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Abstract: Forty-one apple samples from 7 geographical regions and 3 botanical origins in China
were investigated. A total of 29 volatile compounds have been identified by flash GC E-nose. They
are 17 esters, 5 alcohols, 3 aldehydes, 1 ketone, and 3 others. A principal component analysis
was employed to study the relationship between varieties and volatiles. A partial least squares
discriminant analysis (PLS-DA), stepwise linear discriminant analysis (SLDA), and decision tree (DT)
are used to discriminate apples from 4 geographical regions (34 apple samples) and 3 botanical origins
(36 apple samples). The most influential markers identified by PLS-DA are 2-hexadecanone, methyl
decanoate, tetradecanal, 1,8-cineole, hexyl 2-butenoate, (Z)-2-octenal, methyl 2-methylbutanoate,
ethyl butyrate, dimethyl trisulfide, methyl formate, ethanol, S(-)2-methyl-1-butanol, ethyl acetate,
pentyl acetate, butyl butanoate, butyl acetate, and ethyl octanoate. From the present work, SLDA
reveals the best discrimination results in geographical regions and botanical origins, which are 88.2%
and 88.9%, respectively. Although machine learning DT is attempted to classify apple samples, the
results are not satisfactory.

Keywords: apple; flash GC E-nose; volatile; multivariate analysis; discrimination; decision tree

1. Introduction

The apple is one of the most consumed and popular fruits in the food market world-
wide, with both high nutritional values and a taste appreciated by a large number of con-
sumers. Apples are rich in dietary fiber, sugars, minerals, and various bioactive components
such as ascorbic acid (Vitamin C) and polyphenolic compounds [1]. Daily consumption of
apples has been reported to potentially reduce the incidence of chronic non-communicable
diseases (NCDs), namely, cancer, cardiovascular disease (CVD), and aging [2]. In 2020,
the global production of apples was 86.44 million metric tons, ranking second after the
production of bananas. Among them, China ranked first with 40.5 million metric tons, and
the second to fifth were the United States of America, Turkey, Poland, and India (FAOSTAT,
http://www.fao.org/faostat/en/, accessed on 19 April 2022). China’s apple production
areas are mainly concentrated in the four major producing areas of the Bohai Bay region,
the Loess Plateau in the northwest, the Old Road of the Yellow River, and the Cold and
Cool Highlands in the southwest. Shaanxi, Shandong, Hebei, Shanxi, Liaoning, Henan,
and Gansu Provinces are the seven major apple-producing provinces in China [3]. Based
on their parents, apple cultivars in China could be classified into 4 cultivars, including cv.
Fuji, cv. Delicious, cv. Golden Delicious, and cv. Ralls [4]. Aroma is an important indicator
for evaluating apple quality and flavor. Different varieties or cultivars of apples present
great differences in aroma compounds and content, and their composition and content can
objectively reflect their flavor characteristics [5].
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Although gas-chromatography mass spectrometry (GC-MS) is the most common
method to study aroma/volatiles, attention to the electronic nose (E-nose) has been drawn
increasingly due to the rapid analysis time and ease of operation [6,7]. Moreover, it has
high sensitivity and a good correlation with the human sensory panel. E-nose is not only
successfully employed in research laboratories but is used as a quality control tool in the
industrial production stage as well [8]. A sensor-based E-nose could transform the sensor
signal into a digital value, record data, and compute based on statistical models. A metal
oxide sensor (MOS) is one of the most used sensors in this type of E-nose [9]. However,
it could not reflect qualified or quantified results. The gas chromatography type E-nose
(GC E-nose) is also named ultra-fast or flash gas chromatography, which is usually coupled
with gas chromatography. Unlike sensor-based ones, flash GC (FGC) E-nose is possible to
identify the volatile compounds [10,11].

From previous studies, E-nose has been widely applied in discrimination, shelf-life
evaluation, authenticity assessment, and adulteration among different fruits, including
apple, peach, tomato, mango, etc. In the case of apples, E-nose has been used in the
areas of post-harvest treatments, shelf-life and maturity stage evaluation, and quality
assessment [12]. For example, different types of E-noses have been applied in apple
cultivar discrimination [13]. However, most of them were achieved by typical sensor-based
E-nose. Although the application for FGC E-nose is not much of a sensor-based one, it had
been successfully applied to the geographical origin discrimination in propolis [14], extra
virgin olive oil [15], Chinese liquors [7] and cocoa liquors [16], botanical discrimination in
pumpkin [17], adulteration in orange juice [18] and processing quality in jujube [9]. To the
best of our knowledge, FGC E-nose has not been applied to apple geographical and/or
botanical origin discrimination.

Principal component analysis (PCA), partial least squares discriminant analysis
(PLS-DA), and stepwise linear discriminant analysis (SLDA) are commonly employed as
multivariate analysis methods. They can be used to discriminate and classify apples [19–21]
or apple products [22] by their volatile profiles successfully. Additionally, the application
of machine learning to differentiate food samples has become more and more popular.
The main machine learning methods include decision tree (DT), support vector machines
(SVM), random forest (RF), etc. Aroma-related applications were mainly focused on the
discrimination processing methods in strawberry juice [23,24], quality detection in citrus
fruit [25], botanical origin discrimination in raw honey [26], classification in wines [27], and
quality control in olive oils [28] by GC-MS, E-nose, E-tongue, and sensory evaluation.

In the present study, forty-one apple varieties have been investigated by FGC E-nose.
The aims of the study were as follows: The first aim was to assess whether FGC E-nose
could identify volatile compounds effectively. The second aim was to perform the classifi-
cation of apple samples based on volatiles using the useful tool of multivariate analyses.
The third aim was to attempt to apply machine learning methods to distinguish the apple’s
geographical regions and botanical origins. Through the present study, we hope to pro-
vide new prospects for fruit sample discrimination and for protecting or authenticating
agricultural products.

2. Materials and Methods
2.1. Apple Samples

In the present study, a total of 41 apple samples were collected from 7 geographical
regions in China, they were Shandong, Shanxi, Sinkiang, Hebei, Gansu, Liaoning, and
Shaanxi. Thirty-six of them belonged to the botanical origin of Golden Delicious (cv. GD),
Fuji (cv. FJ), and Ralls (cv. RA). The rest of them were unknown. Detailed information
was indicated in Table 1. All the samples were randomly collected from three apple trees
with similar fruit weights and tree shapes. At the same time, all the apple samples were
commercially mature and without any visible external damage, including decay, rot disease,
and wormholes. After harvest, all the samples were transported to Institute of Food Science
and Technology (Beijing, China) immediately and stored in a 4 ◦C refrigerator. When the
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apples reached the same stage of maturity, as determined by starch-iodine index [29], the
analyses were performed.

Table 1. Information on apple cultivars collected.

No. Samples Origin One Parent
of Cultivar Code No Samples Origin One Parent

of Cultivar Code

1 Starkrimon Shandong GOLDEN
DELICIOUS G1 22 Huafu Liaoning FUJI F10

2 Fuji Shandong
(Xiqia city) FUJI F1 23 Huayue Liaoning - HY

3 Ralls Shandong RALLS R1 24 Huahong Liaoning GOLDEN
DELICIOUS G12

4 Starkrimon Shandong
(Taian City)

GOLDEN
DELICIOUS G2 25 Huajin Liaoning - HJ

5 Fuji Shandong
(Taian City) FUJI F2 26 Ralls Liaoning RALLS R2

6 Red General Shandong FUJI F3 27 Hanfu Liaoning FUJI F11

7 Golden
Delicious

Shandong
(Taian City)

GOLDEN
DELICIOUS G3 28 Hanfu Liaoning

(Xinmin City) FUJI F12

8 Golden
Delicious Shandong GOLDEN

DELICIOUS G4 29 Starkrimon Liaoning GOLDEN
DELICIOUS G13

9 Yanfu 2 Shandong FUJI F4 30 Changhong Liaoning FUJI F13

10 Fuji1 Shanxi FUJI F5 31 Qiujin Liaoning GOLDEN
DELICIOUS G14

11 Qinguan1 Shanxi GOLDEN
DELICIOUS G5 32 Golden Delicious Liaoning GOLDEN

DELICIOUS G15

12 Fuji2 Shanxi FUJI F6 33 Nagafu 2 Liaoning FUJI F14

13 Qinguan2 Shanxi GOLDEN
DELICIOUS G6 34 Ralls Shaanxi RALLS R3

14 Fuji Sinkiang FUJI F7 35 Fuji Shaanxi FUJI F15
15 Fuji Hebei FUJI F8 36 Ruiyang Shaanxi FUJI F16

16 Wanglin Hebei GOLDEN
DELICIOUS G7 37 Qinguan Shaanxi GOLDEN

DELICIOUS G16

17 Fuji Gansu FUJI F9 38 Qinhong Shaanxi - QH

18 Qinguan Gansu GOLDEN
DELICIOUS G8 39 Changmiou Shaanxi - CM

19 Huaniu Gansu GOLDEN
DELICIOUS G9 40 Granny Smith Shaanxi - GS

20 Golden
Delicious Gansu GOLDEN

DELICIOUS G10 41 Huangyuanshuai Shaanxi GOLDEN
DELICIOUS G17

21 Jonagold Liaoning GOLDEN
DELICIOUS G11

2.2. FGC E-Nose

Prior to analysis, apples were picked from the 4 ◦C refrigerator, and stayed for 24 h at
room temperature. After that, apples were cut into small pieces, and 5 g apple pieces were
placed in 20 mL headspace vials and tightly capped with PTFE seals.

An FGC E-nose (Heracles II, Alpha M.O.S., Toulouse, France), connected with an
auto-sampler (Odor Scanner HS 100, Alpha M.O.S., Toulouse, France), was employed
in the present study. Moreover, the FGC E-nose was equipped with two parallel cap-
illary columns and two flame ionization detectors (FIDs). The two columns are a non-
polar MXT-5 (5% diphenyl and 95% methylpolysiloxane) and a slightly polar MXT-1701
(14% cyanopropylphenyl and 86% methylpolysiloxane). In order to achieve equilibration,
the samples were incubated for 20 min at 50 ◦C. Afterward, 5000 µL was injected at 200 ◦C
and 200 µL/s into GC system for 30 s. The initial and final trap temperatures were 15 ◦C
and 240 ◦C, respectively. The trap procedure was maintained for 35 s. The vent of the trap
was 10 mL/min. In the beginning, the oven was kept at 40 ◦C for 5 s and raised to 80 ◦C
at the rate of 2 ◦C/s. Then, the temperature was increased to 230 ◦C (held for 20 s) with
1 ◦C/s. The temperature of the FIDs was 260 ◦C. Each sample was replicated 5 times.
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2.3. Volatile Compounds Identification

A series of n-alkane (C6-C16) standard solutions (Sigma-Aldrich, St. Louis, MO, USA)
was applied to calibrate volatile compounds under the same chromatographic conditions
as described in 2.2. The Kovats retention indices (RI) were calculated based on the retention
times. Then, the retention indices of identified volatile compounds were compared with
AroChemBase (V6, Alpha M.O.S, Toulouse, France) library data and literature.

2.4. Data Processing
2.4.1. Multivariate Analysis

The unsupervised technique PCA was extensively employed to visualize natural clus-
tering in the data. In the present study, the variables were identified as volatile compounds
by FGC E-nose, and the input values were the peak areas for each compound. The score
and loading plots are used to demonstrate the differences/similarities between samples
and explain the contribution to such differences/similarities.

PLS-DA and SLDA were all supervised pattern recognition models that distinguish
samples into classes with prior knowledge. Apple samples were sorted into different groups
based on their geographical regions and botanical origins. In the cases of geographical
regions, because there was lack of representation for the samples in Hebei and Sinkiang,
they were not considered. Four apple samples in Shanxi were also excluded since they came
from the same place with different altitudes. Consequently, apple samples are grouped into
4 geographical regions (34 apple samples) and 3 botanical origins (36 apple samples).

PLS-DA was more commonly used to determine the features that best describe the
differences among groups and which variables contribute more to classification. Variable
importance in projection (VIP) was performed, and the volatile compounds with VIP ≥ 1
were considered the most influential markers in the extracted PLS-DA model [30].

SLDA is a robust statistical technique, which maximizes the variance between cate-
gories and minimizes the variance within categories. It provides a classification model by
linear dependence of the classification scores in relation to the descriptors [24]. The original
and leave-one-out cross-validation were used to identify and verify the model. F values in
the program are set to enter and remove features in alternate steps to separate geographical
regions and botanical origins based on the Wilks’ λ criterion [22].

The PCA and PLS-DA were analyzed by SIMCA (version 14.1, Umetrics, Sweden).
The SLDA was performed by using SPSS (version 22, SPSS Inc., Chicago, IL, USA).

2.4.2. Machine Learning

Decision tree (DT) is one of the most popular classification algorithms in current use in
data mining and machine learning. It is a tress structure consisting of internal and external
nodes connected by branches. Each internal node is associated with a decision function to
determine which node to visit in the next step. Each external node indicates the output of a
given input vector [31]. A classification and regression tree (CART), the most typical used
method, was used in the present study.

The cross-validation technique is employed for increasing success of classifying al-
gorithms and assessing the results objectively [32]. The V-fold cross-validation is one of
the cross-validation methods, that is not only a useful tool for predictive data mining but
provides simple models with optimal predictive capabilities as well [33]. In the present
study, 5-fold validation was conducted to verify the models in DT. However, the number of
samples was less than 5 in some geographical regions and botanical origins datasets, such
as botanical cultivar of cv. Ralls and geographical region of Gansu. These parts of the data
were replicated to achieve the minimum required by 5-fold validation. The final data sizes
for geographical regions and botanical cultivars were 41 and 39, respectively. The average
prediction accuracy was used to evaluate the models’ performance. This machine learning
method was performed by Python package (version 3.8, Python Software Foundation,
Wilmington, DE, USA).
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3. Results
3.1. Volatile Identification

A total of 29 volatile compounds have been identified (based on the peak areas) among
41 apple samples. They were 17 esters, 5 alcohols, 3 aldehydes, 1 ketone, and 3 others.
Identified compounds, retention indexes, and descriptive analysis results are presented in
Table 2. The relative contents for each compound were calculated based on the peak areas,
which may indicate the differences in the relative content of volatile compounds in the
apple samples. The large standard deviations for each compound demonstrated that the
apple samples were significantly different. The geographical regions and botanical origins
were key factors that led to the differences. Eight volatile compounds could be found in all
apple samples, which were isoamyl acetate, pentyl acetate, butyl butanoate, ethyl octanoate,
hexyl 2-butenoate, octyl butanoate, ethyl undecanoate, and 2-hexadecanone.

Table 2. Identified volatile compounds in apple by flash GC E-nose.

RI MXT-5 RI MXT-1701 n Range Minimum Maximum Mean Std. Deviation

Methyl formate 384 464 41 2126.08 0 2126.08 860.16 701.33
Ethanol 423 560 41 1446.30 0 1446.30 164.89 341.73

1-Propanol 543 675 41 714.01 0 714.01 33.24 148.77
Ethyl Acetate 617 685 41 12,274.76 0 12,274.76 1003.79 2352.15

n-butanol 666 778 41 14,522.00 0 14,522.00 3306.51 3384.22
Methyl butanoate 716 786 41 9795.36 0 9795.36 961.91 1830.86

S(-)2-methyl-1-butanol 739 848 41 9514.74 0 9514.74 1808.47 2186.63
Methyl 2-methylbutanoate 776 851 41 2990.38 0 2990.38 316.37 643.46

Ethyl butyrate 802 865 41 77,811.04 0 77,811.04 8730.23 14,393.08
Butyl acetate 814 885 41 62,452.99 0 62,452.99 14,294.62 15,040.77

Ethyl 2-methylbutyrate 850 912 41 37,062.47 0 37,062.47 5655.66 8079.00
Isoamyl acetate 879 949 41 142,671.89 1181.87 143,853.76 25,960.22 29,205.89
Pentyl acetate 910 976 41 46,937.00 903 47,840.00 10,127.95 8520.48

2,3-dimethylpyrazine 944 1007 41 19,564.07 0 19,564.07 1872.54 4126.74
Dimethyl trisulfide 973 1041 41 1458.05 0 1458.05 103.66 288.68

Butyl butanoate 1000 1067 41 175,358.84 184.44 175,543.28 45,960.17 35,242.07
1,8-cineole 1043 1106 41 17,649.76 0 17,649.76 4307.92 4572.64

(Z)-2-octenal 1061 1128 41 1209.81 0 1209.81 132.91 320.17
Tetramethylpyrazine 1103 1174 41 16,011.48 0 16,011.48 3114.24 3453.25

(Z)-3-Hexenyl isobutyrate 1146 1212 41 3252.08 0 3252.08 942.02 862.89
Ethyl octanoate 1193 1263 41 32,805.69 1674.85 34,480.54 13,042.60 8268.36

Hexyl 2-butenoate 1240 1304 41 101,932.40 1378.28 103,310.68 30,478.65 26,044.90
Ethyl nonanoate 1287 1359 41 1577.50 0 1577.50 323.79 451.75

Methyl decanoate 1335 1403 41 937.35 0 937.35 69.85 200.44
Octyl butanoate 1388 1461 41 27,557.42 171.47 27,728.89 8605.66 5431.89

Ethyl undecanoate 1514 1559 41 255,585.74 12,471.57 268,057.31 84,013.89 53,310.55
12-methyltridecanal 1584 1658 41 3146.65 0 3146.65 850.73 787.85

Tetradecanal 1629 1687 41 4906.00 0 4906.00 2193.10 1153.65
2-Hexadecanone 1797 1901 41 3535.80 1840.79 5376.59 3004.46 827.97

Ethyl undecanoate was the highest one among all compounds, followed by hexyl
2-butenoate, isoamyl acetate, and butyl butanoate. They were the most dominant com-
pounds in each apple variety. However, some compounds have been determined in a few
apple varieties. For instance, 1-propanol, a primary volatile in the alcohol group [34], only
existed in F7 and G6 and the peak areas for it were low. This was partly in agreement
with Fellman et al. (2003) [35] that 1-propanol could not be detected in “Delicious” apples
during the mature and storage stages. However, 1-propanol was the main compound in
Starkrimson and Jonagold apples [36]. Similarly, ethanol, dimethyl trisulfide, (Z)-2-octenal,
and methyl decanoate could only be identified in a few apple varieties. Notably, dimethyl
trisulfide, (Z)-2-octenal, and methyl decanoate were mainly identified in Shandong, Shanxi,
Gansu, and Sinkiang. Moreover, the compounds identified in the present study were
not frequently identified compounds in apple, which had been reported only in seldom
literature [20,37].
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3.2. Multivariate Analysis
3.2.1. PCA

Six principal components (PCs) were obtained from the volatile compound data, which
eigenvalues were higher than 1. The cumulative contribution was 86.7%. The first two PCs
explained 58.2% of the total variance. The PC1 (43.5%) and PC2 (14.7%) were employed to
draw PCA scores and loading plots (Figure 1a,b). The different colors represented different
geographical regions.
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Figure 1. PCA, PLS-DA and SLDA plots. (a) PCA score plot; (b) PCA loading plot; (c) PLS-DA
plot for geographical regions discrimination; (d) PLS-DA plot for botanical origins discrimination;
(e) SLDA plot for geographical regions discrimination; (f) SLDA plot for botanical origins discrimina-
tion. In this figure, numbers from 1 to 7 were represented different geographical regions for apples,
they were Liaoning, Shaanxi, Shandong, Shanxi, Hebei, Sinkiang, and Gansu, respectively. The
numbers from 11 to 13 were represented different botanical origins of cv. Fuji, cv. Golden Delicious
and cv. Ralls, respectively.

It could be seen from the figures that the apple samples from Liaoning could be
grouped together in the second quadrant. Combined with loading plots (Figure 1b), they
were highly correlated with 2-hexadecanone. Except for Q4, other apple samples from
Shaanxi and Shanxi were in the center of the original point, but they were mixed. Since
these two places were located closely, they may be similar. In the case of other geographical
regions, no clear separation could be observed. Furthermore, an obvious distinction could
not be established based on the botanical origins.

Q3 and Q4 were located outside of the confidence level (95%) and in positive PC1
and negative PC2. From the loading plots, ethyl acetate, ethyl butyrate, and ethyl
2-methylbutyrate, located in the fourth quadrant and near the X-axis, were the main
contributors in Q4. Q3 was mainly characterized by ethanol and ethyl acetate. They coin-
cided with the relative percentages of peak areas (Supplementary Figure S1). Besides, G6
was dominated by 10 compounds, which were methyl butanoate, pentyl acetate, tetram-
ethylpyrazine, 2,3-dimethylpryrazine, dimethyl trisulfide, isoamyl acetate, n-butanol, butyl
butanoate, 1-propanol, and butyl acetate.

3.2.2. PLS-DA

It can be seen from Figure 1c that 34 apple samples from 4 geographical regions
were located differently. R2Y was used to evaluate the performance of the model cor-
responding to the goodness-of-fit and represents the variation of the Y that can be ex-
plained. The R2Y for the model of the geographical region was 0.666, and the model
obtained a goodness-of-fit of 66.6%. Apples from Liaoning were mainly grouped in the
third quadrant. The spots for Shaanxi apples were gathered above the X-axis and across
the first and second quadrants. As for Shandong and Gansu, there was no clear sepa-
ration, which appeared in a discrete state. The most important compounds determined
by VIP values were 2-hexadecanone, methyl decanoate, tetradecanal, 1,8-cineole, hexyl
2-butenoate, (Z)-2-octenal, methyl 2-methylbutanoate, ethyl butyrate, dimethyl trisulfide,
and methyl formate.
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The discrimination model for 36 apples from 3 botanical origins was indicated in
Figure 1d. In total, 66% of the goodness-of-fit for the botanical origins model was received.
The cv. Fuji apples were on the left side of the Y-axis, whereas the cv. Golden Delicious was
on the right. Three Ralls apples were distributed in the other two origins. The VIP values
for ethanol, S(-)2-methyl-1-butanol, ethyl acetate, pentyl acetate, butyl butanoate, butyl
acetate, methyl formate, (Z)-2-octenal, ethyl butyrate, and ethyl octanoate were greater
than 1, which could be regarded as important compounds to discriminate samples.

3.2.3. SLDA

A stepwise LDA (SLDA) was applied to visualize the classification of apple samples. In
the case of geographical region discrimination, F values were set at 1.8 and 1.2 for including
and removing from the model, respectively. Three canonical discriminant functions (DF)
were used in the analysis, and 100% of the total variance could be explained. The first
two DFs accounted for 80% and 13.1% of the total variance, respectively, which reached
93.1% of the cumulative variance. Fourteen variables were included by Wilks’ λ criterion.
It could be seen from Table 3 that the total classification performance was 97.1% for the
original sample groups and 88.2% for the cross-validation procedure. It should be noted
that the performances for Liaoning, Shaanxi, and Gansu were very satisfactory because
the percentages for the original group and cross-validation were all achieved at 100%. As
for the apples from Shandong, the original correct percentage was 88.9%, whereas the
cross-validated correct percentage was also low (55.6%). According to Figure 1e, some
apple samples in Shandong (yellow label) were close to the apple samples in Liaoning
(blue label).

Table 3. Classification results of SLDA.

Original Cross-Validated

Correct Number Correct Percentage Correct Number Correct Percentage

Geographical regions Liaoning 13/13 100% 13/13 100%
Shaanxi 8/8 100% 8/8 100%

Shandong 8/9 88.90% 5/9 55.60%
Gansu 4/4 100% 4/4 100%
Total 33/34 97.10% 30/34 88.20%

Botanical origins cv. FJ 16/16 100% 14/16 87.50%
cv. GD 17/17 100% 16/17 94.10%
cv. RA 3/3 100% 2/3 66.70%
Total 36/36 100% 32/36 88.90%

At the same time, SLDA was also applied to classify the botanical origins of apples.
For the variable selection, the usual probabilities for a variable included and removed were
1.3 and 0.5, respectively. The first two DFs explained 100% of the total variance, which were
64.4% and 35.6%, respectively. Eleven variables were included in the classification function
coefficients. All the 36 apple samples were classified into the correct groups and separated
obviously (Figure 1f). The total cross-validation percentage was 88.9%. Two apple samples
from cv. Fuji were misclassified as cv. Golden Delicious and cv. Ralls. One apple sample
from cv. Golden Delicious was regarded as cv. Ralls, and one sample from cv. Ralls was
accounted as cv. Fuji.

3.3. Machine Learning

In order to explore the possibility of applying machine learning, a decision tree was
attempted to discriminate between apple geographical regions and botanical origins. In
total, 5-fold cross-validation was performed throughout the study. The average results
were 76.07% and 64.64% for geographical regions and botanical origins, respectively.

Figure 2 indicates a classification tree built by classification and regression trees
(CART). Taking one-fold of the 5-fold validation model of botanical origins as an example,
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it could indicate which compounds played decisive factors in the classification. Notably,
the sample size for this model was 32. Because the remaining 9 samples were used for
validation. It could be seen from Figure 2 that butyl acetate, tetradecanal, (Z)-2-octenal,
isoamyl acetate, and methyl butanoate were the main discriminating factors. Taking cv.
Ralls (in purple color) as an example, it was mainly distinguished by butyl acetate and
tetradecanal. When the peak area for butyl acetate and tetradecanal were lower than 669
and 1701.5, respectively, it could be recognized as cv. Ralls. In a similar way, volatile
compounds that played a decisive role in distinguishing the other two cultivars could be
found in Figure 2.
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4. Discussion

It should be noted that some of the identified volatile compounds in the present
study were inconsistent with the previous literature. Furthermore, some typical volatile
compounds in apples, such as E-2-hexenal and hexanal, were not detected. The authors pre-
viously studied the volatile compounds of apples in Liaoning, China. Through headspace
solid-phase microextraction (HS-SPME) GC-MS analysis, a total of 39 volatile compounds
were identified [5]. By comparing the two studies, it could be found that only 7 compounds
in this paper were consistent with the previous one. They were ethyl butyrate, butyl
acetate, ethyl 2-methylbutyrate, pentyl acetate, butyl butanoate, ethyl octanoate, and hexyl
2-butenoate. Nevertheless, similar results were demonstrated in coffee aroma [38] and
dried jujube fruit [9]. For instance, a total of 8 and 88 volatiles were identified by FGC
E-nose and SPME GC-MS in coffee, respectively. Only one of the eight volatiles was detected
by FGC E-nose and SPME-GC-MS. The remaining seven volatiles were unique to FGC
E-nose [38]. In dried jujube fruit, the volatile compositions detected by FGC E-nose were
also different from traditional SPME-GC-MS results [9]. One reason that caused volatile
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composition differences was probably due to the different columns applied between FGC
E-nose and SPME-GC-MS. The non-polar (MXT-5) and slightly polar (MXT-1701) columns
were equipped in the FGC E-nose, and they were less effective to detect polar compounds
than the frequently used DB-WAX column [9]. Another reason might be that isolated and
identified volatile compounds in FGC E-nose contributed to the smell of volatile com-
pounds [38]. In qualitative analysis, the ability of FGC E-nose was not as satisfactory as
SPME-GC-MS. However, compared with sensor-based E-nose, it can not only distinguish
samples effectively but also obtain the specific compounds that lead to such results. If the
equipment conditions are limited, FGC E-nose may be used for qualitative analysis, but
the results have certain limitations. Consequently, compared to volatile identification, it is
preferable to apply FGC E-nose for particular purposes such as geographical region and
botanical origin discrimination.

Although PCA results could show differences and/or similarities in part, they did not
reveal good separations among samples. Chinese researchers had obtained similar results.
The volatiles of 50 apple varieties were analyzed. PCA results showed that the first two
PCs explained 40.03% of the total variance, which was lower than in this study. Moreover,
four cultivars (cv. Fuji, cv. Delicious, cv. Golden Delicious, and cv. Ralls) did not show clear
separation either [4]. Further analysis should be conducted to achieve better discrimination
of geographical regions and botanical origins. Therefore, PLS-DA, SLDA, and decision tree
were applied in the present study.

To compare with PCA results, regardless of the geographical regions or botanical
origins, better differentiation results could be seen in Figure 1c,d. However, it were worth
noting that, no matter what kind of classification methods was used, the G9 (Huaniu, from
Gansu) was away from other cultivars and lay outside the confidence interval. Huaniu
apples are referred to, in particular to cv. Delicious apples are produced in Tianshui, Gansu
Province. It was one of the three famous apple brands in the world that could be as famous
as the Red Delicious in the USA and Fuji in Japan. It was the first apple variety in China
to obtain an official trademark in the international market. In some literature on Huaniu
apples, they are also shown differently from other apple cultivars. For example, Zou and
Zhao (2008) [19] used a tin-oxide gas sensor array device and GC-MS to analyze three
apple varieties’ (Fuji, Jina, and Huaniu) aroma volatiles and apply multivariate analysis to
distinguish varieties. The number of aroma compounds in the Huaniu apple was less than
that of the other two varieties. The esters in Huaniu were higher than them, such as ethyl
propionate and butyl acetate. Consistent with the results of the present study, the sensory
evaluation results revealed that it was very easy to discriminate Huaniu from the others.
Because the aroma descriptions of these cultivars were different. Huaniu could be described
as a “red apple aroma”, and the others could be described as a “sweet aroma” [19]. In
addition, researchers compared different apple varieties to fermented cloudy apple juice
(CAJ) and found the special aroma characteristics of Huaniu. The Huaniu CAJ had a high
proportion of alcohols and esters and a relatively higher proportion of aldehydes. After
fermentation, Huaniu fermented CAJ indicated a strong apple juice-like aroma due to its
higher total soluble sugar content and lower organic acid content [39].

Through the analysis of PLS-DA, some geographical regions or botanical origins
still cannot be effectively distinguished. Some data spots were overlapped on the figures
(Figure 1c,d). To achieve a better discrimination result, the SLDA method was also at-
tempted. Overall, the results of SLDA were better than those of PLS-DA.

The lower original and cross-validation rates mainly occurred in the analysis of Shan-
dong apples. One apple sample from Shandong was misclassified into Liaoning when
they conducted the original model. Nevertheless, two apple samples from Shandong were
wrongly predicted to be Liaoning apples. They may have similar aroma profiles, leading
to a decrease in model discrimination. The reason for this situation might be as follows:
Shandong and Liaoning Provinces all belong to the Bohai Bay region. Shandong apple
production accounted for 67.19% of the Bohai Bay region’s apple production, followed by
Liaoning Province [40]. This demonstrated that apples from Shandong and Liaoning were
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absolutely dominant in the Bohai Bay region. Shandong and Liaoning are geographically
close and belong to a temperate monsoon climate with relatively abundant and uniform
precipitation. Although climate change may have effects on the volatile precursor for-
mations, such as fatty acids and amino acids, thus impacting volatiles formation [5,41],
Shandong and Liaoning Provinces share similar climatic conditions, such as precipitation,
temperature, and light. Volatile differences due to climatic conditions were small compared
to other geographical regions. Another two apple samples from Shandong were misclas-
sified into Shaanxi. The possible reason may be that the latitudes of these two provinces
are similar, basically between 35 and 38◦ N, thus sharing similar light conditions [42]. The
length and intensity of light conditions may affect the quality of apples. There was little
literature on the specific effect on the aroma. One research indicated that latitude was
significantly negatively correlated with hexyl acetate concentration [43]. However, whether
it was because of latitude that the apples in these two regions were not well-differentiated,
it was necessary to further study the composition and concentration of their volatiles.

As for the SLDA results of botanical origins, the relatively low cross-validation per-
centage was mainly due to the apple cultivar resources. The cv. Fuji originated in Japan.
It was a hybrid apple cultivar, and the female parent was cv. Ralls, and the male parent
were cv. Golden Delicious [44]. These three cultivars may have similar characteristics, thus
affecting the discrimination results. As a consequence, although 100% of cv. Fuji samples
were correctly classified for the original groups, the cross-validation procedure was 87.5%.
Similarly, this was why one sample from cv. Ralls was considered as cv. Fuji. Although
there was only one sample that was classified incorrectly for cv. Ralls, the accuracy of the
cross-validation was lowered because of the small sample size.

The prediction rates of the decision tree were not as good as expected, and they were
lower than the SLDA results. Based on the existing data, there is a method that may
improve the accuracy of the decision tree. It was to apply other decision tree methods,
such as quick, unbiased, efficient regression tree (QUEST) and Chi-squared Automatic
Interaction Detection (CHAID). Gagaoua et al. (2019) [45] used 3 decision tree methods
(CART, QUEST, and CHAID) to predict beef tenderness and found that the 69.4% predictive
accuracy of CHAID was the best decision tree method. Alternatively, other machine
learning approaches, such as the support vector machine and random forest, could attempt
to achieve better performance. However, whatever method is used, it is better to increase
the sample size appropriately. The smaller sample size could easily lead to overfit or
underfit, and the performance of the model will be worse. Whereas, the excessive sample
size will also make the data more discrete, thereby reducing the predictive accuracy.

5. Conclusions

A total of 29 volatile compounds have been identified by flash GC E-nose from
41 apple varieties. Some of the identified volatile compounds were unusual in previous
literature. Although the E-nose used in the study was the GC type, the ability to identify
was not satisfactory. However, the results could be used to differentiate apple varieties.
PCA results could show differences and/or similarities partly they did not reveal good
separations among samples. Compared to PLS-DA and SLDA, the latter revealed the
best performance in apple geographical regions and botanical origins discrimination and
prediction among all the analyses. In addition to the commonly used multivariate analysis,
the decision tree was also attempted to classify apple samples. However, the result was not
as good as expected.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods11111631/s1. Figure S1. Heatmap displaying the percentage
of 29 volatile compounds among 41 apple varieties. The color from red to green represented the
percentages from low to high content for each variety. The cultivar acronyms are listed in Table 1.
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33. Dębska, B.; Guzowska-Świder, B. Decision trees in selection of featured determined food quality. Anal. Chim. Acta 2011,
705, 261–271. [CrossRef]

34. Kondo, S.; Setha, S.; Rudell, D.R.; Buchanan, D.A.; Mattheis, J.P. Aroma volatile biosynthesis in apples affected by 1-MCP and
methyl jasmonate. Postharvest Biol. Technol. 2005, 36, 61–68. [CrossRef]

35. Fellman, J.K.; Rudell, D.R.; Mattinson, D.S.; Mattheis, J.P. Relationship of harvest maturity to flavor regeneration after CA storage
of ‘Delicious’ apples. Postharvest Biol. Technol. 2003, 27, 39–51. [CrossRef]

36. Nie, L.; Sun, J.; Chen, H.; Zou, X. Study on Fruit Aroma of Different Apple Cultivars. Sci. Agric. Sin. 2006, 39, 641–646.
37. Madrera, R.R.; Valles, B.S. Determination of Volatile Compounds in Apple Pomace by Stir Bar Sorptive Extraction and Gas

Chromatography-Mass Spectrometry (SBSE-GC-MS). J. Food Sci. 2011, 76, C1326–C1334. [CrossRef] [PubMed]
38. He, Y.; Zhang, H.; Wen, N.; Hu, R.; Wu, G.; Zeng, Y.; Li, X.; Miao, X. Effects of maltose and lysine treatment on coffee aroma

by flash gas chromatography electronic nose and gas chromatography–mass spectrometry. J. Sci. Food Agric. 2018, 98, 154–165.
[CrossRef] [PubMed]

39. Peng, W.; Meng, D.; Yue, T.; Wang, Z.; Gao, Z. Effect of the apple cultivar on cloudy apple juice fermented by a mixture of
Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum. Food Chem. 2021, 340, 127922. [CrossRef]

40. Zhou, J.; Zhao, D.; Chen, Y.; Kang, G.; Cheng, C. Analysis of apple producing area changes in China. J. Fruit Sci. 2021, 38, 372–384.
[CrossRef]

41. Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of apple aroma: A review. Food Technol.
Biotechnol. 2016, 54, 375–394. [CrossRef]

42. Li, Y.; Sun, H.; Li, J.; Qin, S.; Niu, Z.; Qiao, X.; Yang, B. Influence of genetic background, growth latitude and bagging treatment
on phenolic compounds in fruits of commercial cultivars and wild types of apples (malus sp.). Eur. Food Res. Technol. 2021, 247,
1149–1165. [CrossRef]

43. Qin, L.; Wei, Q.; Kang, W.; Zhang, Q.; Sun, J.; Liu, S. Comparison of volatile compounds in ‘fuji’ apples in the different regions in
china. Food Sci. Technol. Res. 2017, 23, 79–89. [CrossRef]

http://doi.org/10.1007/s13197-017-2748-8
http://www.ncbi.nlm.nih.gov/pubmed/28974797
http://doi.org/10.1007/s00706-018-2233-8
http://www.ncbi.nlm.nih.gov/pubmed/30174349
http://doi.org/10.1016/j.foodchem.2007.07.071
http://doi.org/10.1016/j.foodcont.2017.02.036
http://doi.org/10.1016/j.foodres.2012.09.023
http://doi.org/10.1016/j.lwt.2018.12.043
http://doi.org/10.1016/j.jfoodeng.2014.07.015
http://doi.org/10.1021/jf501468b
http://www.ncbi.nlm.nih.gov/pubmed/25005851
http://doi.org/10.1111/1750-3841.13012
http://www.ncbi.nlm.nih.gov/pubmed/26416698
http://doi.org/10.1016/j.jfoodeng.2016.01.016
http://doi.org/10.1016/j.aca.2004.07.062
http://doi.org/10.1155/2017/9272404
http://www.uvm.edu/~{}fruit/treefruit/tf_horticulture/AppleHortBasics/Readings/Predicting+Harvest+Date+Window+for+Apples.pdf
http://www.uvm.edu/~{}fruit/treefruit/tf_horticulture/AppleHortBasics/Readings/Predicting+Harvest+Date+Window+for+Apples.pdf
http://doi.org/10.1016/j.foodchem.2015.10.002
http://doi.org/10.1016/j.snb.2011.08.027
http://doi.org/10.1016/j.snb.2012.03.047
http://doi.org/10.1016/j.aca.2011.06.030
http://doi.org/10.1016/j.postharvbio.2004.11.005
http://doi.org/10.1016/S0925-5214(02)00193-X
http://doi.org/10.1111/j.1750-3841.2011.02406.x
http://www.ncbi.nlm.nih.gov/pubmed/22416695
http://doi.org/10.1002/jsfa.8450
http://www.ncbi.nlm.nih.gov/pubmed/28547803
http://doi.org/10.1016/j.foodchem.2020.127922
http://doi.org/10.13925/j.cnki.gsxb.20200406
http://doi.org/10.17113/ftb.54.04.16.4248
http://doi.org/10.1007/s00217-021-03695-0
http://doi.org/10.3136/fstr.23.79


Foods 2022, 11, 1631 14 of 14

44. Wang, A.; Li, T.; Xu, X.; Han, Z. SSR Ana lysis for Apple Cultivars. Acta Horticulturae Sinica. 2005, 32, 875–877.
45. Gagaoua, M.; Monteils, V.; Couvreur, S.; Picard, B. Beef tenderness prediction by a combination of statistical methods: Chemomet-

rics and supervised learning to manage integrative farm-to-meat continuum data. Foods 2019, 8, 274. [CrossRef] [PubMed]

http://doi.org/10.3390/foods8070274
http://www.ncbi.nlm.nih.gov/pubmed/31336646

	Introduction 
	Materials and Methods 
	Apple Samples 
	FGC E-Nose 
	Volatile Compounds Identification 
	Data Processing 
	Multivariate Analysis 
	Machine Learning 


	Results 
	Volatile Identification 
	Multivariate Analysis 
	PCA 
	PLS-DA 
	SLDA 

	Machine Learning 

	Discussion 
	Conclusions 
	References

