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Abstract: S-ovalbumin content is an indicator of egg freshness and has an important impact on
the quality of processed foods. The objective of this study is to develop simplified models for
monitoring the S-ovalbumin content of eggs during storage using hyperspectral imaging (HSI) and
multivariate analysis. The hyperspectral images of egg samples at different storage periods were
collected in the wavelength range of 401–1002 nm, and the reference S-ovalbumin content was
determined by spectrophotometry. The standard normal variate (SNV) was employed to preprocess
the raw spectral data. To simplify the calibration models, competitive adaptive reweighted sampling
(CARS) was applied to select feature wavelengths from the whole spectral range. Based on the full
and feature wavelengths, partial least squares regression (PLSR) and least squares support vector
machine (LSSVM) models were developed, in which the simplified LSSVM model yielded the best
performance with a coefficient of determination for prediction (R2

P) of 0.918 and a root mean square
error for prediction (RMSEP) of 7.215%. By transferring the quantitative model to the pixels of
hyperspectral images, the visualizing distribution maps were generated, providing an intuitive
and comprehensive evaluation for the S-ovalbumin content of eggs, which helps to understand the
conversion of ovalbumin into S-ovalbumin during storage. The results provided the possibility of
implementing a multispectral imaging technique for online monitoring the S-ovalbumin content
of eggs.

Keywords: hyperspectral imaging; egg; S-ovalbumin content; visualization; multivariate analysis

1. Introduction

Eggs are a staple food for humans and are rich in nutrients. Due to the excellent gel
forming and foaming properties of albumin, eggs are widely used in many food prod-
ucts [1,2]. The albumen contains a variety of proteins, including ovalbumin, ovotrans-ferrin,
ovomucoid, lysozyme, and globulins; among these, ovalbumin contains free sulfhydryl
groups [3]. During storage, ovalbumin is naturally and irreversibly converted into a
thermally stable form, S-ovalbumin [4]. The rate of conversion is only related to albumen
pH and temperature, not to the age of the egg, variety, or nutritional status; thus, S-
ovalbumin content has been developed as an indicator to evaluate the freshness of eggs [5].

The denaturation temperature of ovalbumin is approximately 80 ◦C [6]. During
heating, the sulfhydryl groups in ovalbumin are released and converted into disulfide
bonds, which play an important role in the formation of protein networks and the properties
of albumen gels [7,8]. Compared with ovalbumin, S-ovalbumin has a relatively higher
thermal stability with a denaturation temperature of 88 ◦C [6]. As a result, the disulfide
bonds are formed later in S-ovalbumin. This difference can lead to a decrease in the strength
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of the heated-induced gel, thus affecting the quality of processed foods [8]. For instance,
the content of S-ovalbumin has a significant impact on the cohesiveness and springiness of
cake crumbs [8] and the extensibility of noodles [9]. Therefore, the detection of S-ovalbumin
content in eggs is critical to the food processing industry.

At present, the content of S-ovalbumin is mainly determined by spectrophotometry [5].
However, chemical testing is destructive and time-consuming, and is gradually failing to
meet the needs of the industry [10]. Therefore, it is desired to develop a non-invasive and
rapid method to detect the S-ovalbumin content in eggs. Previous investigations on the non-
destructive evaluation of egg qualities have used visible–near infrared spectroscopy [11],
machine vision [12], electronic nose [13], and acoustic resonance [14]. However, the afore-
mentioned methods have their own merits and drawbacks. For example, machine vision
cannot offer information associated with the chemical composition [15]. In addition, neither
spectroscopy, electronic nose, nor acoustic resonance can obtain the spatial distribution
information [16]. To overcome these defects, a unique imaging technique is needed to
map the location of each tested component, and this requirement can be well satisfied by
hyperspectral imaging (HSI) [17,18]. HSI integrates traditional imaging and spectroscopy
techniques, which can synchronously obtain the spatial and spectral information of the
target [19,20]. In terms of egg quality assessment, HSI has been successfully used for
the detection of the Haugh unit (HU), albumen pH, bubbles, scattered yolk, and blood
spots [21–24]. However, research on the detection and visualization of S-ovalbumin content
in eggs has not been reported in the literature.

Therefore, this study aims to develop a non-destructive method to monitor the S-
ovalbumin content in eggs during storage based on HSI and multivariate analysis.

2. Materials and Methods
2.1. Egg Samples

A total of 180 fresh eggs were obtained from a poultry farm in Zhenjiang, China,
and stored at 25 ◦C (55% relative humidity). Eighteen eggs were randomly selected for
measurement after storage for 0, 3, 6, 9, 12, 15, 18, 21, 24 and 27 days, respectively.

2.2. Hyperspectral Images Acquisition and Calibration

The visible–near infrared (VIS–NIR) HSI system is shown in Figure 1, which has been
described in detail in our recent research [25]. The egg sample was horizontally placed on
the translation platform and scanned in the transmission mode with a spectral range of
401–1002 nm. The moving speed of the translation platform was fixed to 1 mm/s to avoid
overlapping frames, and the CCD camera exposure time was set to 0.1 s. Each hyperspectral
image is a 3-D data cube that contains 478 images with different wavelengths, saved in
raw format.
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To reduce the influence of dark current in camera, the acquired hyperspectral images
were further calibrated by:

Ic =
Io − Id
Iw − Id

(1)

where Ic indicates the calibrated image, Io represents the raw image, Iw is the white reference
image (~99% transmittance) obtained with a standard white board, and Id is the dark
reference image (~0% transmittance) obtained by covering the camera lens.

2.3. Determination of S-ovalbumin

In this study, the reference for S-ovalbumin content of eggs was measured by spec-
trophotometry [5]. Five grams of albumen was firstly taken into a 100 mL beaker, mixed
with 25 mL of 0.5 mol/L phosphate buffer and magnetically stirred for 5 min. Next, 5 mL of
the suspension was placed into a test tube and heated in a water bath pot at 75 ◦C for 30 min.
Upon cooling, 10 mL of the precipitating solution was added and centrifuged at 12,000 rpm
for 5 min. Then, 2 mL of the supernatant was placed into a test tube, mixed with 4 mL of the
biuret solution. After standing for 30 min, the absorbance at 540 nm was determined using
an ultraviolet spectrophotometer (TU-1810, Purekinje General Instrument Ltd., Beijing,
China), denoted as Oheated. In addition to water bath heating, the above steps were repeated
to obtain an absorbance of Ounheated. The content of S-ovalbumin was calculated as follows:

S − ovalbumin(%) =
Oheated

Ounheated
× 100% (2)

2.4. Spectral Data Extraction

After calibrating the hyperspectral image, the region of interest (ROI) can be easily
identified because of the significant difference in transmitted light intensity between the
egg sample and the background. Therefore, a simple threshold segmentation method
was applied to extract the spectrum of ROI, as shown in Figure 2. The high transmission
wavelength image at 700.4 nm (Figure 2a) was first employed to generate a binary mask
image (Figure 2b) by setting a transmittance threshold of 0.1. By applying the mask image,
the ROI and background in each single wavelength image were separated, and the pixel
value of background was set to 0 (Figure 2c). Finally, the mean value of the pixels in
ROI was calculated as the transmission spectrum of egg sample, as shown in Figure 2d.
Due to the low signal-to-noise ratio of the hyperspectral images before 435 nm, no useful
information can be extracted from this region. Thus, the final adopted effective spectral
range was 435–1002 nm with a total of 449 wavelengths.
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Figure 2. Spectral data extraction of ROI (a) Image at 700.4 nm; (b) binary mask image; (c) result of
ROI identification; (d) mean spectral curve of ROI.

2.5. Spectral Pre-Prcossing

The egg samples were divided into a calibration set (2/3) and a prediction set (1/3)
by using sample set partitioning based on the joint X-Y distances (SPXY) algorithm [26].
The spectral data contain a large amount of useful information related to S-ovalbumin, as
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well as some redundant and interfering information. To improve the modeling accuracy
and robustness, the standard normal variate (SNV) was used for spectral pre-processing,
which can remove the influence of undesirable systematic, scattering and light distance
changes [27]. The formula of SNV is as follows:

Xcor =
Xorg − X√

N
∑
1
(Xorg − X)

2/(N − 1)

(3)

where Xorg and Xcor represent the original and corrected sample spectrum, respectively; X
indicates the mean value of the spectrum, and N is the number of wavelengths.

2.6. Modeling

Selecting robust and reliable multivariate analysis methods to establish calibration models
is of great importance for quantitative analysis. In this study, partial least squares regression
(PLSR) and least squares support vector machine (LSSVM) were used to correlate the spectral
data with the reference S-ovalbumin content values measured by spectrophotometry.

2.6.1. PLSR

PLSR is a classical linear regression method, which has been widely applied to build a
prediction model between the spectral response and the quality index [28]. The regression
function of PLRS is [29]:

Y = Xb + E (4)

where X(n×p) is the input matrix, Y(n×1) is the output matrix, b is the regression coefficient
matrix and E is the residual error matrix. In PLSR, the high-dimensional data is projected
onto a small number of latent variables (LVs) to find the optimal regression coefficients
so that a linear combination of the input variables maximizes the covariance between the
LVs and the output. When one supposes that the number of LVs is h (h 5 p), the regression
coefficients are calculated as follows [30]:

Step 1: Calculate the loading weights: w = XTY;
Step 2: Normalize the loading weights: w = w/||w||;
Step 3: Calculate the score of X: S = Xw, and the loading vectors of X and Y:

p = XTs/(sTs), q = YTs/(sTs);
Step 4: Save w, s, p and q in W, S, P and Q, respectively;
Step 5: Deflate X and Y: X = X − spT, Y = Y − sq;
Step 6: Repeat Steps 1–5 for the h LVs;
Step 7: The regression coefficients can be calculated by: b = WT (PWT)−1 Q.

2.6.2. LSSVM

LSSVM is developed on the basis of SVM, which transforms inequality constraints
into equality constraints and replaces quadratic programming with least square cost func-
tion [31]. When dealing with the problem of non-linear function approximation, LSSVM has
the advantages of simple computation, fast solution speed and strong generalization [32].
The model structure of LSSVM is:

f (x) = wTφ(x) + b (5)

where ϕ (x) is the mapping function, and the weight vector w and bias vector b are obtained
by minimizing the regularized risk function of LSSVM.

min 1
2 wTw + 1

2 γ
l

∑
i=1

ξ2
i

s.t. yi = wTφ(xi
)
+ b + ξi, i = 1, 2, . . . , l

(6)
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where ξi is the slack variable and γ is the regularization parameter. By applying the
Lagrangian function and the KKT condition, Equation (5) can be transformed into:

f (x) =
l

∑
i=1

αiK(x, xi) + b (7)

where αi is the Lagrangian multiplier and K (*) is the kernel function that satisfies the
Mercer condition. In this study, a radial basis function (RBF) kernel was used, which can
not only achieve non-linear mapping, but also has the advantage of fewer parameters [33],
as shown in Equation (8):

K(x, xi) = exp(−
∣∣∣∣∣∣x − xi

∣∣∣∣∣∣2/2σ2) (8)

where σ is the kernel width.
The performance of the established models was statistically assessed using the de-

termination coefficient and the root mean squared errors for calibration (R2
C, RMSEC),

cross-validation (R2
CV, RMSECV) and prediction (R2

P, RMSEP). In general, a reliable model
should have lower values of RMSEC, RMSECV and RMSEP and higher values of R2

C, R2
CV

and R2
P, and the difference between them should be small [34]. The operation of PLSR and

LSSVM was carried out in Matlab R2014b.

2.7. Feature Wavelength Selection

Due to the wide spectral range of HSI, multicollinearity and redundancy among
adjacent wavelengths are common in hyperspectral data. To simplify the calibration
models and improve the detection efficiency, it is necessary and crucial to select the feature
wavelengths from the whole spectral range [35]. In the current study, competitive adaptive
reweighted sampling (CARS) was applied to optimize the wavelengths for S-ovalbumin
content prediction. CARS is a relatively novel feature variable selection method, which
integrates monte carlo (MC) sampling, exponentially decreasing function (EDF), adaptive
reweighted sampling (ARS) and partial least squares (PLS) techniques [36]. The steps of
CARS are as follows:

Step 1: A certain proportion of samples are selected by MC sampling to build a
PLS model, and the absolute value of the regression coefficient is taken as the weight of
each variable.

Step 2: EDF is applied to remove the variables with small weights, and then ARS that
simulates the principle of ‘survival of the fittest’ and is used to further select key variables.

Step 3: The key variables are used to rebuild a PLS model, and the RMSECV of the new
model is calculated. In addition, the key variables are utilized to generate initial samples in
the next iteration.

Step 4: Steps 1–3 are alternated until the predefined number of MC sampling is
reached, and the variables in the PLS model with the minimum RMSECV are identified as
feature variables.

2.8. Visualization of S-ovalbumin Content

Visualizing the distribution of S-ovalbumin can help to understand the conversion of
ovalbumin into S-ovalbumin in eggs during storage. With the help of HSI, the predictive
attributes can be visualized in a pixel manner by inputting spectral data into the calibration
model [37]. In this study, the optimal model was utilized to predict the S-ovalbumin
content of each pixel in hyperspectral images, and then the generated chemical images
were displayed with a linear color bar. By observing the color variation in chemical images,
one can intuitively evaluate the S-ovalbumin content and freshness of eggs, which facilitates
the industry in storage temperature regulation and inventory management.
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3. Results and Discussion
3.1. S-ovalbumin Analysis

The statistics of S-ovalbumin content in egg samples measured by spectrophotometry
are presented in Table 1. The S-ovalbumin content varied widely between 10.95% and
94.48%, which was essential for the development of robust calibration models. Figure 3
shows the mean S-ovalbumin content of eggs at different storage periods. An evidently
increased tendency over storage time can be observed, which is in agreement with the
report of Huang et al. [5].

Table 1. Reference S-ovalbumin content of egg samples measured by spectrophotometry.

Indexes Calibration Set Prediction Set

Number of samples 120 60
Minimum (%) 10.95 13.45
Maximum (%) 94.48 94.24

Mean (%) 61.05 60.28
Standard deviation (%) 26.02 25.40

Range (%) 83.53 80.79
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3.2. Spectral Feature Analysis

Figure 4 shows the mean spectral curves (435–1002 nm) of egg samples stored for
0, 3, 6, 9, 12, 15, 18, 21, 24 and 27 days. With the increase in storage time, a decreasing
trend can be observed from the mean transmission spectra of egg samples, however, the
general shapes and trends of the spectral curves were similar. As seen from Figure 4, the
main absorption bands of eggs were identified at around 589, 643, 750 and 970 nm. The
absorption bands at 589 and 643 nm were attributed to the pigment protoporphyrin in the
eggshell [38,39], and the bands at around 750 and 970 nm were related to the third and
second overtone of O-H stretching, respectively [40,41].

To correlate the spectra with the reference S-ovalbumin content values, the calibration
models were developed using PLSR and LSSVM based on the full wavelengths. Selecting
an appropriate regularization parameter (γ) and kernel parameter (1/σ2) is crucial for
LSSVM to avoid over-fitting or under-fitting and to improve modeling ac-curacy [42].
Therefore, five-fold cross-validation was used to estimate the optimal γ and 1/σ2. In
addition, the optimum number of LVs in PLSR model was evaluated using the same
approach. Figure 5 shows the parameter selection process for LSSVM and PLSR models,
where the optimization ranges of γ, 1/σ2 and LVs were set to [2−8, 28], [2−8, 28] and
[1, 16], respectively. Figure 5a shows the 3D view of the RMSECV for the LSSVM model
with different values of γ and 1/σ2. When the combination of log2(γ) and log2(1/σ2)
was [5.9, −7.9], the RMSECV of the established LSSVM model achieved the minimum.
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It can be seen from Figure 5b that, as the number of LVs increased, the RMSECV of the
developed PLSR model first decreased sharply and then increased slowly. When the
number of LVs was greater than 9, the decrease in RMSECV was no longer significant.
Therefore, the number of LVs in the PLSR model for predicting S-ovalbumin content was
set to 9. Table 2 shows the statistics used for evaluating the performance of models, in
which LSSVM exhibits a better performance (R2

P = 0.893, RMSEP = 8.165%), proving the
feasibility of applying HSI in the prediction of S-ovalbumin content.
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Table 2. Performance of models for predicting S-ovalbumin content in eggs.

Model Variable
Number

Calibration Cross-Validation Prediction

R2
C RMSEC(%) R2

CV RMSECV(%) R2
P RMSEP(%)

LSSVM 449 0.943 6.121 0.920 7.238 0.893 8.165
PLSR 449 0.929 6.685 0.899 8.025 0.861 9.494

LSSVM 14 0.952 5.604 0.929 7.068 0.918 7.215
PLSR 14 0.941 6.395 0.912 7.585 0.892 8.272

3.3. Prediction of S-ovalbumin Content Based on Feature Wavelengths

Feature wavelength selection can effectively eliminate the overlapping and redundant
information in spectral data, and is a key procedure for developing an on-line multispectral
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imaging system with fewer wavelengths. In this research, CARS was used to select feature
wavelengths aiming to develop simplified models, where the number of MC sampling
was set to 100 and five-fold cross-validation was utilized. The process of feature wave-
length selection by CARS is shown in Figure 6. Figure 6a shows the number of retained
wavelengths with the increase in sampling runs, Figure 6b shows the five-fold RMESCV
of the PLS model established based on the retained wavelengths and Figure 6c shows the
regression coefficients of the retained wavelengths in the PLS model. From Figure 6a, it
can be seen that the wavelength selection process can be divided into two stages: fast
selection (sampling runs 1–30) and refined selection (sampling runs 31–100). In the fast
selection stage, most of the Interfering and overlapping wavelengths were rapidly removed,
resulting in a fast reduction in RMSECV. In the refined selection stage, the wavelengths
with little or no information were eliminated in a stepwise manner, leading to a slow
change in RMSECV from sampling runs 31–64, followed by a rapid increase due to the
elimination of some informative wavelengths from the optimal subset (denoted by blue *).
Finally, fourteen wavelengths, 615.5, 624.3, 680.0, 687.6, 700.4, 711.8, 734.9, 758.0, 787.6,
837.9, 870.3, 896.2, 953.1, and 963.3 nm were selected by CARS. The feature wavelengths
were mainly located at around 620, 700, 740, 836, 880, and 960 nm, which were assigned
as follows: electron transitions of lipid; pH and pigment molecule in albumen; the third
overtone of O-H in water; the combinations and overtone modes of water vibration; the
stretching overtones of N-H and C-H related to protein and lipid; and the second overtone
of O-H in water, respectively [34,40,41]. Half of the selected wavelengths were close to
those reported by Zhang et al. [21], whose research indicated that the wavelengths related
to the changes of egg freshness were 620, 632, 654, 671, 680, 684, 697, 707, 712, 724, 762,
780, and 796 nm, which could explain the finding of Huang et al. [5] that HU is highly
correlated with S-ovalbumin content from the perspective of spectral analysis.
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Based on the fourteen feature wavelengths, the simplified LSSVM and PLSR models
were established to predict the S-ovalbumin content of eggs, and the statistical results
are shown in Table 2. It can be seen that the performance of the simplified models was
significantly better than the models based on full wavelengths. The improvement is due to
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the fact that CARS removes redundant wavelengths while retaining as much feature-related
information as possible. In addition, it was noticed that LSSVM had better performance
than PLSR whether based on the full wavelengths or the feature wavelengths, indicating
that the non-linear regression model is more suitable for detecting the S-ovalbumin content
of eggs. To graphically display the performance of the simplified LSSVM and PLSR models,
the measured and predicted S-ovalbumin content values are plotted and shown in Figure 7.
Consequently, the values of R2

p and RMSEP of the simplified LSSVM model were 0.918
and 7.215%, respectively. Therefore, HSI combined with the simplified LSSVM model can
be effective for the detection of S-ovalbumin content in eggs.
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3.4. Visualization of S-ovalbumin Contents

The LSSVM model based on the optimized wavelengths was applied to predict the
S-ovalbumin content of each pixel in hyperspectral images. Figure 8 shows the chemical
maps of egg samples stored for different times. The pixels with higher S-ovalbumin content
were displayed in red, while the pixels with lower S-ovalbumin content were shown in
blue. With the increase in S-ovalbumin content, the color of the chemical map has an
evident change in trends. When the S-ovalbumin content reached 85.4%, the whole egg was
nearly red. The chemical maps showed irregular colors in various parts of eggs, indicating
that the distribution of S-ovalbumin in eggs was uneven. This result is consistent with
the report of Suktanarak et al. [43] whose study indicated that the internal freshness and
albumen quality of eggs are non-homogeneous. According to the color of chemical maps,
the S-ovalbumin content and freshness of eggs can be evaluated intuitively. In practical
application, when the S-ovalbumin distribution does not meet the criteria, processors can
adjust the storage temperature.
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4. Conclusions

In this work, HSI was applied to monitor the S-ovalbumin content of eggs. The
mean transmission spectra of eggs decreased with the increase in S-ovalbumin content.
The LSSVM and PLSR models developed on the full spectral wavelengths achieved good
performance in S-ovalbumin content prediction (LSSVM: R2

P=0.893, RMSEP=8.165%; PLSR:
R2

P=0.861, RMSEP=9.494%). After feature wavelength selection, the performance of LSSVM
and PLSR models improved and the simplified LSSVM model yielded the best result with
R2

P of 0.918 and RMSEP of 7.215%. By transferring the simplified LSSVM model to the
hyperspectral images, the distribution maps were generated to visualize the S-ovalbumin
content. The result indicates that HSI is promising in monitoring the S-ovalbumin content
in eggs during storage.
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