–3090 
mg/kg 

1890 mg/kg 2290 mg/kg   3690 mg/kg >5050 mg/kg 

Median lethal concentra-
tions (LC50) for Pseudo-

kirchneriella subcapitata in 
96 h of exposure [170] 

1600 μg/L 2000 μg/L >3000 μg/L     

Concentration for 50% of 
maximal effect (EC50) on 
algal photosynthesis for 

A. variabilis [171] 

0.1 ppm 0.7 ppm 4.7 ppm   100 ppm >100 ppm 

Acute oral toxicity in rats 
(LD50) [171]     >5000 mg/kg   

Adverse effects in sheep 
[172] 

   

An average 
daily intake 
of ammeline 
296 mg/kg 

body weight 
per day for 
42 days for 

sheep 
caused half 

death. 

No adverse 
effects at 

doses from 
198 to 600 

mg/kg body 
weight per 
day for 77 

days. 

  

In addition, Banghai Liu et.al. [90] used the ECOSAR program to predict the acute 
and chronic toxicity of atrazine and its transformation intermediates, and it was found 
that although the vast majority of detected products possessed lower toxicity compared 
to atrazine, they remained classified as very toxic compounds to aquatic organisms. 

The degradation mechanism, atrazine degradation rate, mineralization rate and main 
products are different for different treatment process. For better elaboration, the following 
discussion is based on treatment process type. 

Foods 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 

Toxicity studies on atrazine degradation are still incomplete, because some atrazine 
metabolites such as ammeline lack toxicological data. According to the book “Pesticide 
residues in food: 2007, toxicological evaluations”, published by the World Health Organ-
ization [169], atrazine, and its chloro-s-triazine metabolites are of moderate or low acute 
oral toxicity in male rats (LD50), 1870–3090, 1890, 2290 and 3690 mg/kg bw for ATZ, DEA, 
DIA and DDA, respectively; and the acute oral toxicity of hydroxyatrazine in male rats 
(LD50, >5050 mg/kg bw) is lower than that of atrazine or its chlorometabolites. However, 
toxicity comparisons based on these LD50 values are still inaccurate, as the results of tox-
icity tests vary based on different subjects (plants, animals, human cells, etc.) or different 
concerns (reproductive or developmental toxicity, liver toxicity, etc.). More toxicity tests 
data are shown above (Table 8). Combining these data, the following toxicity ranking can 
be roughly obtained: atrazine (ATZ) > deethylatrazine (DEA) > deisopropylatrazine (DIA) 
> ammeline (AM) > didealkylatrazine (DDA) > hydroxyatrazine (HA). 

Table 8. Chemical structures and toxicity tests data of atrazine and its metabolites. 

Name 
Atrazine 

(ATZ) 

Deeth-
Ylatrazine 

(DEA) 

Deisoprop-
Ylatrazine 

(DIA) 

Ammeline 
(AM) 

Cyanuric 
Acid 

Dideal-
Kylatrazine 

(DDA) 

Hydroxy-At-
razine (HA) 

Chemical structure 
       

Acute oral toxicity in 
male rats (LD50) [169] 

1870–3090 
mg/kg 

1890 mg/kg 2290 mg/kg   3690 mg/kg >5050 mg/kg 

Median lethal concentra-
tions (LC50) for Pseudo-

kirchneriella subcapitata in 
96 h of exposure [170] 

1600 μg/L 2000 μg/L >3000 μg/L     

Concentration for 50% of 
maximal effect (EC50) on 
algal photosynthesis for 

A. variabilis [171] 

0.1 ppm 0.7 ppm 4.7 ppm   100 ppm >100 ppm 

Acute oral toxicity in rats 
(LD50) [171]     >5000 mg/kg   

Adverse effects in sheep 
[172] 

   

An average 
daily intake 
of ammeline 
296 mg/kg 

body weight 
per day for 
42 days for 

sheep 
caused half 

death. 

No adverse 
effects at 

doses from 
198 to 600 

mg/kg body 
weight per 
day for 77 

days. 

  

In addition, Banghai Liu et.al. [90] used the ECOSAR program to predict the acute 
and chronic toxicity of atrazine and its transformation intermediates, and it was found 
that although the vast majority of detected products possessed lower toxicity compared 
to atrazine, they remained classified as very toxic compounds to aquatic organisms. 

The degradation mechanism, atrazine degradation rate, mineralization rate and main 
products are different for different treatment process. For better elaboration, the following 
discussion is based on treatment process type. 

Foods 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 

Toxicity studies on atrazine degradation are still incomplete, because some atrazine 
metabolites such as ammeline lack toxicological data. According to the book “Pesticide 
residues in food: 2007, toxicological evaluations”, published by the World Health Organ-
ization [169], atrazine, and its chloro-s-triazine metabolites are of moderate or low acute 
oral toxicity in male rats (LD50), 1870–3090, 1890, 2290 and 3690 mg/kg bw for ATZ, DEA, 
DIA and DDA, respectively; and the acute oral toxicity of hydroxyatrazine in male rats 
(LD50, >5050 mg/kg bw) is lower than that of atrazine or its chlorometabolites. However, 
toxicity comparisons based on these LD50 values are still inaccurate, as the results of tox-
icity tests vary based on different subjects (plants, animals, human cells, etc.) or different 
concerns (reproductive or developmental toxicity, liver toxicity, etc.). More toxicity tests 
data are shown above (Table 8). Combining these data, the following toxicity ranking can 
be roughly obtained: atrazine (ATZ) > deethylatrazine (DEA) > deisopropylatrazine (DIA) 
> ammeline (AM) > didealkylatrazine (DDA) > hydroxyatrazine (HA). 

Table 8. Chemical structures and toxicity tests data of atrazine and its metabolites. 

Name 
Atrazine 

(ATZ) 

Deeth-
Ylatrazine 

(DEA) 

Deisoprop-
Ylatrazine 

(DIA) 

Ammeline 
(AM) 

Cyanuric 
Acid 

Dideal-
Kylatrazine 

(DDA) 

Hydroxy-At-
razine (HA) 

Chemical structure 
       

Acute oral toxicity in 
male rats (LD50) [169] 

1870–3090 
mg/kg 

1890 mg/kg 2290 mg/kg   3690 mg/kg >5050 mg/kg 

Median lethal concentra-
tions (LC50) for Pseudo-

kirchneriella subcapitata in 
96 h of exposure [170] 

1600 μg/L 2000 μg/L >3000 μg/L     

Concentration for 50% of 
maximal effect (EC50) on 
algal photosynthesis for 

A. variabilis [171] 

0.1 ppm 0.7 ppm 4.7 ppm   100 ppm >100 ppm 

Acute oral toxicity in rats 
(LD50) [171]     >5000 mg/kg   

Adverse effects in sheep 
[172] 

   

An average 
daily intake 
of ammeline 
296 mg/kg 

body weight 
per day for 
42 days for 

sheep 
caused half 

death. 

No adverse 
effects at 

doses from 
198 to 600 

mg/kg body 
weight per 
day for 77 

days. 

  

In addition, Banghai Liu et.al. [90] used the ECOSAR program to predict the acute 
and chronic toxicity of atrazine and its transformation intermediates, and it was found 
that although the vast majority of detected products possessed lower toxicity compared 
to atrazine, they remained classified as very toxic compounds to aquatic organisms. 

The degradation mechanism, atrazine degradation rate, mineralization rate and main 
products are different for different treatment process. For better elaboration, the following 
discussion is based on treatment process type. 

Foods 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 

Toxicity studies on atrazine degradation are still incomplete, because some atrazine 
metabolites such as ammeline lack toxicological data. According to the book “Pesticide 
residues in food: 2007, toxicological evaluations”, published by the World Health Organ-
ization [169], atrazine, and its chloro-s-triazine metabolites are of moderate or low acute 
oral toxicity in male rats (LD50), 1870–3090, 1890, 2290 and 3690 mg/kg bw for ATZ, DEA, 
DIA and DDA, respectively; and the acute oral toxicity of hydroxyatrazine in male rats 
(LD50, >5050 mg/kg bw) is lower than that of atrazine or its chlorometabolites. However, 
toxicity comparisons based on these LD50 values are still inaccurate, as the results of tox-
icity tests vary based on different subjects (plants, animals, human cells, etc.) or different 
concerns (reproductive or developmental toxicity, liver toxicity, etc.). More toxicity tests 
data are shown above (Table 8). Combining these data, the following toxicity ranking can 
be roughly obtained: atrazine (ATZ) > deethylatrazine (DEA) > deisopropylatrazine (DIA) 
> ammeline (AM) > didealkylatrazine (DDA) > hydroxyatrazine (HA). 

Table 8. Chemical structures and toxicity tests data of atrazine and its metabolites. 

Name 
Atrazine 

(ATZ) 

Deeth-
Ylatrazine 

(DEA) 

Deisoprop-
Ylatrazine 

(DIA) 

Ammeline 
(AM) 

Cyanuric 
Acid 

Dideal-
Kylatrazine 

(DDA) 

Hydroxy-At-
razine (HA) 

Chemical structure 
       

Acute oral toxicity in 
male rats (LD50) [169] 

1870–3090 
mg/kg 

1890 mg/kg 2290 mg/kg   3690 mg/kg >5050 mg/kg 

Median lethal concentra-
tions (LC50) for Pseudo-

kirchneriella subcapitata in 
96 h of exposure [170] 

1600 μg/L 2000 μg/L >3000 μg/L     

Concentration for 50% of 
maximal effect (EC50) on 
algal photosynthesis for 

A. variabilis [171] 

0.1 ppm 0.7 ppm 4.7 ppm   100 ppm >100 ppm 

Acute oral toxicity in rats 
(LD50) [171]     >5000 mg/kg   

Adverse effects in sheep 
[172] 

   

An average 
daily intake 
of ammeline 
296 mg/kg 

body weight 
per day for 
42 days for 

sheep 
caused half 

death. 

No adverse 
effects at 

doses from 
198 to 600 

mg/kg body 
weight per 
day for 77 

days. 

  

In addition, Banghai Liu et.al. [90] used the ECOSAR program to predict the acute 
and chronic toxicity of atrazine and its transformation intermediates, and it was found 
that although the vast majority of detected products possessed lower toxicity compared 
to atrazine, they remained classified as very toxic compounds to aquatic organisms. 

The degradation mechanism, atrazine degradation rate, mineralization rate and main 
products are different for different treatment process. For better elaboration, the following 
discussion is based on treatment process type. 

Acute oral
toxicity in male

rats (LD50)
[169]

1870–3090
mg/kg 1890 mg/kg 2290 mg/kg 3690 mg/kg >5050 mg/kg

Median lethal
concentrations
(LC50) for Pseu-
dokirchneriella
subcapitata in

96 h of
exposure [170]

1600 µg/L 2000 µg/L >3000 µg/L

Concentration
for 50% of

maximal effect
(EC50) on algal
photosynthesis
for A. variabilis

[171]

0.1 ppm 0.7 ppm 4.7 ppm 100 ppm >100 ppm

Acute oral
toxicity in rats

(LD50) [171]
>5000 mg/kg

Adverse effects
in sheep [172]

An average
daily intake of

ammeline
296 mg/kg

body weight
per day for
42 days for

sheep caused
half death.

No adverse
effects at doses

from 198 to
600 mg/kg

body weight
per day for

77 days.

In addition, Banghai Liu et.al. [90] used the ECOSAR program to predict the acute
and chronic toxicity of atrazine and its transformation intermediates, and it was found
that although the vast majority of detected products possessed lower toxicity compared to
atrazine, they remained classified as very toxic compounds to aquatic organisms.

The degradation mechanism, atrazine degradation rate, mineralization rate and main
products are different for different treatment process. For better elaboration, the following
discussion is based on treatment process type.

As Table A1 shows, generally, different methods can achieve high degradation rates
(>90%) of atrazine by filtering the optimal conditions, but the treatment time needed
and atrazine degrading capacity vary. Figure 5 is a comparison of treatment time and
atrazine product distribution of different methods based on the data listed in Table A1.
We can see that the processing time required for biodegradation is significantly more than
other methods, while HVED and Fenton/Fenton-like method take less time (Figure 5a).
In addition, ring cleavage can be achieved by microbial degradation as well as HVED
(Figure 5b). Compared with the Fenton method, HVED has the advantages of short
processing time, high atrazine degrading capacity and low toxic product distribution.
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6. Conclusions

As a widely used herbicide, atrazine is widely sprayed on many crops. Atrazine
remaining in agri-food can cause physiological toxicity for a long time if it is ingested by
humans. Additionally, because of chemical stability, atrazine in agri-food washing water
flows into surface or groundwater and persists to be difficult to degrade. It is therefore of
significant interest to develop clean and economical degradation processes for atrazine.

At present, biological processes are the common methods for the degradation of aque-
ous atrazine due to environmental protection, but biodegradation has its own limitations,
such as slow degradation kinetics, and low remediation efficiency. Therefore, many studies
have been focused on more highly efficient treatment technologies of aqueous atrazine, es-
pecially advanced oxidation processes (AOPs) that generate powerful nonspecific oxidant,
hydroxyl radicals OH. Previous research reported the treatment of aqueous atrazine using
·OH generated by physicochemical methods and chemical methods. In these methods, a
single technology processing or a co-processing of two or more technologies will be used,
and often the latter can achieve a more ideal degradation rate. In addition to pursuing
a high atrazine degradation rate, it is also significant to improve the degradation ability
to achieve full mineralization. Therefore, more and more innovative technologies have
been investigated, especially High Voltage Electrical Discharge (HVED). However, these
new methods for the degradation of atrazine are still being explored, and further research
is needed.
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Appendix A

Table A1. Comparison of different methods (degradation mechanism, atrazine degradation rate, atrazine mineralization rate and main products).

Method Degradation
Mechanism

Strain/Plant/Generated
Reactive Species

Initial Atrazine
Concentration and

Some Notes
Treatment Time Atrazine

Degradation Rate
Atrazine Degrading

Capacity Products References

Microbial
Degradation

Microbes’ express
atrazine-degrading

enzymes that
degrade atrazine.

Chelatobacter heintzii
Cit1

The initial atrazine
concentration is 0.5 mg

per kg of soil. The
bacteria described were

isolated from
12 cultivated and

grassland soils from
different areas in France.

131 days

No residual atrazine
detected

Ring cleavage CO2, H2O . . .

[153]

Chelatobacter heintzii
Sal1-3

Chelatobacter heintzii
LR3-3

Chelatobacter heintzii
LRA

Chelatobacter heintzii
SalB

Chelatobacter heintzii
Lous2-3 56% Dechlorination Dechlorination

products

Chelatobacter heintzii
Sal2

No residual atrazine
detected

Dechlorination Dechlorination
products

Pseudomonas sp.
ADP Ring cleavage CO2, H2O . . .

Arthrobacter
cristallopoietes Cit2 Cyanuric acid

production Cyanuric acid
Nocardioides sp. SP12
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Table A1. Cont.

Method Degradation
Mechanism

Strain/Plant/Generated
Reactive Species

Initial Atrazine
Concentration and

Some Notes
Treatment Time Atrazine

Degradation Rate
Atrazine Degrading

Capacity Products References

Phytodegradation

Phytoextraction:
atrazine in soil and
groundwater can be
taken up inside plant
tissues; Phytotrans-
formation: atrazine
inside plant tissues
can be transformed
by plant enzymes;
Rhizoremediation:

pollutants in soil can
be degraded by
microbes in the

root zone.

Tall fescue
Ryegrass

Barley
Maize

49 days after planting,
the soils were spiked

with aqueous solutions
of atrazine to achieve
concentrations of 2, 5

and 10 mg of atrazine per
kg of soil. The plants
were harvested after

65 days, that is, 16 days
after atrazine application.

16 days

88.6–96.7%

Dealkylation DIA and DEA [173]

96.6–99.6%

96.4–99.4%

97.2–98.6%

Fenton/Fenton-like
Method

H2O2 reacts with
Fe2+ to generate
reactive radicals

•OH, which degrade
atrazine.

•OH

The optimal mixture,
2.69 mM (1:1)

FeSO4:H2O2, degraded
[2,4,6-14C]-atrazine

(140 µmol).

≤30 s 100% Dealkylation DDA [174]

The photo-Fenton
process: 10 mg/L

atrazine was degraded,
using 1 g/L

Heterogeneous Fenton
catalyst Fe/TiO2, 1.6 mM

H2O2 and pH = 3. The
light intensity at 420 nm

was 30 W/m2.

30 min 95% Ring cleavage (TOC
removal rate 18%)

DDA, Cyanuric acid
. . . [81]

The initial concentration
of atrazine was
23 µmol/L. The

electro-Fenton process:
the simultaneous

reduction in ferric ions
and oxygen at a simple
electrode allowed the

subsequent production
of •OH.

4 h 100% Dealkylation DDA [29]
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Table A1. Cont.

Method Degradation
Mechanism

Strain/Plant/Generated
Reactive Species

Initial Atrazine
Concentration and

Some Notes
Treatment Time Atrazine

Degradation Rate
Atrazine Degrading

Capacity Products References

Sulfate Radical
(SO4

•−) Oxidation

With the activation
of persulfate (PS),

sulfate radical
(SO4

•−) can be
generated by the
cleavage of O–O

bond of PS.
Meanwhile, SO4

•−

could react with
water and OH− to
produce hydroxyl

radicals (•OH).

SO4
•− and •OH

The initial concentration
of atrazine was

50 µmol/L. Copper
sulfide (CuS)/
persulfate (PS)

40 min 91.6%

Dealkylation and
Dechlorination AM

[93]

The initial concentration
of atrazine was

10 mmol/L. Magnetite
Fe3O4-sepiolite/
persulfate (PS)

1 h 72.3% [95]

The initial concentration
of atrazine was 20 mg/L.

Pyrite (FeS2) /
persulfate (PS)

45 min 100 % [37]

High Voltage
Electrical Discharges

(HVED)

HVED can not only
generate radical

species, such as •OH,
HO2

•, and H•, ions,
and free electrons

(e−), but also
generate physical

agents, such as UV,
shock waves,

and heat.

•OH

The initial concentration
of atrazine was

11.9 mg/L. Dielectric
barrier discharge (DBD)

18 min 93.7% Ring cleavage (TOC
removal rate 12.7%)

Dechlorination
products, CO2, H2O

. . .
[67]

Ultrasound (US)

The high energy
generated by the

collapse of the
ultrasonic cavitation
bubble leads to the

generation of
hydroxyl radicals

(•OH) and hydrogen
radicals (•H).

•OH

The initial concentration
of atrazine was

0.1 mmol/L. Ultrasound
frequency: 500 kHz

80 min 100% Dealkylation DEA, DIA, DDA [70]
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