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Abstract: Recent advances in nuclear magnetic resonance (NMR) have led to the development
of low-field benchtop NMR systems with improved sensitivity and resolution suitable for use in
research and quality-control laboratories. Compared to their high-resolution counterparts, their
lower purchase and running costs make them a good alternative for routine use. In this article, we
show the adaptation of a method for predicting the consumer acceptability of mandarins, originally
reported using a high-field 400 MHz NMR spectrometer, to benchtop 60 MHz NMR systems. Our
findings reveal that both instruments yield comparable results regarding sugar and citric acid levels,
leading to the development of virtually identical predictive linear models. However, the lower cost
of benchtop NMR systems would allow cultivators to implement this chemometric-based method as
an additional tool for the selection of new cultivars.
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1. Introduction

Since the early days of nuclear magnetic resonance (NMR), considerable efforts have
been invested to increase sensitivity and spectral resolution through the use of magnets
with stronger fields. These endeavors have gone hand in hand with the development of
novel superconducting materials and cryogenic technologies [1]. However, these systems
are generally expensive and have high running and maintenance costs, driving many NMR
spectrometer manufacturers to develop smaller and more accessible systems based on
cryogen-free permanent magnets. These low-field instruments have magnetic fields below
2.3 T (i.e., 1H resonance frequencies under 100 MHz), fit on a regular laboratory benchtop,
and are even suitable for use in field experiments [2,3]. The basis of these instruments is
the use of rare-earth ring-shaped magnets that produce relatively strong and homogeneous
fields [3]. Their lower sensitivity can sometimes be offset by concentrating the samples
or using a variety of methodologies for the enhancement of Boltzmann polarization [4].
Similarly, issues with chemical shift resolution can be addressed through the application of
different signal acquisition and processing techniques, including solvent suppression and
gradient-based pulse sequences [3,5].

Although low-field benchtop NMR spectrometers may not be suitable for natural
product research due to their lower sensitivity and resolution, they have been used suc-
cessfully in the quality control of phytopharmaceuticals and in food analysis, to mention
a few examples [6]. In academia, the use of benchtop NMR is increasing progressively.
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The low operating costs and ease of use of these instruments allow students not only
to control their research products, but to follow chemical reactions in real time or even
perform quantitative analyses [6–9]. Indeed, the quantitation of natural products using
benchtop NMR has been employed in the quality control of drugs [10] and for the detection
of adulterations in pharmaceutical products [11,12]. The use of low-field NMR in routine
quality control of foods has also been demonstrated [6]. Examples of such applications
include the determination of alcohol content in beverages [13] and the study of food au-
thenticity and food fraud by targeted and untargeted analysis, where wine, coffee, oils, or
even meat are examples [14–18]. For certain products, subdisciplines have been developed
to study metabolomic profiles. For example, the term “MEATabolomics” refers to the
application of metabolomic analysis to correlate the composition of meat with its sensory
attributes [19,20].

In food analysis, untargeted approaches are preferred when trying to discover flavor-
related compounds, which are followed with targeted analyses to measure the content of
specific compounds or study metabolic pathways of interest [21,22]. Citrus metabolomics
has been emerging in the last few years to control industrial processes or to evaluate
flavor traits that influence consumer preferences [23–25]. However, little research has been
conducted to adapt high-field NMR techniques to low-field systems. As stated by Castaing-
Cordier and coworkers [26], benchtop instruments can be used in many applications due to
recent advances in terms of sensitivity and resolution. Recently, we proved the usefulness
of high-field NMR to predict consumer preferences in mandarins. Although interesting
from an academic point of view, the high cost of the 400 MHz spectrometer employed in the
study hampers its application by the local citrus industry [25]. The aim of the present work
is to show an updated protocol for the analysis of mandarin consumer preferences using
benchtop NMR systems that could be accessible to citrus fruit cultivators. As shown herein,
our results indicate that chemometric-based consumer acceptability models of identical
quality can be obtained regardless of magnetic field.

2. Materials and Methods

The samples used in the comparisons were a selection of aqueous mandarin extracts
obtained during the development of the original method at 400 MHz [25]. Five extract
replicates for each mandarin variety were lyophilized and stored under nitrogen in sealed
containers until analysis. They were then dissolved in 600 µL of deuterium oxide (Magni-
Solv™, 99.9% D, Merck, Darmstadt, Germany), transferred to 5 mm NMR tubes (Norell®

Standard SeriesTM Sigma-Aldrich, Darmstadt, Germany) and analyzed immediately.
A Bruker Avance III 400 spectrometer (Bruker, Ettlingen, Germany) was used to

perform the high-field NMR experiments, while a Magritek Spinsolve 60 benchtop NMR
spectrometer (Magritek GmbH, Aachen, Germany) was used to obtain the data at the
low field. The 400 MHz spectra were obtained at a 1H frequency of 400.13 MHz using a
z-gradient BBFO-Plus probe (298 K). Spectra were recorded using a spectral width of 8 KHz,
a data size of 32 K, and using a 30◦ excitation pulse. A total 64 scans with a relaxation delay
of 1 s between scans were averaged, leading to an analysis time of 4.1 min per sample. The
60 MHz data were obtained at room temperature using a 1H frequency of 62.32 MHz, a
spectral width of 5 KHz, a data size of 32 K, and using a 90◦ excitation pulse. A total of
256 scans with a relaxation delay of 1 s between scans were averaged in this case, resulting
in a total analysis time of 64.0 min per sample.

All spectra were processed using MNova (version 11.0, MestreLab Research, S.L.,
Santiago de Compostela, Spain) following an identical protocol, which included zero filling
to 64 K and apodization with a 0.3 Hz exponential window function prior to Fourier
transformation, manual phase and baseline correction, and referencing to the signal of
the anomeric proton of α-glucose at 5.22 ppm. The spectra were then aligned using the
derivative method and the average spectrum as a reference [27].

Once all spectra were aligned, the integral of the signal belonging to the sucrose
glucosyl anomeric proton at 5.40 ppm was given an arbitrary value of 1.00. Then, the areas



Foods 2022, 11, 0 3 of 8

of the signals corresponding to the anomeric protons of α-glucose at 5.22 ppm, β-glucose at
4.63 ppm, and the multiplet arising from the H-3 and H-4 protons of the β-furanose form
of fructose at 4.09 ppm, together with the four citric acid methylene protons centered at
approximately 2.8 ppm, were scaled to that of the sucrose signal. The integration ranges for
the sugar signals mentioned above were, respectively, 5.54 to 5.32, 5.29 to 5.16, 4.63 to 4.53,
and 4.10 to 4.07 ppm in both instruments. Due to slight differences in the temperature of
the experiments, the citrate signals were integrated from 3.02 to 2.73 ppm in the high-field
spectrometer, and between 2.81 and 2.54 ppm on the benchtop instrument.

The relative area values were corrected using the sweetness scale of Schiffman and
coworkers [28,29], being 1.0 for sucrose, 1.3 for fructose and 0.6 for α- and β-glucose. The
ratio sweetening power/citric acid was calculated as follows, where n represents each of
the sugars considered:

∑n(Sugar sweetness × Sugar content)n

Citric acid content
(1)

The correlation between the mandarin acceptability and the sweetening power/citric
acid ratio was determined using the same mandarin varieties for both spectrometer systems,
the R2 of the regressions was determined and the root mean square error (RMSE) of each
model was calculated.

3. Results and Discussion

Figure 1 shows spectra obtained at 400 and 60 MHz for the same aqueous extract,
respectively. Given its higher resolution, the spectrum obtained at 400 MHz allows for the
identification of most protons from the species of interest. On the other hand, several of
these signals appear overlapped at 60 MHz, making the initial assignment of resonances a
harder task that requires technical know-how.

However, the signals corresponding to the sugar anomeric protons and citric acid
methylene protons of interest are in relatively uncluttered regions of the spectrum, and
therefore their identification and quantitation is achievable. Indeed, if the selection of
the integration ranges is rigorous and consistent with those employed at the high field,
the integration of the signals corresponding to anomeric protons of sucrose, glucose, and
fructose, as well as the citric acid methylene protons, allows us to apply the methodology
developed previously [25] to predict the acceptability of the mandarin samples (Table 1).

Table 1. Results of the sensory evaluation (acceptability), sweetening power/citric acid ratio,
predicted acceptability using the model and RMSE of the prediction of each model (60 and
400 MHz data).

Variety Acceptability

60 MHz 400 MHz

Sweetening
Power/Citric

Acid *

Predicted
Acceptability RMSE

Sweetening
Power/Citric

Acid *

Predicted
Acceptability RMSE

B475B 7.4 10.85 6.88

0.29

9.31 6.76

0.35
F7P3 6.9 11.53 7.21 10.12 7.27

B475A 5.5 8.45 5.72 7.70 5.75

B79 4.8 6.75 4.89 6.34 4.90

M16 3.6 3.88 3.50 4.16 3.53

* The reported values correspond to the average of 5 replicates. The RSD was less than 20% for all the varieties analyzed.
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Figure 1. Comparison of 1H spectra of the aqueous extract of mandarin variety B475B obtained with
400 and 60 MHz spectrometers ((a) and (b), respectively). Resonances employed in the estimations
are annotated in the 400 MHz spectrum. The grayed-out region in both spectra corresponds to the
residual HDO peak.

The sweetness/citric acid ratio of the samples determined at the two frequencies
considered had high correlation (R2 > 0.99, Figure 2), showing the equivalence of both
systems and their fitness for the intended purpose of the method.

It is then possible to study the correlation between the acceptability of the mandarin
samples determined by consumers and the sweetening power/citric acid ratio obtained
using the 60 and 400 MHz systems (Figure 3). Using this set of data, a linear regression
model with an R2 of 0.94 and an RMSE of 0.35 was obtained using data recorded at 400 MHz.
The corresponding regression parameters of the linear model derived using sugar and citric
acid concentrations determined with the 60 MHz instrument were 0.96 and 0.29, indicating
that acceptability prediction models of similar quality were obtained regardless of the
instrument employed in their development.

In addition, the correlation between the predicted acceptability using both models
was very high (R2 > 0.99), further proving the equivalence of the models derived from the
two instrumental systems (Figure 4).

It is worth pointing out that although models derived from data at 400 and 60 MHz
are of the same predictive quality, special attention is needed when identifying and inte-
grating data in the low-field instrument. As stated earlier and shown in Figure 1, there
is considerable signal overlap in the 3.00 to 4.30 ppm region and expertise is required to
assign peaks and process these spectra accurately.
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Figure 2. Correlation between the measurement of the sweetness/citric acid ratio of the samples
obtained at 400 and 60 MHz.
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Figure 3. Correlation between consumer acceptability and sweetening power/citric acid determined
using 60 and 400 MHz data (blue triangles and orange circles, respectively).

Conversely, and due to the lower resolution of low-field instruments, the variations
in the chemical shifts of sugar signals with pH have less impact on spectra recorded at
60 MHz [30]. This makes spectral referencing and alignment simpler in these instruments.
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4. Conclusions

As demonstrated above, low-field NMR systems can be employed in the develop-
ment of consumer acceptability prediction models that have identical quality to those
derived from high-field NMR data. The lower purchase and running costs of benchtop
spectrometers makes these chemometric-based tools more accessible for routine inclusion
in fruit breeding programs, such as the Uruguayan Programa Nacional de Investigación en
Producción Citrícola. Furthermore, the continuing advances in benchtop NMR instruments,
which include the implementation pure shift pulse sequences, solvent suppression tech-
niques, and multidimensional and multinuclear methods, will facilitate their application to
other fields of food analysis and metabolomics.
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