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Abstract: The evaluation of mutton adulteration faces new challenges because of mutton flavour
essence, which achieves a similar flavour between the adulterant and mutton. Hence, methods for
classifying and quantifying the adulterated mutton under the effect of mutton flavour essence, based
on near-infrared hyperspectral imaging (NIR-HSI, 1000–2500 nm) combined with machine learning
(ML) and sparrow search algorithm (SSA), were proposed in this study. After spectral preprocessing
via first derivative combined with multiple scattering correction (1D + MSC), classification and
quantification models were established using back propagation neural network (BP), extreme learning
machine (ELM) and support vector machine/regression (SVM/SVR). SSA was further used to explore
the global optimal parameters of these models. Results showed that the performance of models
improves after optimisation via the SSA. SSA-SVM achieved the optimal discrimination result, with
an accuracy of 99.79% in the prediction set; SSA-SVR achieved the optimal prediction result, with an
RP

2 of 0.9304 and an RMSEP of 0.0458 g·g−1. Hence, NIR-HSI combined with ML and SSA is feasible
for classification and quantification of mutton adulteration under the effect of mutton flavour essence.
This study can provide a theoretical and practical reference for the evaluation and supervision of
food quality under complex conditions.

Keywords: food additive; mutton adulteration; near-infrared hyperspectral imaging; sparrow search
algorithm; machine learning

1. Introduction

Mutton is a widely consumed meat around the world because of its high content of
vitamins, proteins and trace elements, such as calcium, phosphorus and iron, which are
needed by the human body [1–3]. Some unscrupulous merchants adulterate mutton with
pork and additives to increase their profits because of the high price of mutton. Mutton
flavour essence is a representative additive in the market that provides pork with a strong
mutton flavour. This essence will release benzene, phenol and other toxic substances in
the heating process that can cause serious harm to the health of consumers [4,5]. At the
same time, the mutton flavour essence used for adulteration will seriously interfere with
common discriminant results. At present, studies on the detection of mutton adulteration
with pork under the effect of mutton flavour essence are lacking. This phenomenon harms
both the interests and physical health of consumers [6]. Therefore, the evaluation of mutton
adulteration with pork under the effect of mutton flavour essence is increasingly important.

Existing detection methods of meat adulteration mainly include sensory test, chro-
matographic analysis [7,8], immune analysis [9,10], DNA analysis [11,12] and electronic
nose/taste [13,14]. Sensory tests have been unable to meet the need whilst other detection
methods present high technical requirements and complex operation with the improvement
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in adulteration methods. In recent years, spectral technology has been widely used in
adulteration detection of meat and meat products due to its simple and fast operation and
non-destructive characteristics [15,16]. Near-infrared hyperspectral imaging (NIR-HSI) is
a three-dimensional information acquisition technology combining spectral and image
technology [17]. NIR-HSI has been applied to detect food adulteration, in particular, for
meat products [18,19], such as pork lung in pork [20], jowl meat in pork [21] and ternary
adulteration [22]. These reports mainly focus on pure meat adulteration. A variety of food
additives are also mixed into meat to interfere with the detection because of the diversi-
fication of methods for meat adulteration. Note that meat detection under the effect of
food additives has been reported. Nunes et al. [23] detected adulterated beef with multiple
water-retaining agents based on mid-infrared spectroscopy and successfully distinguished
adulterated beef. However, the detection of mutton adulteration under the effect of mutton
flavour essence by hyperspectral means has not been reported. Hence, NIR-HSI was used
to detect the adulteration of pork under the effect of mutton flavour essence in this paper.

The data analysis and modelling mainly depend on machine learning (ML) methods.
Support vector machine (SVM), back propagation neural network (BP) and extreme learning
machine (ELM) have been widely used in the detection of meat and adulteration [16,24–27].
The uses of new algorithms to optimise parameters and their combination with practical
problems have become an important research direction for machine learning in recent
years [28–30]. Quantum particle swarm optimisation (QPSO) was used to improve SVM in
evaluating meat freshness [31]. An improved AdaBoost-BP model was applied to the rapid
detection of mutton freshness [32]. Genetic algorithm (GA) was utilised to improve ELM for
the identification of mutton parts [33]. Although these algorithms improve the performance
of the model, they still present limitations, such as falling into the local optimal solution.

A swarm intelligence optimisation algorithm, named sparrow search algorithm (SSA),
was proposed in 2020 to overcome the problem of traditional algorithms falling into the
local optimum [34]. Compared with other common algorithms, SSA demonstrates the
advantages of high precision, fast convergence, enhanced stability and robustness [34]. SSA
was used for the optimisation of the model for detection [35–37]. SSA was used to optimise
BP combined with hyperspectral means to detect protein content in milk rapidly; the results
showed that its performance was superior to that of other methods [38]. However, the
application of the SSA improved the model in meat adulteration, though detection remains
unverified. Therefore, ML models are optimised by SSA for classification and quantification
of adulterated mutton under the effect of mutton flavour essence.

In this study, the feasibility of near-infrared hyperspectral imaging combined with
machine learning and sparrow search algorithm for evaluating adulterated mutton with
pork under the effect of mutton flavour essence was explored. This study aims to: (1) ac-
quire the spectral information of mutton, pork and adulterated mixture under the effect
of mutton flavour essence using NIR-HSI; (2) establish classification models based on BP,
ELM and SVM; (3) establish quantification models based on BP, ELM and SVR; (4) use
SSA to optimise parameters in the classification and quantification models and select the
optimum models by comparing the classification and quantification results.

2. Materials and Methods
2.1. Sample Preparation

Fresh mutton from the hind leg and fresh pork from three parts (front leg, hind leg and
back) were used as meat sources in this study. The addition of different parts of pork can
expand the scope of application and improve the generalization of the model. All meat was
purchased from a local supermarket in Shihezi City, Xinjiang, and met national quarantine
standards. The experimental meat was transported to the laboratory in an incubator at
4 ◦C. The processed meat was minced and mixed evenly with a meat-mincing machine
(JYS-A900, Joyoung Co., Ltd., Zhejiang, China) for 30 s after the removal of evident fat and
skin. The mutton flavour essence (Xianghaisheng Co., Ltd., Shandong, China) was weighed
at a dosage of 3 g per kilogram of pork according to food safety regulations and then added
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into distilled water to prepare the solvent with a concentration of 0.05 g/mL. After that,
the minced pork was added into the solvent and soaked for 20 min to mix fully. Then, the
minced pork with mutton flavour essence was obtained after removing residue solvents
on the surface. The minced pork from three parts with mutton flavour essence was mixed
into the minced mutton in different proportions (5, 10, 15, 20, 30 and 40%) by weight to
prepare the adulterated mutton samples. Fully mixed samples were placed in a Petri dish
with a diameter of 6 cm for compaction and samples with smooth surface were obtained. A
total of 144 adulterated samples were prepared for quantification, with 8 samples of each
proportion in each part (8 × 6 × 3 = 144). Meanwhile, 24 pork samples from three parts
(8 samples in each part) and 24 mutton samples were prepared using the same method. In
total, 192 samples (24 + 24 + 144 = 192) in three categories were prepared for qualification.
The prepared samples were stored in a refrigerator at −5 ◦C until detection. A diagram of
sample preparation process is shown in Figure 1a.

Foods 2022, 11, x FOR PEER REVIEW 3 of 15 
 

 

quarantine standards. The experimental meat was transported to the laboratory in an in-

cubator at 4 °C. The processed meat was minced and mixed evenly with a meat-mincing 

machine (JYS-A900, Joyoung Co., Ltd., Zhejiang, China) for 30 s after the removal of evi-

dent fat and skin. The mutton flavour essence (Xianghaisheng Co., Ltd., Shandong, China) 

was weighed at a dosage of 3 g per kilogram of pork according to food safety regulations 

and then added into distilled water to prepare the solvent with a concentration of 0.05 

g/mL. After that, the minced pork was added into the solvent and soaked for 20 min to 

mix fully. Then, the minced pork with mutton flavour essence was obtained after remov-

ing residue solvents on the surface. The minced pork from three parts with mutton flavour 

essence was mixed into the minced mutton in different proportions (5, 10, 15, 20, 30 and 

40%) by weight to prepare the adulterated mutton samples. Fully mixed samples were 

placed in a Petri dish with a diameter of 6 cm for compaction and samples with smooth 

surface were obtained. A total of 144 adulterated samples were prepared for quantifica-

tion, with 8 samples of each proportion in each part (8 × 6 × 3 = 144). Meanwhile, 24 pork 

samples from three parts (8 samples in each part) and 24 mutton samples were prepared 

using the same method. In total, 192 samples (24 + 24 + 144 = 192) in three categories were 

prepared for qualification. The prepared samples were stored in a refrigerator at −5 °C 

until detection. A diagram of sample preparation process is shown in Figure 1a. 

 

Figure 1. Schematic representation of sample preparation (a), NIR-HSI system (b) and spectral ac-

quisition (c). (A) CCD camera; (B) imaging spectrograph; (C) light source; (D) electric moving stage; 

(E) sample; (F) light source controller; (G) computer and sample image. ROI: region of interest. NIR-

HSI: near-infrared hyperspectral imaging. 

2.2. Acquisition and Calibration of NIR-HSI Images 

A liner scanning near-infrared hyperspectral imaging system was used in this study. 

It can produce 288 wavelengths in a spectral range of 1000–2500 nm. Figure 1b shows that 

the system consists of a spectrograph (ImSpector N25E 2/3, Spectral Imaging Ltd. Oulu, 

Finland), a CCD camera (Zephir-2.5-320, Photon Ltd., Montreal, Canada), a moving stage 

driven by a stepper motor, lighting sources (150 W), a computer and a monitor. Light 

intensity, exposure time, speed of the moving stage, illuminating angle of the light source 

Figure 1. Schematic representation of sample preparation (a), NIR-HSI system (b) and spectral
acquisition (c). (A) CCD camera; (B) imaging spectrograph; (C) light source; (D) electric moving
stage; (E) sample; (F) light source controller; (G) computer and sample image. ROI: region of interest.
NIR-HSI: near-infrared hyperspectral imaging.

2.2. Acquisition and Calibration of NIR-HSI Images

A liner scanning near-infrared hyperspectral imaging system was used in this study.
It can produce 288 wavelengths in a spectral range of 1000–2500 nm. Figure 1b shows that
the system consists of a spectrograph (ImSpector N25E 2/3, Spectral Imaging Ltd. Oulu,
Finland), a CCD camera (Zephir-2.5-320, Photon Ltd., Montreal, Canada), a moving stage
driven by a stepper motor, lighting sources (150 W), a computer and a monitor. Light
intensity, exposure time, speed of the moving stage, illuminating angle of the light source
and the height of lens were set to 100, 4 s, 62.77 mm/s, 60◦ and 170 mm, respectively, to
obtain the real proportion of image size and high spatial resolution. Samples were placed
on black cardboard as the background during the acquisition process. The experiment was
carried out at 26 ± 1 ◦C and 30 ± 5% relative humidity.

The system was preheated for 30 min before image acquisition. Samples were then
taken out of the refrigerator and left to warm to room temperature for 5 min. Sample
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images needed to be corrected with the standard black (with lens cover) and white reference
(PTFE standard whiteboard) to reduce noise and external interference factors according
to Equation (1):

I =
IR − IB
IW − IB

, (1)

where I is the calibrated image data, IR is the original hyperspectral image data, IW is the
full-white calibration image data and IB is the full-black calibration image data acquired
after closing the camera with the lens cover.

2.3. Spectral Acquisition

The meat was separated from the background of the near-infrared hyperspectral image
of the sample and the region of interest (ROI) was determined via image segmentation
method [39]. ENVI 4.7 (Exelis Visual Information Solutions Ltd., Boulder, CO, USA) was
used to process the original hyperspectral image and eliminate the interference. Firstly,
backgrounds and shadows of samples were transformed to black using band subtraction
and mask method. Fats and bright spots in samples were then highlighted through band
addition and removed via mask method and binary processing. The pure muscle part of the
samples was obtained after processing. Sample data were expanded to avoid under-fitting
or over-fitting caused by insufficient data. Spectral data for each pixel were extracted
according to the vertical direction of the ROI and randomly combined and divided into
10 blocks in equal proportion. The average spectrum of each block was extracted as the
representative data of the sample. Lastly, 10 spectra were obtained for each sample and
1920 spectra were obtained for 192 samples. A wavelength of 1000–2445 nm was selected
for analysis because the spectral noise after 2445 nm was high. The spectral acquisition is
shown in Figure 1c.

2.4. Spectral Data Preprocessing

A certain amount of noise and interference information was generated due to ex-
ternal factors during the data acquisition [40]. Hence, preprocessing the original spectra
is necessary. Spectral preprocessing can be divided into baseline correction, scattering
correction, smoothing and scaling [41]. Baseline correction can eliminate the influence
of instrument background or drift on signal. Scattering correction is used to remove the
scattering effect caused by uneven distribution of particles. Smoothing can eliminate ran-
dom noise and scaling can weaken data-scale difference. According to the characteristics
of background interference and uneven distribution of sample particles in this study, the
method of first derivative (1D) and multiple scattering correction (MSC) was selected as
the spectral preprocessing method.

2.5. Model Establishment and Evaluation
2.5.1. Modelling Methods

Back propagation neural network (BP) is a multi-layer feed-forward network algorithm
based on error back propagation that presents high self-learning and adaptive ability [42].
It mainly realizes nonlinear mapping between input and output through learning. The
number of hidden layers and the number of neurons in each layer can be set according to
different situations and the performance varies with the structure.

Extreme learning machine (ELM) is a kind of machine learning method based on
feed-forward neural network (FNN) and usually applied to supervised and unsupervised
learning [43]. The weight of hidden layer nodes is selected randomly or artificially and does
not need to be updated. The learning process presents advantages of strong generalization
ability and fast calculation speed because it only calculates the output weight.

Support vector machine (SVM) is a supervised machine learning algorithm that de-
termines the optimal separation hyperplane in the feature space to maximise the sample
interval in the calibration set to avoid dimension disaster to some extent [44]. SVM can
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solve not only classification problems, but also regression problems through its important
branch called support vector regression (SVR).

2.5.2. Sparrow Search Algorithm Optimisation

Sparrow search algorithm (SSA) is a swarm intelligence optimisation algorithm for
simulating the behaviour of sparrow foraging and evading predators [34]. SSA can effec-
tively avoid falling into the local optimal solution because of its advantages of minimal
iterations and high accuracy in the prediction model [45]. SSA was used in this study to
optimise parameters of BP, ELM and SVM/SVR models. The process of constructing the
optimisation model based on SSA is presented as follows.

Step 1: Initialise population, iterations, proportion of discoverer and participant,
calculate and sort the fitness of all sparrows.

Step 2: Update the position of discoverers and participants. Discoverers with satis-
factory fitness values can preferentially obtain food in the searching process and provide
foraging direction for all participants. The participants will monitor the discoverers and
immediately compete with discoverers when the discoverers search for better food in
the foraging process. The position of the discoverers in each iteration is updated, as in
Equations (2) and (3).

Xt+1
i,j =

{
Xi,j· exp(− i

α·itermax
), i f R2 < ST

Xi,j + Q·L, i f R2 ≥ ST
(2)

Xt+1
i,j =

 Q· exp(−
Xworst−Xt

i,j
i2 ), i f i > n/2

Xt+1
P +

∣∣∣Xi,j − Xt+1
P

∣∣∣·A+·L, otherwise
(3)

where t represents the current iteration number, itermax is the maximum iteration number
and j is the constant of [1, d]. Xi,j is the position of the ith sparrow in the j dimension, XP is
the best position for discoverers and Xworst is the worst position. The discoverers can search
in a safe foraging environment when R2 < ST. The predators appear and all sparrows move
to forage rapidly when R2 ≥ ST. The ith participant with low-fitness value travels to other
places for food when i > n/2.

Step 3: Update the position of watchmen. Watchmen are randomly generated in the
population and generally account for 10% to 20% of the total. The position of the watchmen
in each iteration is updated as in Equation (4).

Xt+1
i,j =


Xt

best + β·
∣∣∣Xt

i,j − Xt
best

∣∣∣, i f fi > fg

Xt
i,j + K·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

)
, i f fi = fg

(4)

where Xbest is the global optimal position; β is the step-size control parameter; fi is the
current individual fitness value; and fg and fw are the global best and global worst fitness
values, respectively.

In this study, the initial population size was 20; the maximum number of iterations was
100; the proportion of discoverers and participants was 7:3; the proportion of watchmen
was set to be 20%. These parameters were determined according to the commonly used
parameters and the actual situation in this study [46]. SSA was applied to optimise the
model parameters and obtain the optimal solution from the global optimal position. The
optimal solution for BP and ELM was obtained through iteration and assigned to weights
and thresholds to complete the parameter optimisation of the SSA-BP and SSA-ELM
models. The range of weights and thresholds is (−5, 5). The optimal solution for SVM
and SVR was obtained through iteration and assigned to the penalty coefficient c and RBF
kernel function radius g to complete the parameter optimisation of SSA-SVM and SSA-SVR
models, respectively. The range of c and g is (1 × 10−5, 100).
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2.5.3. Establishment and Evaluation of Classification Models

In the establishment of classification models, 24 mutton, 24 pork and 48 adulterated
mixture samples in each part (24 + 24 + 48 × 3 = 192 samples) were randomly divided
into calibration set (144 samples) and prediction set (48 samples) at a ratio of 3:1. As such,
10 average spectra were extracted from each sample region. Hence, calibration and predic-
tion set included 1440 and 450 spectra, respectively. Three classes were set: mutton (CLASS
M), pork (CLASS P) and adulterated mixture (CLASS MP).

Firstly, ELM, BP and SVM classification models were established for different classes
of samples. Secondly, SSA was used to find the global optimal position as the potential
optimal solution of the models. Lastly, the SSA-ELM, SSA-BP and SSA-SVM models were
constructed using optimal parameters. The 10-fold cross-validation divided the data set
into 10 parts, of which 9 parts were used as training data and 1 part as test data in turn. It
is a commonly used method to improve the generalization ability of the model. The 10-fold
cross-validation result is taken as the calibration set result.

The performance of the models was evaluated using the discriminant results of each set
after establishing the classification models. The discriminant property in the classification
model was evaluated according to accuracy and accuracy confusion matrix. Accuracy is
the ratio of the correct classification samples to the total samples. High model accuracy and
few error classes in the confusion matrix correspond to enhanced model performance.

2.5.4. Establishment and Evaluation of Quantification Models

In the establishment of quantification models, 8 adulterated mixture samples in each
proportion of each part (8 × 6 × 3, a total of 144 samples) were randomly divided into
calibration set (108 samples) and prediction set (36 samples) at a ratio of 3:1. As such,
10 average spectra were extracted from each sample region. Hence, calibration and predic-
tion set included 1050 and 360 spectra, respectively.

Firstly, ELM, BP and SVM classification models were established for different propor-
tions of samples. Secondly, SSA was used to find the global optimal position as the potential
optimal solution of the models. Lastly, the SSA-ELM, SSA-BP and SSA-SVR models were
constructed using optimal parameters. The 10-fold cross-validation result is the calibration
set result.

The performance of models was evaluated by the regression results of each set. The
regression property of the quantification models was evaluated with coefficient of determi-
nation (R2) and root mean square error (RMSE). High-R2 and low-RMSE values represent
enhanced performance. The software used in this study was MATLAB 2019b (Math Works,
Natick, MA, USA).

3. Results and Discussion
3.1. Analysis of Spectral Characteristics

The reflectance spectral curves of all samples are shown in Figure 2a. The spectral
trends were similar and spectral absorption peaks mainly appeared at 1020, 1250, 1520 and
2150 nm. Amongst them, the spectral absorption bands at 1020 and 1520 nm were closely
related to the stretching vibration of the first-order and second-order frequency doubling
characteristics of the N-H bond, located at the functional groups of the protein molecular
structure, respectively. The absorption peak at 1250 nm was related to the second-order
frequency doubling characteristic in the C-H bond in the molecular structure of meat
organic components. The absorption band at 2150 nm was related to the combination
frequency characteristic in the O-H bond of molecular structure functional groups in
water [47]. The region between 2200 and 2445 nm was mainly caused by the combined
stretching vibrations of O-H, N-H and C-H functional groups, which showed low spectral
reflectance [48].
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The average spectral curves for mutton, pork and adulterated mixture are shown
in Figure 2b. The average spectral curves for different classes of samples demonstrated
the same trend but significantly different reflectance. This indicated that differences exist
in the chemical composition and structural information between pork and mutton. The
average spectral curves for adulterated mixtures of different proportions are presented in
Figure 2c. Spectral tendencies of all adulterated samples are basically the same, with some
differences in the reflectance. It revealed that different proportions of pork and mutton
changed the composition content and material structure of the sample. The results show
that the sample spectral information obtained in this study can distinguish amongst pork,
mutton and adulterated mixtures, as well as different proportions of pork in mutton. This
regularity was obtained under the effect of mutton flavour essence, thereby indicating that
the spectral information in this study can avoid the interference of mutton flavour essence.

The original spectra were preprocessed using first derivative combined with multiple
scattering correction (1D + MSC). The processed spectra are shown in Figure 2d. The
processed average spectral curves of different classes and different proportions are shown
in Figure S1 and S2 (Supplementary Materials). Compared with the original spectral curves,
preprocessed spectra are more convergent, the influence of random noise is weaker and
the reflection and absorption bands are more evident. The subsequent spectral data in this
study were all preprocessed with 1D + MSC method.
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3.2. Establishment and Evaluation of Classification Model
3.2.1. Model Establishment

BP with three layers of network structure, including input layer, hidden layer and
output layer, was used to establish the classification model. Traingdx training function and
logsig and purelin transfer functions were selected. The number of hidden layer nodes was
traversed in 5 steps from 5 to 100. The traversal results showed that the fitting effect was
optimal when the number of hidden layer nodes was 20. ELM was also used to establish
the classification model. Sigmoid function was utilised and the hidden layer was traversed
in 10 steps from 10 to 200. The fitting was optimal when the number of neurons in the
hidden layer was 60. At the same time, support vector machine (SVM) was applied to
establish the classification model and grid optimisation was performed to determine c and
g. The accuracy of the 10-fold cross-validation was used as the optimisation objective. The
accuracy of the classification models in each data set is presented in Table 1. A comparison
of the accuracy in the classification models established by BP, ELM and SVM demonstrated
that SVM achieves the best modelling results. The accuracy of the calibration and prediction
sets was 99.65 and 99.37%, respectively. The performance of SVM was clearly better than
that of the BP and ELM models.

Table 1. The discrimination results in each data set using the basic models and the optimisation models.

Models

Calibration Set
(10-Fold Cross-Validation) Prediction Set

Accuracy (%) Accuracy (%)

BP 92.92% 91.67%
ELM 97.15% 90.83%
SVM 99.65% 99.37%

SSA-BP 93.47% 92.50%
SSA-ELM 99.44% 98.13%
SSA-SVM 99.90% 99.79%

Note: BP: back propagation neural network; ELM: extreme learning machine; SVM: support vector machine; SSA:
sparrow search algorithm.

3.2.2. Model Optimisation and Comparison

The SSA was used to optimise parameters c and g in the SVM model and was used to
optimise the weights and thresholds of the BP and ELM models. The optimisation objective
was the maximum accuracy of the 10-fold cross-validation. Optimal parameters were
obtained and the models were established when the accuracy, as the fitness values, were
the maximum. The results of SSA-BP, SSA-ELM and SSA-SVM are listed in Table 1. The BP,
ELM and SVM models optimised by SSA exhibited satisfactory performance, especially the
SSA-ELM and SSA-SVM models.

The SSA-BP, SSA-ELM and SSA-SVM models were further compared with the BP,
ELM and SVM models. The comparison of the accuracy of each data set before and after
the optimisation is presented in Figure 3. The accuracy of each data set of the BP, ELM and
SVM models optimised by the SSA was higher than that before optimisation. Amongst
them, SSA-ELM showed the highest improvement compared with that before optimisation,
followed by SSA-BP and SSA-SVM. The SSA-BP classification model was 0.55% and 0.83%
higher than the BP model in the calibration and prediction set, respectively. The perfor-
mance of the BP model slightly improved after SSA parameter optimisation. The accuracy
of SSA-ELM increased by 2.29% and 7.30% in the calibration and prediction set compared
with that of the ELM model, respectively. The SSA-ELM model evidently improved. The
SSA-SVM model was improved with an accuracy of 99.90% and 99.79% in two data sets.
Compared with the SVM model, the SSA-SVM model was 0.25% and 0.42% higher in the
calibration set and prediction set. These results showed that the comprehensive classifica-
tion performance of each model can improve when SSA optimisation is applied and the
SSA-SVM model achieves an optimal result.
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In order to explore the classification performance of different models for each class of
samples, the accuracy of the prediction set is illustrated as a confusion matrix in Figure 4.
The single-class accuracy of different models improved after SSA optimisation. Amongst
them, the accuracy of the BP model in discriminating mutton (CLASS M) and pork (CLASS
P) was low, only 83.33 and 76.67%, respectively. The accuracy of SSA-BP increased to
85 and 81.67% when detecting CLASS M and CLASS P, respectively. Notably, the classi-
fication performance still needs to improve, despite showing a slight enhancement after
optimisation. The ELM model was insufficient in discriminating CLASS M and CLASS
P, with an accuracy of only 43.33 and 88.33%, respectively. The accuracy of SSA-ELM in
detecting CLASS M and CLASS P increased to 95 and 93.33%, respectively. Although the
improvement was evident, each class contained certain errors. The SVM and SSA-SVM
can achieve a detection accuracy of 100% for CLASS M, which was significantly higher
than that of other models. The detection accuracy of the SSA-SVM on adulterated mixture
(CLASS MP) was the maximum at 100%. The detection accuracy of CLASS P was the
highest at 98.33%. These results showed that SSA-SVM achieves the optimal classification
performance for each class.

In summary, the performance of the SSA-BP, SSA-ELM and SSA-SVM models im-
proved compared with that of the BP, ELM and SVM models, respectively. Amongst
them, the SSA-SVM model obtained the best classification result. Although the mutton
flavour essence changed odour information and effected sensory testing, NIR-HSI com-
bined with the SSA-SVM model can effectively identify mutton, pork and adulterated
mixtures with pork.

3.3. Establishment and Evaluation of Quantification Model
3.3.1. Model Establishment

The quantification model for the adulterated mixture was established using BP, ELM
and SVR. The optimisation objective was the error value of 10-fold cross-validation. The
results of the models for predicting pork proportion in an adulterated mixture are listed in
Table 2. The SVR model presented the best performance compared with the ELM and BP
model. SVR demonstrated an R2 of 0.9290 and 0.8613 and RMSE of 0.0358 and 0.0699 in the
calibration set and prediction set, respectively. The RMSE in the prediction set was much
higher than that of the calibration set, which was close to twice. Therefore, the models need
further optimisation.
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Table 2. The prediction results in each data set using the basic models and the optimisation models.

Models
Calibration Set

(10-Fold Cross-Validation) Prediction Set

RC
2 RMSEC (g·g−1) RP

2 RMSEP (g·g−1)

BP 0.8464 0.0636 0.7283 0.0833
ELM 0.8910 0.0542 0.7946 0.0739
SVR 0.9290 0.0359 0.8613 0.0699

SSA-BP 0.8741 0.0583 0.8061 0.0739
SSA-ELM 0.9249 0.0454 0.8745 0.0586
SSA-SVR 0.9491 0.0335 0.9304 0.0458

Note: RC
2: coefficient of determination in calibration set; RP

2: coefficient of determination in prediction set;
RMSEC: root mean squared error for calibration set; RMSEP: root mean squared error for prediction set; SVR:
support vector regression.
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3.3.2. Model Optimisation and Comparison

SSA was used to optimise parameters c and g in the SVR model. Meanwhile, SSA
was used to optimise the weights and thresholds in the BP and ELM regression models.
The optimisation objective was to minimize the error values in 10-fold cross-validation.
Optimal parameters were obtained and the SSA-BP, SSA-ELM and SSA-SVR models were
established when error values were the minimum. The results of the three models are listed
in Table 2. Amongst the models with SSA optimisation, the SSA-SVR model demonstrated
the best result with an RC

2 and RP
2 of 0.9491 and 0.9304, respectively, and an RMSEC and

RMSEP of 0.0335 g·g−1 and 0.0458 g·g−1, respectively.
It can be seen from Figure 5 that SSA optimisation for models improves the per-

formance of each data set compared with the use of BP, ELM and SVR models alone.
Compared with those of the BP model, the R2 of the calibration set and prediction set of
the SSA-BP model for quantification increased by 0.0277 and 0.0778 and RMSE decreased
by 0.0053 g·g−1 and 0.0094 g·g−1, respectively. Compared with those of the ELM model,
RC

2 and RP
2 of the SSA-ELM model increased by 0.0340 and 0.0799, whilst RMSEC and

RMSEP decreased by 0.0088 g·g−1 and 0.0153 g·g−1, respectively. Compared with those of
the SVR model, RC

2 and RP
2 of the SSA-SVR model increased by 0.0201 and 0.0691, whilst

RMSEC and RMSEP decreased by 0.0024 g·g−1 and 0.0241 g·g−1, respectively. These results
showed that the quantification performance of all models improves when SSA optimisation
is applied and SSA-SVR achieves the optimal quantification performance.
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Figure 5. Comparison of R2 and RMSE for different models in each dataset. (a,b) Calibration set
(10-fold cross-validation); (c,d) prediction set. RC

2: coefficient of determination in calibration set; RP
2:

coefficient of determination in prediction set; RMSEC: root mean squared error for calibration set;
RMSEP: root mean squared error for prediction set.

The results in the prediction set of the SSA-SVR with error bar are illustrated in
Figure 6. The prediction standard deviation was utilised to reflect the degree of deviation
between the predicted value and actual value. It could be seen that all predicted values
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were above 0% and were distributed near the regression line. This finding showed that
all adulteration mixture samples in different proportions were effectively predicted by
SSA-SVR [21]. Although the addition of mutton flavour essence changed odour information
and effected sensory testing, NIR-HSI combined with the SSA-SVR model can effectively
predict the proportion of pork mixed in mutton.
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4. Conclusions

In this research, near-infrared hyperspectral imaging combined with machine learning
and sparrow search algorithm was used to classify and quantify adulterated mutton
with pork under the effect of mutton flavour essence. Classification models using BP,
ELM and SVM were developed to discriminate mutton, pork and adulterated mixture
samples. Quantification models using BP, ELM and SVR were developed to predict different
proportions of pork in mutton. SSA was used to optimise the model parameters and
the model results improved after optimisation. The results showed that the optimal
classification model is SSA-SVM, with an accuracy of 99.79% in the prediction set, the
optimal quantification model is SSA-SVR with an RP

2 of 0.9304 and an RMSEP of 0.0458
in the prediction set. The results indicated that the NIR-HSI combined with ML and SSA
had the remarkable ability to identify adulterated mutton with pork under the effect of
mutton flavour essence. The rapid, non-destructive and automatic method proposed in this
study can improve the detection efficiency, reduce the detection cost in practical application
and has good application prospects. This study can provide a theoretical and practical
reference to the evaluation and supervision of food quality under complex conditions, such
as diversified adulteration and multiple food additives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11152278/s1, Figure S1: Average spectra of different classes
preprocessed with 1D + MSC; Figure S2: Average spectra of different proportions preprocessed with
1D + MSC.
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