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Abstract: Virgin olive oil (VOO) classification into quality categories determines its labeling and
market price. This procedure involves performing a series of chemical–physical analyses and,
ultimately, a sensory analysis through the panel test. This work explores the analysis of VOOs quality
with an electronic olfactory system (EOS) and examines its abilities using the panel test as a reference.
To do this, six commercial olive oils labelled as extra virgin were analyzed with an EOS and classified
by three panels recognized by the International Olive Council. The organoleptic analysis of the oils
by the panels indicated that most of the oils in the study were in fact not extra virgin. Besides this,
the classifications showed inconsistencies between panels, needing statistical treatment to be used
as a reference for the EOS training. The analysis of the same oils by the EOS and their subsequent
statistical analysis by PCA revealed a good correlation between the first principal component and the
olive oil quality from the panels using average scores. It also showed a more consistent classification
than the panels. Overall, the EOS proved to be a cheaper, faster, and highly reliable method as a
complement to the panel test for the olive oil classification.

Keywords: olive oil; electronic nose; electronic olfactory system; organoleptic analysis; food quality

1. Introduction

Virgin olive oil (VOO) is the denomination for the juice obtained from fresh olive fruits,
by means of only mechanical and physical processes (olive milling, olive paste mixing
and centrifugation, and olive oil settling) [1]. This definition assumes that the procedures
of farming, harvesting, and oil extraction are performed flawlessly. Often, this is not
the case and bad practices at any stage of the process (mainly inclusion of rotten olives,
extreme temperatures, inadequate storage conditions, bad oil extraction technologies, or
the presence of dirt) lead to a loss in olive oil quality [1–3]. As a result of this, a series of
chemical parameters and organoleptic properties may be altered, deteriorating the quality
of the olive oil, even rendering it non-edible [4,5]. In this sense, olive oil quality can be
defined in different categories based on these characteristics. The International Olive
Council (IOC) trade standard [6] defines four quality categories for VOO, namely extra
virgin, virgin, ordinary, and lampante, based on four chemical parameters (free acidity,
peroxide value, UV absorbance, and fatty acid ethyl esters) and a sensory analysis that
has to be performed by a recognized panel [6]. All five parameters must meet the limits
established by regulators to be graded inside a category (see Table S1). However, current
European Union (EU) regulation does not include the category named ordinary, with those
samples falling into this category being classified as Lampante. In this sense, the quality
classification of VOOs is one of the main factors determining their market price, not only
because of the higher demand for the best qualities, but also due to the fact that olive oils
classified as lampante cannot be consumed without undergoing a refining process. Given
that meeting the requirements for the chemical parameters does not ensure the final quality,
the sensory analysis is usually the one that ultimately determines in which category falls a
certain VOO.
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To ensure a good classification, appropriate means for quality determination are nec-
essary. This has to be done in an unequivocal time- and cost-efficient way. According to the
IOC, recognized panel tests are the only approved organoleptic method for the classification
of VOOs [6], although they exhibit some important disadvantages. Tasters are limited
to a low number of samples per day because their ability to perceive aroma and flavor
decreases after each tasting and a certain time is needed for its complete recovery. With
such a slow operation, panel tests cannot be applied on-line during the olive oil extraction
process. Furthermore, despite being a well-designed and objective method, it is based on
subjective perceptions that, even with properly trained tasters, it may lead to imprecisions
in the results and a disagreement between panels [7,8]. Several instrumental techniques
have appeared during the last decades in the search of an alternative to overcome the
above-mentioned drawbacks of the panel tests. In all cases, a training process using olive
oil standards of the different quality categories, previously classified by IOC recognized
panel tests (the reference method), is required. Despite not being approved for the classifi-
cation of olive oil into quality categories, destructive laboratory techniques, such as gas
chromatography, mass spectrometry, and ion mobility spectrometry, have been successfully
used for the analysis of VOO [9–14]. These methods are characterized by a great precision
and reproducibility, but they are costly and time-consuming, limiting their usability as an
on-line classification system [15]. Often, these techniques are chosen for the detailed charac-
terization of samples rather than quality assessment for labeling and marketing purposes.
In the search for methods that mimic the human olfactory system and therefore can perceive
the full organoleptic profile of alimentary products, electronic olfactory systems (EOS), also
known as electronic noses, appeared as strong candidates that could provide an electronic
fingerprint for samples with certain characteristics [16,17]. These systems are usually based
on metal-oxide sensors (MOS), whose resistance or conductivity changes upon contact with
the volatile compounds defining the aroma of a certain sample. In the case of olive oil,
this aroma is produced mainly by aldehydes, alcohols, esters, hydrocarbons, ketones, and
furans [18]. The advantages of such systems lie in their fast and holistic response towards
the analyzed product, being less expensive than panel tests, and not depending on the
variability of human senses. MOS sensors typically present some drawbacks such as a
lack of specificity, drift in time, or interference from humidity, which can be corrected or
minimized through an appropriate measuring setup or post-processing [19].

Traditionally, the studies of sensory analyses of VOO using EOS based on conducti-
metric sensors are focused on their ability to classify the studied samples within the three
main quality categories [19–22] or more specific properties such as identifying specific
defects [23–25] or even geographical origin [26], and although the advantages that may
result from their inclusion in the routine classification of olive oils makes them a sound
alternative to the currently used method, these systems, like other instrumental approaches
used for the same application, are not approved for the quality assessment of VOOs to
date. At this point it is very important to take into account that the results from all these
techniques need to be supported by recognized panel tests. The results are evident that the
classification of the employed standard samples during both the training and validation
processes of the instrumental technique, made by the reference panel tests, needs to be
unequivocal. The aforementioned possibility of imprecisions and disagreement between
panels [7,8] implies that relying on a single panel may lead to the incorrect classification
of standards. This fact, which may not have been considered in the previous studies,
could be responsible for a lack of accuracy that would invalidate them for an eventual
implementation in the target industry.

The main objective of this work is to assess the classification ability of six commercial
olive oils labelled as extra virgin through their analysis with an EOS and using several
panel tests as a reference. We aim to be able to reach the accuracy level of the reference test
to prove the suitability of EOSs for this type of analysis without the need to perform an
extensive training with numerous oil samples. To do this, we will select three different IOC
recognized panels and obtain from them the detailed characterization and classification
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for each of the selected olive oils. Their results will be compared in order to study their
consistency and to determine the accuracy of their methodology. Finally, by analyzing six
commercial VOOs labelled as extra virgin, we also intend to assess any possible labeling
fraud that could be prevented with the implementation of more exhaustive quality controls.

2. Materials and Methods
2.1. Materials

Six different commercial VOOs available in southern Spain were analyzed. To include
a representative selection, both well-known brands (including a highly reputed producer
from Western Andalucía) and own brands from the three top selling retailers in Spain
were studied. All of them were labelled as extra virgin olive oil and their main chemical
parameters (free acidity and peroxide value) were the expected for this quality category.
The studied samples were packaged in 1 L PET bottles and their price was not higher
than 4.5 €/L at the time this study was done. Such conditions were established to exclude
gourmet type products from the analysis, as their price may be affected by parameters not
necessarily correlated with quality, namely geographical indications, marketing campaigns,
or expensive packaging. To avoid showing company names, brands have been anonymized
with codes B1 to B6.

2.2. Equipment

The electronic nose used in this work was an EOS835 built by Sacmi Industry (Sacmi
Industry, S.r.l., Imola, Italy), composed of a chamber with six sensors based on metal oxide
semiconductors (MOS, Table S2) coupled to a computer for data acquisition and processing.
During the analysis, the sensors were maintained at their specific operating temperature
in the range 350–450 ◦C. Further details regarding EOS835 and its sensors can be found
elsewhere [27].

2.3. Sample Preparation and Measuring Setup

The analytical parameters (sample amount, time and temperature for headspace
generation, flow rate, and injection time) were selected and optimized according to the
existing literature [15,28]. Samples were diluted 1:1 with refined olive oil (odorless) to
prevent sensor saturation due to high volatile content. For each measurement, 5 g of
the corresponding sample and 5 g of refined olive oil were introduced in a 100-mL glass
vial, which was then hermetically closed with a rubber cap and heated at 35 ◦C inside a
thermostat-controlled bath for a headspace generation time (HGT) of 3600 s. This HGT
ensured the saturation of the vials headspace with the volatile compounds contained in the
olive oil samples.

The typical response of the system after the injection of the samples implies a decrease
in the sensors resistance and the subsequent recovery with reference air. For each mea-
surement, this process was divided into four stages with fixed durations: before sample
injection (60 s), during sample exposure (60 s), after sample exposure (recovery, 60 s) and a
waiting time for complete signal stabilization (420 s). In total, the analysis of each sample
lasted 600 s and was done in triplicate. Ambient air filtered through activated carbon was
used as reference and as carrier gas for the samples, directed to the sensor chamber at a
flow rate of 150 cm2/min. The temperature of the sensor chamber was kept at 55 ◦C. All
experiments were conducted in an air-conditioned room at 25 ◦C. Further details on this
methodology can be found elsewhere [19].

2.4. Data Analysis

Data processing was performed using the software Nose Pattern Editor implemented
by Sacmi Industry (Sacmi Industry, S.r.l., Imola, Italy). The response of the sensors yielded
an exponential-like shape, from which different parameters can be extracted. We performed
the so-called “classical” extraction, which consisted in the reduction of the information
provided by each sensor response to a single value equal to R/R0, where R0 is the initial
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resistance of the sensor and R is the minimum sensor resistance, corresponding to the
maximum change of the response curve. An average R/R0 value from the three replicates
per sample was obtained for each sensor. Classification of the samples was performed
by multivariate analysis through principal component analysis (PCA) [29,30] after the
extraction of R/R0. PCA was performed following the leave-one-out (cross validation)
method, consisting in the removal of each point from the dataset and its subsequent test as
unknown using the remaining data points [31–33].

2.5. Panel Test Methodology

Sensory analysis was performed following the panel test method according to the
IOC guidelines [6]. Briefly, an IOC-recognized panel test consists of the blind tasting of
VOO samples by 8 to 12 panelists selected and directed by a panel supervisor. Such tasting
has to be performed in individual booths under specific temperature, light, and humidity
conditions, and each panelist is limited to a maximum of twelve tastings a day. The strict
requirements and the multiple recommendations made by the IOC method make it difficult
for the panels to analyze an elevated number of samples per day, which is especially
relevant during harvest season. After the test, the panel supervisor gathers the scores
provided by the panelists and calculates the median value for defects and attributes.

Of the available and IOC-approved panels that could be found in Spain at the time of
the analysis (see Table S3), we chose three taking into account that (i) their prices had to be
affordable and (ii) the time required for the analysis of the samples had to be reasonably
short. With these constraints and in an effort to include panels from at least two different
geographical regions with significant VOO production, we selected two panels from the
south of Spain and one from the northeast of Spain. Names of the selected panels have
been omitted for anonymity.

To ensure blind tasting of the samples, these were sent to the selected panels in sealed
and numbered 500 mL amber glass bottles without any indication of their commercial
brand or origin. Samples sent to the different panels were from the same production lot.

3. Results and Discussion
3.1. Panel Test Classification

Table 1 shows the median of the main attributes to be taken into account when classi-
fying VOOs, namely fruity (positive) and defects (negative), along with the classification
given to each VOO sample by the three selected panels. According to EU regulation, the
category named ordinary was not used by the panels and therefore those samples whose
median of defect was above 3.5 were classified as lampante. Of the six different brands
analyzed, only B1 was unanimously classified as extra virgin, while the other five brands
were classified either as virgin or lampante by at least two of the recognized panels. The first
consideration that this result raises would be the inadequate labeling of the analyzed olive
oils, all being sold as extra virgin. This incorrect labeling is particularly serious in the case
of those samples classified as lampante because this category is considered non-edible and
must undergo a refining process, although their defect is below six and therefore should be
categorized as ordinary according to IOC classification, which fits for consumption. The
second point would be the inconsistency among panels, whose overall classifications do
not match in three of the samples, not to mention the fruity and defects score. This result is
of particular importance in the training process of electronic olfactory systems and other
instrumental methods for VOO classification, as the categories from the panel test are used
as standards during this stage, and therefore a non-unequivocal classification can ruin their
subsequent application to routine analysis. To address this issue, we propose to average
the data provided by the panels. Additionally, for the comparison with the analysis of our
EOS system, we calculated a quality parameter Q according to Equation (1):

Q = 5 − D + F, (1)
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where F is the fruity and D is the intensity of the defects of each olive oil, previously
averaged as proposed above. Table 2 shows the average quality of the analyzed olive oils,
according to the sensory analysis performed by the panels. Through this methodology,
the results from the panel tests for each of the VOOs can be summarized as a numerical
score allowing for a more precise quality analysis than in the case of using only the three
regulated categories.

Table 1. Attributes and quality classification provided by the panels for each VOO brand.

Characteristics Panel 1 Panel 2 Panel 3

B1
Fruity 4.8 5.3 4.9

Defects 0 0 0
Classification Extra virgin Extra virgin Extra virgin

B2
Fruity 2.3 4.9 3.9

Defects 2.2 0 1.9
Classification Virgin Extra virgin Virgin

B3
Fruity 3 3.2 4

Defects 1.5 2.2 1.3
Classification Virgin Virgin Virgin

B4
Fruity 1.9 3.2 3.5

Defects 2.5 2.2 2.7
Classification Virgin Virgin Virgin

B5
Fruity 1.6 2.5 2.9

Defects 3.6 2.8 3.2
Classification Lampante Virgin Virgin

B6
Fruity 0 2.5 3.4

Defects 4 2.8 2.8
Classification Lampante Virgin Virgin

VOO, virgin olive oil; B1 to B6, anonymized codes for olive oil brands.

Table 2. Average quality of the VOOs calculated from the sensory analysis.

Panel 1 Panel 2 Panel 3 Average Quality Standard Deviation

B1 9.8 10.3 9.9 10 0.265
B2 5.1 9.9 7 7.33 2.417
B3 6.5 6 7.7 6.73 0.874
B4 4.4 6 5.8 5.4 0.872
B5 3 4.7 4.7 4.13 0.982
B6 1 4.7 5.82 3.97 2.522

VOO, virgin olive oil; B1 to B6, anonymized codes for olive oil brands.

Nonetheless, it is remarkable the unsatisfying accuracy observed in the olive oil classi-
fication provided by the panels. While fruity and defects intensity are numerical values,
and hence a total match among panels is unlikely to be expected, a correct classification of
each olive oil into the corresponding category (extra virgin, virgin, and lampante) should be
achieved. This is of particular importance given the implications that quality classification,
as appearing on the product label, has on the selling price and the consumer perception
of the product. This leads us back to the possible incorrect labeling of the olive oils in
this study, which is an important issue to be addressed by regulatory agencies and is
not the main goal of our analysis. However, a correct classification of the olive oil by its
manufacturer can hardly be expected if even approved and recognized panels do not reach
the same conclusion about one particular product. This concern has been raised in a recent
review by Conte et al., where a number of recommendations are given in order to improve
the panel proficiency [34]. The Spanish oil industry associations ANIERAC and ASOLIVA
also reported that the panel test is far from being infallible [35]. Another study, by Barbieri
et al. addressed the inconsistency among panels by establishing a decision tree scheme to
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ensure that panels were in agreement [36]. In our case, Dixon’s Q test did not allow the
exclusion of any panel as an outlier, hence averaging the data was deemed the best strategy.
As a simple approach to compare the classification ability of panels with that of an EOS, we
can consider the degree of complete concordance in the classification made by the different
panels. According to this methodology, a 50% of complete concordance was reached. Three
brands were classified within the same quality category by all three panels (B1, B3, and
B4), while there was a disagreement in the classification of the other three (B2, B5, and
B6). A different approach, assuming that all samples were actually extra virgin according
to their labeling, would lead to a 22% accuracy of the panels (four correct classifications
out of 18 analyses). However, the classification of the manufacturer may be subjected to
variations in quality, errors, or commercial interests that discourage its use as a reference
for the comparison with the results of panel tests. In a previous work [19], we studied the
ability of an EOS device to classify VOOs, with a 66% accuracy after optimization of the
system. Although these results do not allow for a direct comparison of the classification
capabilities of the two methods, they suggest the potential of electronic noses to represent
an alternative to the classic panel test.

3.2. EOS Analysis

The analysis of olive oils by means of an EOS is based on the response of its sensors
towards the volatiles contained in the oil. Typically, a decrease in the resistance of these
sensors is observed upon their exposure to volatiles, followed by a recovery phase once dry
air is directed to them. Further details regarding sensor behavior, stability, and repeatability
can be found in a previous work [19]. An example with the response of one of the sensors
in our device (sensor S4) to the six analyzed olive oils can be found in Figure S1. As
expected, the sensor resistance shows a similar shape in all cases with a clear exposure
phase characterized by a decrease in the resistance and the subsequent recovery phase
featuring an increase in the resistance. The different slopes and resistances are indicative of
differences in the composition of the samples and can be used for the characterization of
the VOOs through appropriate numerical extraction.

Once the extraction of R/R0 from each sensor response is performed, radar plots
depicting the fingerprints for the olive oils can be obtained. This representation facilitates
the visual identification of the responses shown by each of the sensors upon interaction with
the volatile compounds from the olive oils and provides a first comparison of the aroma
profiles of the oils. Figure 1 shows the fingerprints corresponding to the six analyzed olive
oils. As can be seen, they all shared some similarities while featuring visible differences.
A similar shape is to be expected given the restricted variability that can be found in the
composition of VOOs. Individual variations in the fingerprints indicate that there were
substantial differences among the analyzed oils, and at the same time proves the ability
of our system to detect them. For example, the fingerprint of B6, with the smallest area
in the set, shows that all six sensors experienced the greatest decrease in resistance upon
exposure to the volatiles contained in the oil. At a glance, strong differences can be noticed
between this fingerprint and those corresponding to B1 or B3 samples, the two with clearly
bigger fingerprints.

In order to reduce data dimensionality and discard redundant information, PCA
was applied to the dataset containing the extracted R/R0. Using this approach, a direct
comparison between samples can be made with ease and accuracy. Figure 2 shows the PCA
obtained for the six olive oils in the study measured in triplicate during one measurement
session, where two principal components (PC1 and PC2) explain 93% of the data variability.
It can be observed that some of the olive oil brands, such as B6, are well separated from
the others, while there is some overlap between B3, B2, and B1. The separation among
olive oils was to a great extent due to PC1, which explained 70% of the data variability.
According to this component, samples appeared to separate according to the scores obtained
from the panel test, with an inverse relationship between PC1 values and quality score.
This behaviour has been previously observed in other studies with electronic olfactory
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systems based on SnO2 sensors [20] but analysing VOO samples with much more separate
organoleptic qualities than those used here. Taking into account that our samples are all
commercial VOOs labelled as extra virgin and therefore are assumed to have less disperse
qualities than those typically used in other studies, the observed relationship between PC1
values and quality score can be a powerful tool to quantify their real quality.
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3.3. Quality Assessment by the EOS

Aiming to explore whether PC1 was an appropriate indicator of olive oil quality, we
first calculated the average PC1 for each olive oil brand corresponding to three different
measurement sessions, along with their respective standard deviations (Table S4). Despite
the inherent variability of measurements obtained from MOS sensors due to drift in time,
humidity-dependence, and other factors [37,38], we found that the standard deviation of
PC1 between sessions ranged from 0.134 to 0.434, which was considerably lower than that
of the quality parameter between panels (Table 2). Although no direct comparison can be
made between these two systems, the high uncertainty in quality assessment provided by
the panels in comparison with the EOS suggests that the latter might be a good alternative
to the well-established panel test.

To investigate if there was a correlation between quality scores calculated from panel
tests and PC1, we correlated the average values of both parameters. Figure 3a shows
the relationship between average quality scores provided by the panel tests and PC1
(R2 = 0.5987). At first glance, B2 and B6 data appeared to be the most deviated from the
linear adjustment. Such an outcome is of particular importance given that the quality
scores of these brands showed by far the highest standard deviation between panels (see
Table 2), suggesting that the correlation between quality attributes and PC1 might be
negatively affected by the lack of consistency of the scores given by different panels. This
means that possibly more panels should be used to obtain less dispersed averaged quality
scores. In this way, it seems reasonable to discard B2 and B6 in a second plot of quality
scores vs. PC1 as depicted in Figure 3b, which in turn revealed a much greater correlation
between these two variables (R2 = 0.9992). Again, the extremely good correlation obtained
in this case further supports the assumptions made above, especially in the case of B2 as
it is known that this VOO is bottled by the producer of the top quality B1 and therefore
it is reasonable to consider that its real quality can be higher than that scored by the
panels. The obtained results are particularly relevant taking into account the fact that all
olive oils were commercially labelled as extra virgin, which means that theoretically all
samples would share an important part of their organoleptic characteristics, and hence
their separation through PCA would be more difficult to achieve. Despite this, a good
correlation was found between PC1 and the results from the panel test in the cases that
these were consistent between panels. This allows us to propose this parameter as a quality
indicator for commercial olive oil, either to be used together with human panels or as a
standalone system. For further details, individual correlations corresponding to each of the
panels and average PC1 can be found in Figure S2 (all samples) and Figure S3 (excluding
B2 and B6 data). In any case, the obtained results unveil unexpected quality differences
between commercial VOOs all labelled as extra virgin with no other specific indications
and without significant differences in price. This allows us to conclude that more restrictive
regulations are needed and that the proposed analytical approach can be particularly useful
in the corresponding controls.

It is worth noting that our objective was not to evaluate VOO quality in the production
line nor to train the system to discriminate into quality categories, but to identify quality
differences in commercial olive oil samples. Without the need for an extensive training,
the analysis through the EOS indicated that this system is able to provide coherent data
from a limited number of samples. Our results also showed that several panels are needed
in order to achieve a satisfactory classification of VOOs. The difficulties of obtaining the
quality grading from different panels in a short time prevented us from including a higher
number of these in the study. A deeper analysis, which would mean longer times and
the allocation of more resources, is currently under consideration. For this, a consortium
with olive oil companies is being studied to include a higher variety of samples and their
classification by several recognized panels.
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3.4. Aroma Intensity Assessment by the EOS

As shown in the PCA in Figure 2, 23% of the data variability was explained by PC2.
In the search for organoleptic properties of olive oil that might be driving this component,
we hypothesized that aroma intensity was arguably one of the main parameters defining
an aroma and hence could be one of the factors determining PC2. In order to have a
quantification for the aroma intensity of the analyzed olive oils, and based on the scores
provided by the panels, we defined the intensity of an olive oil as the sum of its attributes
and defects (F + D), each in a scale from zero to five, and averaged the intensities for all
panels. It is worth noting that such intensities are unrelated to olive oil quality, given
the inclusion of defects in the intensity parameter. A different approach, such as that
described by Lerma-García et al. [23], would be the direct search for defects in the olive oil,
without taking into account the positive attributes. Nonetheless, the interest of the intensity
parameter lies in the fact that a more intense aroma may be perceived in some cases as an
indicator of a better product to the untrained taster. The average intensities along with the
average PC2 for each olive oil brand can be found in Table S5. For both parameters, B4 and
B5 showed the highest values. We correlated aroma intensity with average PC2 but found
no significant correlation. A reason for this might be the aforementioned drift that MOS-
based EOSs feature over time, and the fact that measurements from different days were
considered to calculate the average. Using measurements performed on the same day led
to significantly better correlations. Figure 4 shows the correlation between aroma intensity
calculated from panel test results and the average PC2 of measurements done by triplicate
during a measurement session (R2 = 0.8867). Again, B4 and B5 showed the highest values
of PC2 alongside the highest values of the sum of defects and attributes. Such correlation
suggests that PC2 could be used to explore the aroma intensity of commercial olive oils. The
interest of this potential application lies in the fact that unusually high aroma intensities
from both defects and attributes might be a result of the mixture of oils with heterogeneous
qualities. This procedure may be performed in order to mask defects present in olive oils
by mixing them with better quality oils so that the final mixture possesses enough positive
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attributes that enhance the organoleptic quality of the product. After such a procedure, low
quality oils might be fraudulently labelled and sold as virgin or extra virgin if they do not
undergo the panel test. This practice, although somewhat widespread, is misleading to
the regular consumer, as the quality indicated in olive oil labeling is the most determining
factor for its final price. In this scenario, PC2 obtained with our system has the potential
of acting as a detector for unusually high aroma intensities and hence helps to identify oil
mixtures that contain low quality oils in its composition.
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4. Conclusions

The organoleptic analysis of six commercial olive oils labelled as extra virgin by IOC
recognized panels led to inconsistent classifications, probably derived from the inherent
human factor variability that is behind the reference method for the classification and
labeling of olive oils. Moreover, only one of the oils was unanimously classified as extra
virgin and two of them obtained the worst possible classification (lampante) by one of the
panels, suggesting an inappropriate labeling that may represent consumer fraud.

The analysis of the same oils by an EOS and their subsequent statistical analysis by
PCA revealed that PC1 is directly related to olive oil quality, according to the average scores
provided by the panels. It also indicated a lower deviation between measurements using
the EOS than between panels, which remarks the high reliability of the electronic system for
these purposes and the need for using average values from different panels. On the other
hand, PC2 proved to be a good indicator of aroma intensity, defined as the sum of attributes
and defects identified by the panels. Such an ability may be used for the detection of oil
mixtures containing low quality oils whose defects were masked with better quality oils,
resulting in unusually high aroma intensities.

Overall, the EOS proved to be a reliable method as a complement to the well-established
and regulated panel test. Due to the lower cost and faster analysis time featured by the
EOS, it is a strong candidate for the industrial olive oil classification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11101477/s1, Table S1: Quality parameters for the classifi-
cation of olive oil according to the IOC; Table S2: Sensor chamber configuration in the EOS835; Table
S3: Panels approved by the IOC available in Spain, along with their location, price for sample and
estimated time for the delivery of results; Table S4: Average PC1 and standard deviation for each
of the olive oil brands; Table S5: Average aroma intensity and PC2 for each of the olive oil brands;
Figure S1: Response of one of the sensors in the EOS (S4) towards the six analyzed VOOs; Figure S2:
Correlations between quality scores calculated from each of the panel tests and average PC1 obtained
from the EOS; Figure S3: Correlations between quality scores calculated from each of the panel tests
and average PC1 obtained from the EOS, excluding the data corresponding to B2 and B6.
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