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Abstract: Evaluating and predicting date fruit quality during cold storage is critical for ensuring a 

steady supply of high-quality fruits to meet market demands. The traditional destructive methods 

take time in the laboratory, and the results are based on one specific parameter being tested. Modern 

modeling techniques, such as Machine Learning (ML) algorithms, offer unique benefits in nonde-

structive methods for food safety detection and predicting quality attributes. In addition, the elec-

trical properties of agricultural products provide crucial information about the interior structures 

of biological tissues and their physicochemical status. Therefore, this study aimed to use an alterna-

tive approach to predict physicochemical properties, i.e., the pH, total soluble solids (TSS), water 

activity (aw), and moisture content (MC) of date fruits (Tamar), during cold storage based on their 

electrical properties using Artificial Neural Networks (ANNs), which is the most popular ML tech-

nique. Ten date fruit cultivars were studied to collect data for the targeted parameters at different 

cold storage times (0, 2, 4, and 6 months) to train and test the ANNs models. The electrical properties 

of the date fruits were measured using a high-precision LCR (inductance, capacitance, and re-

sistance) meter from 10 Hz to 100 kHz. The ANNs models were compared with a Multiple Linear 

Regression (MLR) at all testing frequencies of the electrical properties. The MLR models were less 

accurate than ANNs models in predicting fruit pH and had low performance and weak predictive 

ability for the TSS, aw, and MC at all testing frequencies. The optimal ANNs prediction model con-

sisted of the input layer with 14 neurons, one hidden layer with 15 neurons, and the output layer 

with 4 neurons, which was determined depending on the measurements of the electrical properties 

at a 10 kHz testing frequency. This optimal ANNs model was able to predict the pH with R2 = 0.938 

and RMSE = 0.121, TSS with R2 = 0.954 and RMSE = 2.946, aw with R2 = 0.876 and RMSE = 0.020, and 

MC with R2 = 0.855 and RMSE = 0.803 b by using the measured electrical properties. The developed 

ANNs model is a powerful tool for predicting fruit quality attributes after learning from the exper-

imental measurement parameters. It can be suggested to efficiently predict the pH, total soluble 

solids, water activity, and moisture content of date fruits based on their electrical properties at 10 

kHz. 

Keywords: pH; water activity (aw); moisture content (MC); total soluble solids (TSS); Machine 

Learning (ML); Artificial Neural Networks (ANNs); Multiple Linear Regression (MLR) 

 

1. Introduction 

Date palm (Phoenix dactylifera L.) is one of the oldest fruit trees that grow widely in 

the Middle East and North Africa. Dates are a key source of income and a staple food for 
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locals in many regions where they are cultivated. They have also played an essential role 

in the socioeconomic and environmental conditions of those countries [1]. The demand 

for dates has increased significantly in date-importing countries like India, Germany, the 

United Kingdom, the USA, Netherlands, Canada, Spain, Italy, Belgium, and Switzerland. 

Given the importance of the date palm trade on a local and global scale, ensuring a con-

tinuous supply in the market is vital [2]. Therefore, it is imperative to preserve date fruits 

in cold storage to maintain their supply chain. The fully ripe date palm fruits (Tamar) can 

be stored at 0–5 °C for 6–12 months [3–6]. Stored date fruits (cv. Khalas) at freezing tem-

perature for up to 6 months reduced fruit weights, moisture content, pH, titratable acidity 

ratio, and pectin, while their total soluble sugars and titratable acidity increased [7]. Date 

palm cvs. Sukkary and Khalas had their fruit size, water activity, pH, and redness color 

reduced after being stored at 5 °C for 12 months. However, fruit firmness and color (light-

ness and yellowness) increased [8]. 

Food security necessitates the storage of fruits in suitable conditions. The primary 

goals of fruit storage are to preserve fruits for consumption out of season, keep food in 

good shape, slow down fruit decaying, ensure an even supply to the market, and acquire 

higher pricing [9–11]. The flavor, color, texture, and nutrients of fruits are preserved when 

correctly stored. The most critical factors that affect the longevity of fruits after harvesting 

and during storage are temperature and relative humidity [12–14]. Optimal relative hu-

midity helps prevent weight loss, the spread of fungal diseases, and physiological disor-

ders [5,15]. Lowering these factors to a suitable level is one approach to slow down the 

deterioration of fruits and hence increase the fruit preservation time during storage 

[16,17]. Every fruit has a ‘critical temperature’ below or above where unfavorable and ir-

reversible chemical reactions occur. Therefore, high but not saturated relative humidity is 

required for most stored fruits [18–23]. 

Many studies on the quality assessment of agricultural products before and after stor-

age have been conducted. Fruits have substantially contributed to these studies due to 

their widespread production and consumption [24]. Over the last few decades, several 

scientists have established a variety of methodologies for evaluating the quality of agri-

cultural products other than analytical laboratory techniques [25,26]. The quality of con-

sumable products such as fruits and vegetables comprise multiple characteristics. Sensory 

properties (appearance, texture, taste, and aroma), nutritional values, physicochemical 

and mechanical properties, functional properties, and defects are all considered when de-

termining the quality of a product [27]. Nondestructive methods are widely used to meas-

ure fruit and vegetable quality; it is precise and rapid, making them ideal for online ap-

plications. All production and distribution chain activists, such as insurance companies, 

packaging, and transportation businesses, wholesalers, and retailers, benefit from nonde-

structive instrumental research in fruit firmness assessment. These studies can be used to 

assess fruit quality, predict the best time for their harvest, classify them according to their 

quality degree, and detect visible and internal fruit defects [26,28–32]. The measurement 

of electrical properties of biological materials permitted the possibility of a solution to the 

challenge of nondestructive fruit quality evaluation simply and quickly [33,34]. Changes 

in electrical characteristics can infer interior quality changes indirectly [35]. Physical prop-

erties as indicators for food quality can be used to determine food quality through electric 

conductivity or resistivity measurements [33,36,37]. The electrical properties of fruits have 

also been studied, such as the electrical impedance, resistance, and reactance [38–40]. 

In agricultural products, the electrical properties of cell tissues have been studied as 

indicators for cell tissue integrity. The electrical characteristics of cell membranes are dis-

tinct, and when the cell membrane is disrupted, these qualities decline [39,41]. The 

amount of water in biological cells is critical for their structural and functional integrity 

[42]. Therefore, structural changes in the cell membrane are supposed to cause a decrease 

in cell membrane capacitance when fruit moisture is decreased [43]. Extracellular re-

sistance has been found to decrease as cell membrane integrity deteriorates during storage 

[44]. Electrical impedance spectroscopy is used as a rapid indicator for the freshness of 
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fruit [45]. The impedance and capacitance of the cell membrane drop substantially as the 

electricity frequency rises [46]. 

The acquisition of digital data of the physicochemical properties is essential, and real-

time quality monitoring is unattainable without it. The conventional procedures are time-

consuming and ineffective for this cutting-edge technology. Artificial intelligence models 

are currently simple and have sparked interest in agriculture. Neurocomputing does not 

require the formulation of rules or algorithms, which affects a software’s performance 

[47]. It is easy to collect data and monitor food quality with the Internet of Things (IoT) 

and industrial automation applications [48]. Artificial neural networks (ANNs) modeling 

has increased acceptance as an exciting approach for predicting and real-time monitoring 

of stored food quality parameters [49]. These models are a set of computing algorithms 

that can solve difficult problems or establish complex relationships between variables by 

simply simulating human brain techniques. The ANNs are important because of their 

unique information processing qualities, including nonlinearity, noise and fault tolerance, 

and learning and generalization [50]. 

The application of ANNs in food technology has an inclusive scope. It can convert 

electrophoretic focusing patterns and chromatographic and spectrum data into meaning-

ful information for predicting various food products’ functioning, physical, chemical, sen-

sory, and rheological properties [51]. The ANNs, unlike other modeling techniques such 

as multilinear regression (MLR), can predict various parameters using multiple variables. 

Furthermore, these models differ from traditional modeling methods in that they can 

learn about the operation being represented without knowing the input variables or out-

put parameters. Therefore, ANN applications are considered useful food quality and 

safety tools, such as modeling microbial growth; interpreting spectroscopic data; and pre-

dicting the food safety, physiochemical, sensory, and functional properties of food prod-

ucts during processing, storing, and distribution. In addition, these models are innovative 

techniques that offer a lot more potential for complicated modeling tasks in simulation 

and process control for food safety and quality management [52]. 

This study aimed to develop and evaluate an Artificial Neural Networks (ANNs) 

model to predict the most important physicochemical properties of date palm fruits, i.e., 

the pH, total soluble solids, moisture content, and water activity during cold storage based 

on their electrical properties. 

2. Materials and Methods 

2.1. Sampling Material 

Ten cultivars of high-quality date palm fruits at Tamar stages (brown color, full rip-

ening) were selected, i.e., Ruziez, Khodry, Khalas, Sagai, Sukkari, Sullag, Medjool, Sheshi, 

Ajwa, and Rushodiya. The date palm fruits were obtained from the orchard of Research 

and Training Station, King Faisal University, Al-Ahsa, Saudi Arabia (Latitude: 

25°16’19.0344’’ N, Longitude: 49°42’25.8228’’ E) and from the Dates Packing Plant Al-

Ahsa, Date Palm Research Center Al-Ahsa, Ministry of Environment, Water, and Agricul-

ture, Kingdom of Saudi Arabia (Latitude: 25°27’54.75” N, Longitude: 49°33’49.51” E). 

The obtained fruits were cleaned, air-dried, and then placed into aerated plastic con-

tainers (65 cm × 14 cm × 21 cm) and left at room temperature (25 °C) for 24 h. Then, they 

were transferred for storage in a cold storage room (48.8 m3 total capacity) with a set-point 

temperature of 5 °C [5] at the Date Palm Research Center of Excellence, King Faisal Uni-

versity, Saudi Arabia. 

2.2. Physicochemical Properties Determination 

The physicochemical properties, i.e., the pH, total soluble solids (TSS, Brix), moisture 

content (MC, %), and water activity (aw) of the different cultivars of date palm fruit, were 

measured at 0, 2, 4, and 6 months of cold storage. These quality parameters of date palm 
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cultivars were determined in laboratories at the Date Palm Research Center Al-Ahsa, Min-

istry of Environment, Water, and Agriculture, Saudi Arabia. The measurements were car-

ried out on 20 samples from each date fruit cultivar (10 cultivars) at four cold storage times 

(0, 2, 4, and 6 months). The total measured samples were 800 from all selected cultivars 

before and after the cold storage of date fruits. Therefore, 200 samples were randomly 

selected for measuring at each target storage time. The physicochemical properties, i.e., 

the pH, total soluble solids (TSS), water activity (aw), and moisture content (MC) of the 

different cultivars of date palm fruit, were measured according to AOAC analysis meth-

ods [53]. 

The pH of the date palm fruit was determined using a pH meter (Model HI-99121, 

Hanna Instruments, Leighton Buzzard, Bedfordshire, UK). Next, the TSS of the date palm 

fruits was determined using a digital refractometer (Model 614 RFM 840, Richmond Sci-

entific Ltd. Unit 9, Lancashire, UK). The TSS results were expressed as Brix at 25 °C. Next, 

the aw of date fruits was determined using a portable water activity device (Model 

Aqualab Series 3, Decagon Devices, Inc., Pullman, WA, USA). Finally, the MC of the fruit 

was determined using a portable electronic moisture balance (Model MOC-120H, Shi-

madzu Corporation, Kyoto, Japan. 

2.3. Electrical Properties Determination 

The electrical properties of the same fruits were nondestructively measured in intact 

conditions at room temperature (25 ± 0.5 °C) before they were destructed for measuring 

the physicochemical properties. These electrical properties of date palm cultivars were 

determined in the post-harvest laboratories of the Date Palm Research Center of Excel-

lence, King Faisal University, Al-Ahsa, Saudi Arabia. A high-precision LCR (inductance, 

capacitance, and resistance) meter (Model Instek LCR-6100, 10 Hz–100 kHz, Good Will 

Instrument Co., Ltd., Tucheng Dist., New Taipei, Taiwan) was used to measure the elec-

trical properties of the same fruits selected to measure the physicochemical measurements 

(800 samples) at 10, 100, 1000, 10,000, and 100,000 Hz. The measured electrical properties 

were the capacitance value at the series equivalent circuit model (Cs, nF), the equivalent 

series resistance (Rs, kΩ), the dissipation factor (D), the capacitance value at the parallel 

equivalent circuit model (Cp, nF), the equivalent parallel resistance (Rp, kΩ), the induct-

ance value in the parallel equivalent circuit model (Lp, H), the inductance value in the 

series equivalent circuit model(Ls, H), the resistance (R, kΩ), the reactance (X, kΩ), the 

direct current resistance (DCR, kΩ), the absolute value of the impedance (Z, kΩ), the 

phase radian (θ, rad), the phase angle (θ°, degree), and the quality factor (Q). The LCR 

meter calculates θ and Z by measuring the electrical current flowing to the fruit being 

measured and the voltage across the applied electrodes. It then calculated the measure-

ment parameters, i.e., Cs, Rs, D, Cp, Rp, Lp, Ls, R, X, DCR, and Q values. The equations 

employed to calculate these measurement parameters differ depending on whether the 

LCR meter operates in a parallel equivalent circuit mode or series equivalent circuit mode. 

In the case of series and parallel circuits, Figure 1 illustrates the measured electrical prop-

erties and equivalent circuits. Figure 2 shows the components of the date fruits electrical 

parameters measuring system. The system consists of a high precision LCR Meter, a plas-

tic clamp with two copper electrodes, Instek LCR-06, a test lead with an alligator clip con-

nected with the LCR meter, and a laptop. As the dielectric material, dates were placed 

between two conductive plate electrodes made of copper. The parameter values of elec-

tricity are monitored within a frequency range of 10 Hz to 100 kHz. The signal’s input 

voltage was 1 volt (RMS). Each sample was measured three times and then the average 

was calculated. The measurements of the electrical parameters were grouped based on 

the physicochemical properties of date fruits to determine the correlation and regression 

model. 
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Figure 1. The equivalent circuits. (A) Resistor with a capacitor in a parallel circuit, (B) resistor with 

a capacitor in a series circuit, (C) resistor with a coil in a parallel circuit, and (D) resistor with a coil 

in a series circuit. 

 

Figure 2. Photographic view of the measurement system to determine the electrical properties of 

the tested date fruits. 

2.4. Structure of Artificial Neural Networks 

In this study, ANNs have been used as an alternative approach to predict date fruit 

quality attributes, i.e., the pH, TSS, aw, and MC, of date fruits during cold storage, which 

are based on 14 electrical properties (i.e., Cs, Rs, D, Cp, Rp, Lp, Ls, R, X, DCR, Z, θ, θ°, 

and Q). The block diagram of the applied ANNs prediction model is shown in Figure 3. 

The input layer acquires data obtained from the electrical properties measurement system. 

The hidden layer performs the data processing, and the output layer creates the continu-

ous predicted values of the target physicochemical property. The values acquired from 

the input layer joined to a hidden node are multiplied by their weights, a set of predeter-

mined values, and the outcomes, which are added to create a new value. Finally, the cre-

ated value is passed as an argument to a mathematical function and an activation function 

to predict the target property values. 
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Figure 3. Artificial neural network architecture. 

The sum of the weighted inputs entering a neural network node j and the output 

activation function converts a neuron’s weighted value to its hyperbolic tangent (TanH) 

output activation function, as shown in Figure 4. The summation and the activation func-

tions can be expressed by the following equations: 

��� = � X�

�

���

W�� (1) 

O� =
2

1 + e�����
− 1 

(2) 

where Xoj is the outcome of the sum, X is the input value with i as the number of the inputs, 

W is the weight of the input weight, and Oj is the neuron output. 

The error function depends on the values of the weights, which need to be adjusted 

to minimize this error. For example, for a training set (X1, t1), (X2, t2) ...., (Xn, tn) that 

consisted of k ordered pairs of n-inputs and m-outputs (the input and output patterns), 

the error for the neuron output and the error function of the minimizing network error 

can be expressed by the following equations: 

E� =
�

�
 �O� − t��

�
 (3) 

E� =
�

�
�(O� − t�)

�

�

� ��

 (4) 

where Ej is the error, O� is the output created by the input pattern from the training set, 

and �� is the target value. 
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Figure 4. Artificial neural network active node. 

Bias, denoted by bj in Figure 4, has either an increasing effect or lowering of the net 

input of the activation function. Increasing the learning rate of the ANNs model acceler-

ates the convergence around the optimal solution—then the convergence becomes impos-

sible. Once a set of acceptable weights has been determined, the ANNs model can use 

another dataset with unknown output values to automatically predict the related outputs. 

For conducting this study, the multilayer perceptron module of IBM SPSS Statistics 

26 (IBM Corporation, Armonk, NY., USA) was used to develop ANNs models and evalu-

ate their accuracy. The multilayer perceptron module neural networks are trained with a 

backpropagation learning algorithm that uses gradient descent to update the weights to-

ward minimizing the error function. The data were randomly set to 60% for training, 20% 

for testing, and 20% for holdout subsets. The training dataset was used to determine the 

weights and construct the model; the testing data was used to determine the errors and 

stop overtraining in the training mode. Finally, the holdout data was used to validate the 

prediction ANNs model. 

2.5. Multilinear Regression 

In this study, the multilinear regression (MLR) was used to develop a model for pre-

dicting date fruit quality attributes, i.e., the pH, total soluble solids (TSS), water activity 

(aw), and moisture content (MC), of the fruits during cold storage, which is based on 14 

electrical properties (i.e., Cs, Rs, D, Cp, Rp, Lp, Ls, R, X, DCR, Z, θ, θ°, and Q). The MLR 

function is a linear equation that can be expressed in the following formula: 

y� = B� + � B�x�

�

���

 
(5) 

y = B� + B�x� + B�x� + ⋯ + B�x� (6) 

where yi is the dependent variable, i is the variable’s number (n), x� is the independent 

variable, B0 is the constant of the y-intercept, and Bi is the constant of the slope coefficients 

for each explanatory variable. The constant of the regression equations for the pH, TSS, 

aw, and MC were determined using IBM SPSS Statistics 26 software. 

2.6. Statistical Analysis and ANNs Evaluation 

After measuring the physicochemical and electrical properties of different cultivars 

of date fruits, the data were analyzed using IBM computer software SPSS Statistics, ver-

sion 26. A Tukey test was used at a 5% probability level to separate mean differences. The 



Foods 2022, 11, 1666 8 of 24 
 

 

values of the coefficient of determination (R2) and the root-mean-square error (RMSE) 

were used to evaluate the performance of the prediction MLR and ANNs models at the 

various testing frequencies. The criteria of R2 and RMSE can be expressed as follows: 

�� = 1 −
∑��� − ���

�

∑ ��
� −

(∑ ��)�

�

 (7) 

RMSE = �
∑ ��� − ���

��
�

�
 (8) 

where Mj and Tj are the measured and the predicted values, respectively, of data j, and n 

is the number of the measurement. 

3. Results and Discussion 

3.1. Physicochemical Data 

Fruit pH showed a statistically significant (p ≤ 0.05) difference among date palm cul-

tivars, and cv. Khalas had the highest fruit pH, followed by Sukkari, Sheshi, Khodry, and 

Sullag (Table 1). Similarly, the TSS was maximum in cv. Khalas and minimum in cv. Salag. 

The lowest moisture content was recorded in cvs. Rushodiya and Sukari, which were sta-

tistically at par, whereas it was highest in cv. Sagai. The highest range of water activity 

was determined in cvs. Rushodiya and Sagai, followed by Khadri, which significantly de-

creased in cvs. Ruziez, Medjool, and Ajwa. 

Previous studies have demonstrated that various date cultivars have considerable 

variations in fruit physicochemical attributes [23,54–56]. The pH variations can affect the 

fruits’ flavor, aroma, texture, and shelf life due to organic acids, which change from culti-

var to cultivar. Since pH levels greater than 4.6 indicate low-acidic values, the current 

investigation found that all date palm cultivars at the Tamar stage exhibited low-acidic 

qualities. It has already been reported in a few other studies that the fruit pH decreases 

with maturity stages, and it is lowest at the final stage of ripening [57–59]. In general, the 

increase in the TSS value is related to the decrease in the moisture content of the fruit [60–

62]. 

In this study, it was observed that each cultivar of the ten tested cultivars responded 

individually. For example, the TSS value in cv. Khalas was 71% higher than the moisture 

content, which means the higher TSS value of cv. Khalas might be due to the significant 

decrease in moisture content from the fruit surface. The moisture content of date palm 

fruits declines rapidly as they ripen. For example, the fruits of certain date palm cultivars 

that were sold as fresh at the Rutab stage have a moisture content of less than 35%. It 

further decreases to less than 24% when the fruit ripened at the Tamar stage and reaches 

4–10% in ripened dry date cultivars [63,64]. Similarly, date fruits with a moisture content 

<40% and a water activity <0.90 are generally unsuitable for microbial growth [65]. 

Our results indicated 15.72–21.06% of the moisture content in the date palm cultivars 

studies and are categorized as semi-dry cultivars. These findings coincide with those pre-

viously reported, with a few variations due to the date palm cultivars and climatic condi-

tions [66–68]. Due to its importance as an index of date quality stability and microbial 

spoilage, water activity must be considered in date fruit standards. A water activity of 

more than 0.95 generally encourages the growth of microorganisms in fruits and vegeta-

bles [69]. Nadeem et al. [70] reported that many local and commercial date palm cultivars 

had a 0.32 to 0.48 water activity. Aleid et al. [8] reported a non-significant difference in 

water activity in date palm cultivars, i.e., Sukkary, Khalas, Sugai, and Anbara, ranging 

from 0.417 to 0.623. They were studied on date palm cvs. Aseel, Dhakki, Karbalain, Mu-

zawati, and Rabai, Rashid et al. [71] determined the lowest water activity (0.680) in cv. 

Aseel and highest (0.795) in cv. Rabai. They stated that the product deterioration risk is 

minimal in cv. Aseel because of low water activity. In the present study, although the 
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water activity in all date palm cultivars is lower than 0.95, cys. Ruziez, Ajwa, Medjool, 

Sullag, Sheshi, and Sukkari cultivars have minimal risk of microbial spoilage. 

Table 1. Comparison of the mean values ± standard deviation of the pH, total soluble solids (TSS), 

water activity (aw), and moisture content (MC) of the ten stored date fruits cultivars. 

Date Fruit Cultivars 
Characteristics 

pH TSS (Brix) MC (%) aw 

Ruziez 5.61 ± 0.32 G 57.55 ± 13.73 B 18.34 ± 1.31 D 0.52 ± 0.12 F 

Khodry 6.14 ± 0.09 D 56.07 ± 9.71 C 20.52 ± 0.91 B 0.61 ± 0.07 A 

Khalas 6.56 ± 0.32 A 65.63 ± 6.56 A 19.03 ± 2.52 C 0.59 ± 0.08 B 

Sagai 5.77 ± 0.18 F 44.42 ± 9.12 I 21.06 ± 0.95 A 0.62 ± 0.04 A 

Sukkari 6.32 ± 0.23 B 51.28 ± 12.93 E 15.85 ± 1.47 G 0.56 ± 0.05 C 

Sullag 6.05 ± 0.29 E 47.76 ± 14.12 F 18.59 ± 1.75 D 0.55 ± 0.09 CD 

Medjool 5.81 ± 0.24 F 52.8 ± 11.71 D 18.57 ± 1.32 D 0.54 ± 0.06 E 

Sheshi 6.23 ± 0.2 C 46.08 ± 3.82 H 17.74 ± 1.17 E 0.55 ± 0.09 CD 

Ajwa 5.50 ± 0.18 H 46.64 ± 9.3 G 16.96 ± 1.3 F 0.54 ± 0.09 E 

Rushodiya 5.28 ± 0.13 I 51.45 ± 8.98 E 15.72 ± 1.18 G 0.62 ± 0.08 A 

The means (n = 80) within each column with the same letters are not significantly different at p ≤ 

0.05. 

Fruit pH was significantly decreased when date palm fruits were stored for different 

durations (Table 2). It was higher in unstored fruits (6.07), which decreased to 5.69 after 6 

months of storage. Fruit TSS, moisture content, and water activity showed the opposite 

trend to pH, as these attributes increased with the increase in storage duration. Unstored 

fruits had a lower TSS (42.32 Brix), moisture content (17.05%), and water activity (0.49) 

compared to fruits stored for 6 months, which had a higher TSS (64.11 Brix), moisture 

content (19.49%), and water activity (0.64). 

Hazbavi et al. [72] mentioned that, after storing dates (cv. Stamaran) for six months 

of storage, the pH was reduced by 5.4%. A 10.97% decrease in the pH of the date palm cv. 

Tamar fruits of date palm (cv. Khalas) stored at ‒18 °C for 6 months had the lowest pH 

compared to Khalal and Rutab fruits [7]. Aleid et al. [8] reported that fruit pH decreased 

while TSS and moisture content increased when the date fruits (cv. Khalas) were stored at 

5 °C for 12 months. 

The findings of the present study showed a 6.26% reduction in the fruit pH after 6 

months of storage. Microorganisms’ fermentative activity results in the production of or-

ganic acids and a decrease in pH [73]. According to our study, the TSS of date palm fruits 

stored for 6 months increased by 51.48%. Similarly, an increase in TSS was observed in 

date palm cv. Barhi, which was stored for 70 days at 0 °C and 90–95% RH [60]. The TSS 

increased in Tamar fruits of date palms (cv. Mazafati) stored for 180 days at 4 °C [19]. The 

enzymatic conversion of large polysaccharides into small sugars would be the main rea-

son for the increase in TSS [72]. Radi et al. [74] suggested that the increase in TSS of date 

fruits during storage could be related to microbial and enzymatic activities degrading 

high molecular weight compounds to low molecular weight ones. 

Our study also showed that the moisture content and water activity of date palm 

fruits were increased by about 14.31% and 30.61%, respectively, after 6 months of storage. 

Mohammed et al. [14] recorded a 19.05% moisture content and 0.76 water activity in date 

fruits (cv. Khalas) stored at 5 °C and 80% RH. Another study indicated that the moisture 

content was not significantly increased in cvs. Majhoul and Boufeggous, whereas TSS was 

increased in cv. Majhoul after 5 months of storage at 2–4 °C and 66–68.5% RH [75]. The 

evaporation of fruit water caused by the relatively high temperature and moderate RH 

could explain the decrease in both moisture and water activity. 



Foods 2022, 11, 1666 10 of 24 
 

 

Table 2. Comparison of the mean values ± standard deviation of the pH, total soluble solids (TSS), 

moisture content (MC), and water activity (aw) of the stored date fruits under different cold storage 

times. 

Characteristics 
Storage Time (Months) 

0 2 4 6 

pH 6.07 ± 0.45 A 6.02 ± 0.42 B 5.91 ± 0.4 C 5.69 ± 0.41 D 

TSS (Brix) 42.32 ± 7.01 D  46.44 ± 6.7 C 54.99 ± 9.29 B 64.11 ± 11.09 A 

MC (%) 17.05 ± 1.95 D 17.68 ± 1.8 C 18.74 ± 2.01 B 19.49 ± 2.24 A 

aw 0.49 ± 0.06 D 0.54 ± 0.05 C 0.61 ± 0.07 B 0.64 ± 0.07 A 

The means (n = 800) within each column with the same letters are not significantly different at p ≤ 

0.05. 

3.2. Electrical Properties Data 

The electrical properties of date palm fruits were determined at different frequencies 

and were significant at p ≤ 0.05 (Table 3). The measured electrical properties, such as the 

capacitance value (series equivalent circuit model), equivalent series resistance, dissipa-

tion factor, capacitance value (parallel equivalent circuit model), equivalent parallel re-

sistance, resistance, and the absolute value of impedance, were very large at a low fre-

quency (10 Hz). However, the reactance, phase radian, and phase angle electrical proper-

ties were higher at 100 Hz. As a result, the inductance value (series equivalent circuit 

model) was a maximum at 1000 Hz frequency, while the inductance value (parallel equiv-

alent circuit model) was measured as higher than 100,000 Hz. The statistical difference 

was non-significant regarding the direct current resistance parameter; however, its value 

was linearly increased with the increase in frequency. 

Due to the high electrical capacity of cell membranes, electrical current only flowed 

via extracellular fluid, which has a relatively high resistance in the low-frequency area. 

However, the impedance drops significantly in the high-frequency range because the cur-

rent can travel through intracellular fluid, which has a low resistance. It can be seen that, 

as the frequency increased, the impedance decreased dramatically. Dispersion is a phe-

nomenon in which the decrease in impedance is proportional to the increase in frequency 

[46]. As the frequency increased, the capacitance of the cell membrane dropped. The 

amount of water in biological cells is critical for their structural and functional integrity 

[42]. As a result, it is supposed that when fruit moisture is reduced, structural changes in 

the cell membrane cause a decrease in cell membrane capacitance [43]. The ion efflux 

across the fruit membrane produced by osmotic changes in the extracellular fluid modi-

fied the electrical properties of the cell membrane. Thus, alterations in cell membrane ca-

pacitance could have been created by ion movement caused by plasmolysis when mois-

ture is declined [34,43]. Heat injury to plant cells causes a reduction in the capacitance of 

the cell membrane [40]. 

At low temperatures, electrode polarization was shown to account for a higher frac-

tion of overall impedance in potatoes, but extracellular resistance and capacitances con-

tinued to decline. It could be the electrolyte leakage to the extracellular space, presumably 

due to membrane injury [76]. Soltani et al. [77] applied a capacitance sensing system to 

predict banana quality during ripening and found a good relationship between SSC and 

firmness at a 1 MHz frequency. Similarly, the highest inductive value was observed at 34 

MHz frequency to determine the ripening time of oil palm fruit bunch [78]. The electrical 

impedance values of various apple cultivars rapidly decreased, which is assumed to cor-

relate to dispersion induced by cell membrane capacitance [39,41]. Electrical current flows 

through the extracellular fluid at low frequencies, thereby avoiding cell membranes. At 

high frequencies, however, the cell membranes act as a conductor. The current flows 

through the intracellular fluid, which contains more electrolytes; thus, the impedance at 

low frequencies is higher [39,79]. 
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Table 3. Comparison of the mean values ± standard deviation of the electrical parameter of the 

stored date fruits under various testing frequencies. Where Cs is capacitance value (series equivalent 

circuit model), Rs is equivalent series resistance, D is dissipation factor, Cp is capacitance value 

(parallel equivalent circuit model), Rp is equivalent parallel resistance, Lp is inductance value (par-

allel equivalent circuit model), Ls is inductance value (series equivalent circuit model), R is re-

sistance, X is reactance, DCR is direct current resistance, Z is the absolute value of impedance, ϴ 

(rad) is phase radian, ϴ° is phase angle, and Q is the quality factor. 

Parameters 
Frequency (Hz) 

10 100 1000 10,000 100,000 

Cs (nF) 1916.73 ± 1926.05 A 771.77 ± 1369.47 B 40.89 ± 55.76 C 2.3 ± 3.63 C 0.3 ± 0.3 C 

Rs (kΩ) 687.33 ± 738.17 A 602.25 ± 610.49 B 542.33 ± 534.54 B 389.32 ± 339.27 C 91.1 ± 51.63 D 

D 28.55 ± 16.79 A 20.19 ± 12.05 B 8.86 ± 3.95 C 3.28 ± 1.71 D 1.19 ± 0.87 E 

Cp (nF) 136.15 ± 159.6 A 31.52 ± 66.83 B 2.97 ± 4.84 C 1.09 ± 1.85 C 0.7 ± 1.3 C 

Rp (kΩ) 646.73 ± 686.5 A 606.4 ± 616.16 AB 552.71 ± 551.47 B 468.83 ± 456.8 C 308.34 ± 264.8 D 

Lp (H) −1422.6 ± 1641 C −1261.5 ± 2214 C −725.71 ± 592.5 B −34.98 ± 51.45 A −29.31 ± 97.31 A 

Ls (H) −464.63 ± 617.51 C −86.85 ± 123.01 B −11.67 ± 14.8 A −65.5 ± 209.08 B −12.77 ± 42.96 A 

R (kΩ) 640.7 ± 677.13 A 605.6 ± 613.19 AB 547.58 ± 537.3 B 391.56 ± 339.1 C 94.59 ± 53.75 D 

X (kΩ) −110.84 ± 330.09 B −65.09 ± 104.27 A −103.71 ± 137.53 B −163.82 ± 203.84 C −130.02 ± 103.78 B 

DCR (kΩ) 681.48 ± 698.49 A 689.85 ± 709.44 A 705.66 ± 726.77 A 708.08 ± 728.74 A 713.14 ± 730.99 A 

Z (kΩ) 642.84 ± 679.61 A 614.38 ± 619.67 AB 554.67 ± 547.39 B 454.89 ± 452.38 C 164.41 ± 111.08 D 

ϴ (rad) −0.14 ± 0.12 B −0.11 ± 0.08 A −0.16 ± 0.07 B −0.41 ± 0.18 C −0.86 ± 0.26 D 

ϴ° −8.17 ± 6.75 B −6.32 ± 4.48 A −9.06 ± 4.26 B −23.45 ± 10.27 C −48.74 ± 14.74 D 

Q 0.16 ± 0.13 C 0.44 ± 1.11 B 0.17 ± 0.08 C 0.47 ± 0.25 B 1.27 ± 0.6 A 

The means (n = 610 for Lp parameter at 10 Hz, N = 649 for Lp parameter at 100 Hz, n = 800 for Lp at 

1000, 10,000, and 100,000, n = 800 for other electrical parameters) within each column with the same 

letters are not significantly different at p ≤ 0.05. 

Table 4 shows that the average values of important electrical properties of date palm 

fruits were significantly (p ≤ 0.05) varied at different storage durations (0, 2, 4, and 6 

months). The fruits before storage showed higher values regarding series resistance, dis-

sipation factor, parallel resistance, resistance, direct current resistance, the absolute value 

of impedance, phase radian, and phase angle. However, there was a non-significant dif-

ference in the phase radian and phase angle parameters between before storage and 2 

months of storage fruits. The maximum quality factor value was observed in fruits stored 

for 4 months, followed by 6 months of storage fruits and before storage fruits. The capac-

itance value (series equivalent circuit model), capacitance value (parallel equivalent cir-

cuit model), inductance value (parallel equivalent circuit model), inductance value (series 

equivalent circuit model), and reactance were maximal after 6 months of cold storage 

fruits. However, there was a non-significant difference in the capacitance value (series 

equivalent circuit model) and capacitance value (parallel equivalent circuit model) param-

eters between 4 and 6 months of stored fruits. 

Different researchers reported that fruit electrical conduction increases with temper-

ature, field strength, storage duration, sugar concentration, and fruit firmness [38,80–84]. 

Watanabe et al. [39] stated that the initial resistance and reactance values of apple fruit 

varied by cultivar and declined as storage duration increased. The non-uniformity of elec-

trical characteristics was attributed to non-uniform conditions, such as differences in cell 

size or shape between cultivars. They also stated that the LTO, which relates to the re-

sistance of the extracellular parts of the fruit, declined after four weeks of storage and then 

increased. However, it decreased after 16 weeks of storage in some apple cultivars. Our 

study indicated that resistance decreased with the increase in storage duration. Extracel-

lular resistance has been reported to decrease in vegetables due to the degradation of cell 

membrane integrity during storage [44,85]. It is assumed that the electrical resistance in-

crease in apples after storage was caused by water transpiration during storage [86]. The 
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water activity and moisture content of apples significantly impacted dielectric character-

istics during storage. Therefore, the change in electrical parameters can be used to indi-

rectly reflect changes in internal quality [35]. Jiangjie et al. [87] found that a frequency of 

39.8 kHz could be used for nondestructive post-harvest quality detection for new red star 

apples, and that the absolute value of impedance, equivalent parallel resistance, and ca-

pacitance could be used as sensitive electrical parameters to indicate quality parameter 

changes during the ripening and senescence. According to Sastry [88], electrical conduc-

tion increases with storage duration and the difference was negligible when the tempera-

ture is changed. In the present study, electrical parameters such as capacitance, dissipa-

tion factor, inductance, and reactance increased with the increased storage time. 

Table 4. Comparison of the mean values ± standard deviation of the electrical parameter of the 

stored date fruits under different cold storage times. 

Parameters 
Storage Time (Months) 

0 2 4 6 

Cs (nF) 287.35 ± 785.39 B 418.68 ± 927.34 B 682.6 ± 1459.09 A 796.96 ± 1709.89 A 

Rs (kΩ) 725.08 ± 728.62 A 515.7 ± 525.32 B 400.64 ± 426.96 C 208.44 ± 321.16 D 

D 17.46 ± 18.78 A 13.17 ± 13.66 B 11.49 ± 11.33 C 7.53 ± 8.55 D 

Cp (nF) 20 ± 70.79 B 27.05 ± 61.87 B 42.39 ± 98.19 A 48.49 ± 125.91 A 

Rp (kΩ) 809.45 ± 703.16 A 575.89 ± 507.79 B 447.81 ± 415.44 C 233.32 ± 324.18 D 

Lp (H) −841.67 ± 1700 C −597.43 ± 1155.3 AB −642.08 ± 1219.2 B −508.65 ± 1213.8 A 

Ls (H) −155.74 ± 231.36 B −127.86 ± 323.04 AB −127.79 ± 314.91 AB −101.73 ± 290.9 A 

R (kΩ) 715.97 ± 702.6 A 508.86 ± 506.09 B 394.65 ± 410.81 C 204.6 ± 310.65 D 

X (kΩ) −134.65 ± 174.08 B −112.78 ± 135.64 AB −115.95 ± 199.72 AB −95.41 ± 260.1 A 

DCR (kΩ) 1059.65 ± 928.51 A 767.66 ± 672.26 B 619.92 ± 553.36 C 351.33 ± 430.64 D 

Z (kΩ) 763.3 ± 714.42 A 542.55 ± 514.96 B 420.84 ± 418.87 C 218.28 ± 320.59 D 

ϴ (rad) −0.28 ± 0.35 A −0.29 ± 0.3 A −0.38 ± 0.33 B −0.39 ± 0.3 B 

ϴ° −15.87 ± 19.91 A −16.62 ± 17.04 A −21.79 ± 18.6 B −22.32 ± 16.86 B 

Q 0.48 ± 0.91 AB 0.46 ± 0.69 B 0.54 ± 0.65 A 0.52 ± 0.53 AB 

The means (n = 720 for Lp parameter at 0, n = 979 for Lp parameter at 2-months, n = 980 for Lp 

parameter at 4 and 6-months, n = 1000 for all other parameters) within each column with the same 

letters are not significantly different at p ≤ 0.05. 

3.3. Correlation between Physicochemical and Electrical Properties 

Table 5 shows the correlation between the fruit physicochemical traits, such as pH, 

TSS, moisture content, and water activity. The electric parameters at various frequencies 

vary significantly, either positively or negatively. At a low frequency (10 Hz), there was a 

significant positive correlation between pH, inductance value (parallel), and inductance 

value (series); and TSS, moisture content, and water activity with capacitance value (par-

allel) and quality factor. Similarly, at 100 Hz frequency, pH had a strong positive correla-

tion with dissipation, phase radian, phase angle, and quality factor. The electrical param-

eters, inductance value (parallel) and inductance value (series), had a better positive cor-

relation with TSS and moisture content. 

In contrast, water activity positively correlated with inductance value (parallel) at 

1000 Hz frequency. The electric parameter reactance was positively correlated with pH 

and moisture content at a 10,000 Hz frequency. At a high frequency (100,000 Hz), fruit pH 

was positively correlated with equivalent series resistance, capacitance value (parallel), 

equivalent parallel resistance, resistance, and the absolute value of impedance; fruit TSS 

with capacitance value (series) and reactance; moisture content with capacitance value 

(series), phase radian, and phase angle; and water activity with capacitance value (series), 

dissipation factor, inductance value (series), reactance, phase radian, and phase angle. 

The electrical resistance showed a significant decline as the citrus fruit matured and 

was closely correlated to the changes in pH [89]. Our results showed a negative correlation 
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of resistance when correlated with pH, TSS, moisture content, and water activity. How-

ever, it positively correlated with pH when the frequency was 10,000 and 100,000 Hz. A 

reduced resistance is also linked to a reduction in hardness and TSS rise [90]. Soltani et al. 

[77] found a correlation between the soluble solid contents, firmness of the fruit, and the 

capacitance sensing system parameters. There was a strong correlation between the qual-

ity parameters and the relative permittivity of the capacitive property. Citrus tissues 

found a linear relationship between the matrix moisture content and the dielectric con-

stant γ-relaxation was found in citrus tissues. They indicated that the dielectric constant 

under γ-relaxation is an important tool for predicting the moisture content of citrus fruit 

[91]. The highest correlation with various frequencies predicted the quality parameters of 

the damaged apples [92]. The cell wall, membranes, and composition of the cell contents 

may all undergo significant modifications during storage. All these alterations would 

have an impact on tissue capacitance. A change in reactance can be used to indicate 

changes in capacitance. The impedance values will change when the resistance and reac-

tance parameters change. As a result, its relationship with physicochemical properties will 

be comparable. During the storage of date fruits, the value of resistance and reactance 

decreased, lowering the value of its impedance [93]. 

Table 5. The correlation between the pH, total soluble solids (TSS), water activity (aw), and moisture content (MC) of 

the stored date fruits and the electrical parameters at various frequencies. 
  Cs  Rs  D Cp Rp Lp Ls R X DCR Z  ϴ  ϴ° Q 

pH 

10 −0.063 −0.120 ** 0.375 ** −0.144 ** −0.140 ** 00.054 0.307 ** −0.125 ** −0.087 * −0.133 ** −0.123 ** 0.423 ** 0.427 ** −0.406 ** 

100 −0.223 ** −0.082 * 0.722 ** 0.461 ** −0.086 * −0.222 ** 00.062 −0.082 * 0.128 ** −0.126 ** −0.075 * 0.483 ** 0.496 ** 0.129 ** 

1000 −0.280 ** −00.063 0.420 ** 0.498 ** −0.077 * −0.167 ** 0.234 ** −00.062 00.047 −0.125 ** −00.067 0.306 ** 0.350 ** −0.304 ** 

10,000 −0.383 ** 00.061 0.235 ** 0.540 ** −00.042 −00.051 00.026 00.065 0.154 ** −0.120 ** −00.069 0.281 ** 0.265 ** −0.223 ** 

100,000 −0.454 ** 0.325 ** 0.176 ** 0.559 ** 0.111 ** 0.027 0.030 0.374 ** −0.170 ** −0.069 0.237 ** 0.059 0.076 * −0.104 ** 

TSS 

10 0.236 ** −0.307 ** −0.589 ** 0.378 ** −0.302 ** −0.193 ** 0.078 * −0.322 ** −0.200 ** −0.305 ** −0.325 ** −0.621 ** −0.623 ** 0.591 ** 

100 0.231 ** −0.347 ** −0.189 ** 0.292 ** −0.346 ** 0.425 ** 0.077 * −0.349 ** −00.021 −0.321 ** −0.351 ** −0.433 ** −0.433 ** −0.220 ** 

1000 0.395 ** −0.368 ** −0.153 ** 0.229 ** −0.362 ** 0.439 ** 0.279 ** −0.369 ** 00.011 −0.324 ** −0.366 ** −0.337 ** −0.360 ** 0.339 ** 

10,000 0.249 ** −0.410 ** −0.285 ** 0.204 ** −0.366 ** 0.250 ** 0.120 ** −0.414 ** 0.292 ** −0.328 ** −0.361 ** −0.435 ** −0.430 ** 0.429 ** 

100,000 0.618 ** −0.658 ** −0.116 ** 0.172 ** −0.421 ** 0.110 ** 0.117 ** −0.665 ** 0.444 ** −0.334 ** −0.542 ** −0.071 * −0.080 * 0.007 

MC 

10 −0.160 ** −0.500 ** −0.293 ** 0.102 ** −0.487 ** −0.225 ** 0.270 ** −0.493 ** 0.178 ** −0.465 ** −0.487 ** −0.504 ** −0.507 ** 0.489 ** 

100 −0.078 * −0.492 ** −0.400 ** −00.028 −0.489 ** 00.068 0.408 ** −0.488 ** 0.402 ** −0.466 ** −0.491 ** −0.440 ** −0.434 ** −0.018 

1000 0.049 −0.497 ** −0.370 ** −00.038 −0.492 ** 0.495 ** 0.448 ** −0.501 ** 0.434 ** −0.477 ** −0.500 ** −0.415 ** −0.446 ** 0.413 ** 

10,000 0.092 ** −0.492 ** −0.233 ** −00.056 −0.497 ** 0.153 ** 00.022 −0.497 ** 0.484 ** −0.479 ** −0.511 ** −0.234 ** −0.224 ** 0.244 ** 

100,000 0.367 ** −0.366 ** −0.109 ** −0.080 * −0.500 ** 0.020 0.025 −0.395 ** 0.469 ** −0.479 ** −0.475 ** 0.120 ** 0.115 ** −0.213 ** 

aw 

10 0.186 ** −0.258 ** −0.644 ** 0.268 ** −0.255 ** −0.159 ** −0.088 * −0.265 ** −00.039 −0.244 ** −0.270 ** −0.643 ** −0.637 ** 0.623 ** 

100 0.164 ** −0.310 ** −0.403 ** −0.004 −0.309 ** 0.070 0.071 * −0.311 ** 00.010 −0.254 ** −0.302 ** −0.574 ** −0.575 ** −0.153 ** 

1000 0.292 ** −0.322 ** −0.290 ** −0.030 −0.319 ** 0.487 ** 0.168 ** −0.324 ** 0.082 * −0.249 ** −0.320 ** −0.524 ** −0.484 ** 0.510 ** 

10,000 0.299 ** −0.438 ** −0.224 ** −0.064 −0.350 ** 0.324 ** 0.174 ** −0.441 ** 0.217 ** −0.252 ** −0.329 ** −0.378 ** −0.399 ** 0.437 ** 

100,000 0.610 ** −0.689 ** 0.086 * −0.096 ** −0.427 ** 0.174 ** 0.177 ** −0.616 ** 0.513 ** −0.254 ** −0.568 ** 0.076 * 0.089 * −0.120 ** 

* The correlation is significant at the 0.5 level. ** The correlation is significant at the 0.01 level (2-

tailed). 

3.4. ANNs and MLR Models 

The ANNs technique in SPSS was adopted to determine the optimal prediction 

model at different testing frequencies. The number of hidden layers was one for all ANNs 

at the various testing frequencies. The input layer in the ANNs at 10 and 100 Hz contains 

13 neurons for the independent variables (Cs, Rs, D, Cp, Rp, Ls, R, X, DCR, Z, ϴ, ϴ°, and 

Q), and the optimal hidden layers contain 12 neurons at 10 Hz and 14 neurons at 100 Hz. 

The input layer in the ANNs at 1000, 10,000, and 100,000 Hz contains 14 neurons for the 

independent variables (Cs, Rs, D, Cp, Rp, Ls, Lp, R, X, DCR, Z, ϴ, ϴ°, and Q), and the 

optimal hidden layers contain 15 neurons. The output layer contains four neurons for the 

dependent variables (pH, TSS, aw, and MC). The rescaling method for covariates was 

standardized. The activation function applied for the hidden layers was a hyperbolic tan-

gent. The activation function applied for the output layers was Identity for all ANNs mod-

els at the different testing frequencies. About 60% of the measured data were used as a 
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training dataset, 20% for model testing, and 20% for evaluation. The sum of squares was 

used as an error function because of the Identity function. 

Figure 5 shows the optimal ANNs diagram applied to predict the pH, TSS, aw, and 

MC of the date fruits during cold storage based on their electrical properties at 10,000 Hz. 

The diagram shows the 14 input nodes (Cs, Rs, D, Cp, Rp, Ls, Lp, R, X, DCR, Z, ϴ, ϴ°, and 

Q), the 15 hidden nodes, and the 4 output nodes representing the predicted values of the 

target physicochemical properties (pH, TSS, aw, and MC). The trained ANNs quickly de-

termine the target physicochemical properties when fed the system’s electrical properties 

data. 

 

Figure 5. Network diagram of the ANNs prediction model to predict the pH, TSS, aw, and MC of 

the date fruits during cold storage based on their electrical properties (Cs, Rs, D, Cp, Rp, Ls, Lp, R, 

X, DCR, Z, ϴ, ϴ°, and Q) at 10,000 Hz. The hidden layer activation function is Hyperbolic tangent, 

and the output layer function is Identity. 
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Figure 6 shows the importance of the independent variables (Cs, Rs, D, Cp, Rp, Ls, 

Lp, R, X, DCR, Z, ϴ, ϴ°, and Q) at 10,000 Hz in the ANNs model in terms of the relative 

and normalized importance. This figure displays the impact of the change of each inde-

pendent variable on the ANNs prediction model. The variables related to DCR, Ls, Z, Lp, 

ϴ, X, and ϴ° have the most critical effect on how the network predicts the values of the 

dependent variables, i.e., pH, TSS, aw, and MC at 10,000 Hz. 

Table 6 displays the comparison between error results of the ANNs models, i.e., the 

sum of squares error, average overall relative error, and relative error in the training, test-

ing, and holdout phases at various testing frequencies. In addition, relative errors were 

displayed depending on the dependent variables of the pH, TSS, aw, and MC measure-

ment levels. From Table 1, it is noticed that the values of the electrical parameters at 10,000 

Hz gave better results regarding the model errors in the phases of training, testing, and 

holdout datasets. Based on these results, adopting electrical measurements of dates at 

10,000 Hz can successfully predict the pH, total soluble solids (TSS), water activity (aw), 

and moisture content of the date fruits during cold storage. 

 

Figure 6. Importance of the independent variable electrical properties (Cs, Rs, D, Cp, Rp, Ls, Lp, R, 

X, DCR, Z, ϴ, ϴ°, and Q) at 10,000 Hz. 

Table 6. A comparison between the ANNs models’ errors in the training, testing, and holdout 

phases at various frequencies. 

Phases 
Frequency (Hz) 

10 100 1000 10,000 100,000 

Training  

Sum of squares error 130.82 135.43 101 96.1 102 

Average overall relative error 0.133 0.142 0.107 0.098 0.108 

Relative error  

pH 0.122 0.120 0.079 0.058 0.075 

TSS 0.083 0.106 0.054 0.044 0.067 

MC 0.144 0.165 0.155 0.161 0.153 

aw 0.183 0.177 0.139 0.128 0.137 

Testing 

Sum of Squares Error 39.657 51.039 36.098 28.304 36.408 

Average overall relative error 0.140 0.172 0.121 0.098 0.119 

Relative error 

pH 0.125 0.153 0.070 0.078 0.081 

TSS 0.084 0.143 0.075 0.053 0.084 

MC 0.165 0.206 0.184 0.143 0.161 

aw 0.188 0.182 0.146 0.113 0.158 
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Holdout  

Average overall relative error 0.152 0.145 0.158 0.101 0.139 

Relative error  

pH 0.160 0.163 0.120 0.082 0.105 

TSS 0.117 0.107 0.116 0.055 0.103 

MC 0.151 0.153 0.210 0.144 0.175 

aw 0.188 0.153 0.183 0.121 0.167 

The R2 and RMSE related to the MLR models for predicting the pH, TSS, aw, and MC 

parameters under the testing frequencies are presented in Table 7. The F-test showed that 

several independent variables in the MLR for pH property are significant (p ≤ 0.05) at 

10,000 Hz. 

The MLR prediction models for pH values based on the electrical parameters at 100 

Hz (R2 = 0.813, RMSE = 0.289),1000 Hz (R2 = 0.842, RMSE = 0.176), 10,000 Hz (R2 = 0.843, 

RMSE = 0.175) are characterized by a significative determination coefficient, which can be 

used as a significative predictive model at one of these frequencies. The other MLR models 

were characterized by low R2 and high RMSE values. Therefore, the MLR models are con-

sidered unsuitable for accurately evaluating the TSS, aw, and MC. 

The prediction models using the MLR technique based on the electrical properties 

measured by a 10,000 Hz frequency are the best for all target properties of pH, TSS, aw, 

and MC. 

The developed MLR prediction models for pH, TSS, aw, and MC at 10,000 Hz that 

acquired the best results are given below: 

pH = 6.146 − 0.058 × Cs + 0.003 × Rs + 0.105 × D + 0.155 × Cp − 0.035 × Lp + 0.008 × Ls − 0.013 × X + 0.001 × DCR − 0.01 

× Z − 0.126 × ϴ + 0.064 × ϴ° + 1.949 × Q 

TSS = 57.303 + 0.788 × Cs − 0.062 × Rs − 2.151 × D + 1.784 × Cp − 1.755 × Lp + 0.413 × Ls − 0.544 × X − 0.104 × DCR −

0.09 × Z − 231.5 × ϴ + 3.51 × ϴ° + 2.749 × Q 

aw = 0.583 + 0.006 × Cs + 0.0001 × Rs − 0.011 × D + 0.011 × Cp − 0.006 × Lp + 0.001 × Ls − 0.001 × X + 0.0001 × DCR −

0.001 × Z + 1.283 × ϴ − 0.027 × ϴ° − 0.114 × Q 

MC = 23.5 + 0.052 × Cs − 0.003 × Rs − 0.915 × D + 0.011 × Cp + 0.134 × Lp − 0.031 × Ls + 0.065 × X + 0.014 × DCR + 0.009 

× Z − 36.349 × ϴ + 0.869 × ϴ° + 0.114 × Q 

The performance of the ANNs and MLR prediction models at various frequencies 

based on R2 and RMSE values in the evaluation set is shown in Table 7. The high R2 and 

low values of RMSE indicated that the ANNs models present promising possibilities to 

predict the target physicochemical properties of date fruits based on their electrical prop-

erties. Based on R2 and RMSE in Table 7, it is shown that the ANNs modeling techniques 

were more efficient compared with the MLR models for predicting the pH, TSS, aw, and 

MC values at all testing frequencies. The results showed that the R2 for ANNs models at 

frequencies of 1000, 10,000, and 10,0000 Hz was more acceptable than the ANNs models 

at 10 and 100 Hz. The high values of R2 were obtained for pH (R2 = 0.938), TSS (R2 = 0.954), 

aw (R2 = 0.876), and MC (R2 = 0.855) in the evaluation set of ANNs models based on the 

measured electrical properties of the stored date fruits at 10,000 Hz. Furthermore, the low 

values of RMSE were obtained also at 10,000 Hz for the pH (RMSE = 0.121), TSS (RMSE = 

2.946), aw (RMSE = 0.020), and MC (RMSE = 0.803) in the evaluation set of ANNs models. 

Generally, based on these results, the MLR models had lower performance and 

weaker predictive ability than ANNs for predicting pH, TSS, aw, and MC at various fre-

quencies (Table 7). Based on these results, the MLR models are unsuitable for predicting 

the target properties and show a relative disadvantage because they only describe the lin-

ear relationship between variables.  



Foods 2022, 11, 1666 17 of 24 
 

 

Table 7. Comparison between values of R2 and RMSE for the developed ANNs and MLR models in 

the evaluation phase at various frequencies. 

Properties Models 

Frequency (Hz) 

10 100 1000 10,000 100,000 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

pH 
ANNs 0.878 0.14 0.871 0.191 0.924 0.122 0.938 0.121 0.924 0.129 

MLR 0.573 0.289 0.813 0.289 0.842 0.176 0.843 0.175 0.746 0.222 

TSS (Brix) 
ANNs 0.919 3.79 0.886 7.542 0.927 3.451 0.954 2.946 0.929 3.469 

MLR 0.734 6.215 0.609 6.215 0.563 7.975 0.735 6.208 0.76 5.903 

aw 
ANNs 0.816 0.034 0.823 0.039 0.862 0.026 0.876 0.02 0.859 0.024 

MLR 0.704 0.047 0.689 0.047 0.741 0.044 0.787 0.047 0.729 0.045 

MC (%) 
ANNs 0.853 0.852 0.826 1.239 0.841 0.816 0.855 0.803 0.844 0.816 

MLR 0.656 1.297 0.676 1.297 0.583 1.267 0.686 1.387 0.617 1.369 

Figure 7 presents the scatter plots of the measured values of pH, TSS, aw, and MC of 

the stored date fruits versus the predicted values by the neural networks model in the 

evaluation phase based on the measured electrical properties of the stored date fruits at 

10,000 Hz. The network structure of the model was one hidden layer and 14 neurons, 

which exhibited the highest level of accuracy. The prediction error in the training and 

testing phases at 10,000 Hz was lower than in the same phases at other frequencies. The 

results displayed that the ANNs model at 10,000 Hz was more accurate than the various 

frequencies in the evaluation phase. The regression line between the predicted and the 

observed values of the target properties, i.e., pH (y = 0.38 + 0.94 x), TSS (y = 1.87 + 0.96 x), 

aw (y = 0.09 + 0.84 x), and MC (y = 2.36 + 0.87) at validation sets, nearly overlapped the 1:1 

line (y = x + 0). 
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Figure 7. Scatter plots of measured values of pH, total soluble solids (TSS), water activity (aw), and 

moisture content (MC) versus the predicted values by the neural networks model in the evaluation 

phase based on the measured electrical properties of the stored date fruits at 10,000 Hz. 

So far, to our knowledge, there is no study that has employed the feed-forward 

ANNs with a backpropagation training algorithm for the prediction of the physicochem-

ical properties of date fruits based on their electrical properties. Nayak et al. [48] men-

tioned that the dates are the type of fruit that have been used very rarely to process with 

ANNs. However, Fadel suggested a novel method for classifying dates using Probabilistic 

Neural Networks (PNN) based on the color of five cultivars of date fruits. The authors 

observed good classification accuracy in the experimental process [94]. Hsu et al. [95] men-

tioned that the ANNs learned to find the solutions for the problem by developing a 

memory capable of associating many input patterns with a resulting set of effects or out-

puts. The problem with these ANNs models is the dependency on data for their training. 

The training phase of the models is the process of updating the internal representation of 

the model in response to external variables to achieve a specific task. In addition, it mod-

ifies the network architecture, which involves modifying the weights of the links, chang-

ing connection links by removing or creating new links, and changing the individual neu-

rons firing rules [96]. Sablani and Rahman proposed [49] an ANNs model to predict the 

thermal conductivity of food, i.e., apple, corn starch, pear, raisin, potato, starch, ovalbu-

min, sucrose, carrot, and rice, as a function of moisture content, apparent porosity, and 

temperature. The optimal proposed ANNs model consisted of two hidden layers with 

four neurons in each layer. This model predicted the thermal conductivity with low mean 

absolute and relative errors. Singh [97] has proposed a methodology for the sweet pota-

toes during drying using an ANNs model to get online predictions of moisture kinetics in 

the potatoes. The results achieved in their work showed that the predicting ANNs model 

with two hidden neurons and a feed-forward network could help envisage and model the 

moisture relocate in the product. 

Our results indicated that the MLR models were less accurate than the ANNs models 

for the prediction of fruit pH and had low performance and weak predictive ability for 

the TSS, aw, and MC at all testing frequencies. If the constants or parameters of a mathe-

matical equation that relates the input variables to the output variable are defined for a 

given mathematical equation that relates the input variables to the output variable, the 

difference between the predicted output and the observed output of the equation for the 

set of input data is a minimum for statistical regression, such as the MLR. As a result, 

ANNs can be used to study ambiguous and unclear datasets and their interactions, but 

statistical regression analysis, i.e., MLR, will fail in such cases. Furthermore, ANNs can be 
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used to analyze more data at the same time with more complicated and complex interac-

tions. Even if the data is incomplete and noisy, ANNs can outperform MLR in prediction, 

modeling, and optimization [52]. Therefore, MLR models were unsuitable for our re-

search, whereas the ANNs prediction model accurately predicted the quality attributes 

we were looking for. The results of ANNs are simple and do not require any modifica-

tions. ANNs are several types of intelligent modeling techniques that can solve a problem 

by analyzing scarce, unstructured, and incomplete numerical data about non-stationary 

and nonlinear systems [98]. The ANNs developed a solution by training on their meas-

urements using the nonlinear correlation between various variables. 

This study indicated that the ANNs model was found to be a powerful tool for effi-

ciently predicting the pH, TSS, water activity, and moisture content of date fruits based 

on their electrical properties. 

4. Conclusions 

This study indicated that the ANNs model is a powerful tool to efficiently predict the 

date fruits’ quality based on their electrical properties during cold storage. The model es-

tablished a new solution based on measured data using the nonlinear correlation between 

numerous variables. The optimal developed ANNs model had a 14-neuron input layer 

(electrical properties), a 15-neuron hidden layer, and a 4-neuron output layer. This model 

enhanced the fast and easy prediction of the pH, TSS, aw, and MC of stored date fruits 

during cold storage with high R2 and low RMSE. The MLR models, on the other hand, 

were less accurate than ANNs models in predicting fruit pH and had poor performance 

and prediction abilities for the TSS, water activity, and moisture content across all testing 

frequencies. Based on these results, the MLR models are unsuitable for predicting the tar-

geted attributes. Further research is needed to predict more chemical and mechanical 

properties of stored fruits based on their electrical properties, such as reducing and non-

reducing sugars and texture parameters (hardness, adhesiveness, springiness, cohesive-

ness, gumminess, chewiness, and resilience). In addition, the quality of the stored fruits 

can be remotely monitored in real time using the Internet of Things (IoT) and ANNs pre-

diction models. 
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Nomenclature 

ANNs Artificial Neural Networks  

aw water activity 

B constant 

C capacitance, nF 

Cp capacitance value at parallel equivalent circuit model, nF 

Cs capacitance value at series equivalent circuit model, nF 

D dissipation factor 

DCR direct current resistance, kΩ 

Ej  error 

L inductance, H 

Lp inductance value at parallel equivalent circuit model, H 

Ls inductance value at series equivalent circuit model, H 

MC moisture content, % 

Mj measured value 

ML Machine Learning  

MLR Multiple Linear Regression 

n number of measurements 

Oj neuron output 

pH power of hydrogen 

Q quality factor 

R resistance, kΩ 

R2 coefficient of determination 

RMSE root-mean-square error 

Rp equivalent parallel resistance, kΩ 

Rs equivalent series resistance, kΩ 

tj target value 

TanH hyperbolic tangent 

Ti  measured value 

TSS total soluble solids, Brix 

Wj input weight 

X reactance, kΩ 

Xi independent variable 

Xoj  the outcome of the sum value 

yi  dependent variable 

Z the absolute value of the impedance, kΩ 

θ phase angle in radian, rad 

θ° phase angle, degree 
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